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Abstract: Household water supply can cause different environmental impacts associated with the
consumption of energy and materials, the generation of waste, and other inputs and outputs necessary
to treat and distribute water. These impacts depend on the population’s consumption patterns, due
to the potential availability of different water sources. In this work, the environmental impacts of
water supply were evaluated from a production-consumption perspective, integrating life cycle
assessment (LCA) and a survey for determining the end uses and sources of water at household
level. The proposed method was applied in the city of Chillán (Chile), where three main sources
exist: tap, bottled, and well water. Two household profiles were evaluated, differentiated by the
presence of wells within the household. The results show that bottled water generates impacts up to
three orders of magnitude greater than the other sources. Although it is the source with the lowest
volumetric contribution (<1%), it accounts for 39–92% of the household impacts. Households with
well access present greater per capita consumption of water, mainly associated with outdoor activities,
but the environmental impacts are similar between profiles. Overall, this study demonstrates the
importance of integrating a consumption perspective into LCA studies, generating better information
for decision-making.

Keywords: water supply; life cycle assessment; sustainable production and consumption; consump-
tion patterns; environmental assessment

1. Introduction

During the last decades, water access and sanitation have become a worldwide priority,
being included among the 17 United Nations (UN) Sustainable Development Goals [1].
However, securing an equitable and sustainable access to water is an increasingly difficult
target, considering climate change and the growing pressures on water resources, with
an estimated 40% of the world population currently living in areas under water stress or
scarcity [1].

In order to provide access to water and sanitation services, in urban areas the natural
water cycle is altered by human infrastructure and activities. The anthropic water cycle
begins with water intake from surface or underground, followed by water potabilization,
storage, distribution, consumption, wastewater collection, and finally its treatment and
discharge into a natural watercourse. In order to be consumed by the population without
public health risks, water must undergo a purification process, which involves a series of
unit operations aimed at removing contaminants such as pathogens, organic matter, and
minerals that are naturally present in water [2].
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In Chile, water supply is provided by 54 companies that are regulated by the Superin-
tendent of Sanitary Services (SISS). According to recent data, water supply reaches 99.8% of
the urban population, which represents ~80% of the total population of the country [3].
However, household water requirements are not exclusively covered by the centralized
system; rather, there are other supply sources that vary from place to place and may include
water extracted from dug or driven wells, bottled water, and locally collected rainwater [4].

In order to supply water in enough quantity and quality, every water production
system requires energy, materials, and inputs for the production, storage, and distribution
of water, which in turn are associated with the generation of several environmental impacts.
Life cycle assessment (LCA) is a tool that allows these impacts to be quantified and com-
pared, based on four fundamental steps: the definition of scope and objectives, inventory
analysis, environmental impact assessment, and the interpretation of results [5].

It is important to note that the use and/or consumption stage in the life-cycle of
a product can be determinant over its environmental impact; therefore, including this
perspective in LCA studies allows for a more complete vision of the environmental impacts
of a product or service and the generation of appropriate information to support decision-
making [6]. Among the instruments that can be used to assess consumer behavior or
preferences, surveys are a simple and reliable methodology that allow researchers to
make estimations regarding consumption patterns, assess the variables that intervene in
consumption habits, and construct user typologies to support LCA studies [6].

However, most studies published in the literature that focus on residential water
consumption have a scope that is limited to the production processes (also knowns as a
“cradle-to-gate” scope), without assessing how consumption habits and consumer types
can affect the resulting environmental impacts [2,7–10]. Consumer preference for one
or another supply source may be influenced by personal preferences or factors such as
socioeconomic status or education level [11,12]. For example, one of the main drivers of
bottled water consumption can be the perceived higher quality of this source of water
compared to tap water, as previous studies confirm [13,14]. Even in countries with high
quality standards for tap water, bottled water can be perceived as a safer option [14], and
other factors such as its portability, convenience, association with certain lifestyles, and
allegedly better organoleptic qualities can also influence the population’s choices regarding
its consumption [13]. This situation can also be extrapolated to other water sources, such
as locally extracted well-water, captured rainwater, and reclaimed or desalinated water,
sometimes due to concerns that go beyond perception, such as the potential presence of
unregulated micropollutants in water [15].

In this scenario, this study proposes a conceptual framework for the integration of
water consumption practices into LCA studies based on the development, validation,
and application of population surveys in parallel to the environmental assessment of
production systems. This method was applied to the analysis of the city of Chillán, in
south-central Chile, where three main water supply sources were identified: the centralized
purification and distribution system (tap water), bottled water consumption, and household
extraction from wells. This study contributes to the area of study through the proposal
and application of a simple framework to integrate consumption patterns within LCA, in
order to improve the results of the analysis and to generate useful information to improve
water production systems and to support the development of public policies on sustainable
urban water management.

2. Materials and Methods

The study area is the Chillán and Chillán Viejo conurbation (36◦36′23.9′′ S, 72◦6′12.4′′ O),
located in the Ñuble Region of Chile (Figure 1). The total population of the city is 215,646 in-
habitants, with a total of 79,130 households [16].
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Figure 1. Spatial location of the study area (source: own elaboration based on IDE-Chile data).

The objective of the study was to assess and compare the environmental impacts
associated with the drinking water supply in the city of Chillán (Chile), considering dif-
ferent sources and consumption patterns. The proposed methodology has four steps:
(1) the construction of life-cycle inventories for the different water supply sources; (2) the
quantification and comparation of the environmental impacts of the water sources; (3) the
determination of the consumption profiles of households; and (4) the assessment of their
environmental impacts. Figure 2 summarizes the scope of the study, and all the method-
ological steps are described in the following subsections.
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2.1. Life Cycle Inventories

For the analysis of the different water sources, the functional unit was defined as the
“provision of 1 m3 of water to households” via tap water production systems, bottled water,
and decentralized extraction from wells. The scope of the analysis includes the operation
of each system, including all steps from water extraction and processing to its distribution
to the consumption point. Construction and dismantling of the production systems was
not included.



Sustainability 2023, 15, 1946 4 of 13

The life cycle inventory for tap water was constructed based on data provided by the
local water company (ESSBIO S.A.). Data represents the operation of the systems during
the period spanning January 2017 to August 2020.

Water supply comes from 5 production systems, located at various points in the city:

1. In the central purification system of Chillán (SCh), water is extracted from three
points: one surface water intake in the Chillán River and two groundwater intakes.
The purification process is based on conventional treatment processes, including
flocculation, sedimentation, rapid filtration, and disinfection (chlorination).

2. The northeastern extraction and storage system (NE) comprises two groundwater
intake points, with a compact treatment process consisting of filtration and disinfection
by chlorination.

3. The northern extraction and storage system (N) comprises five groundwater intake
points and a disinfection process by chlorination.

4. The southern extraction and storage system (S) has three groundwater intake points
and a disinfection process by chlorination.

5. The southeastern extraction and storage system (SE) includes two groundwater intake
points and a disinfection process by chlorination.

Each of these systems has an independent storage system, except for the central
purification system of Chillán, which pumps its production to the southern or northern
tanks or distributes it directly to meet the immediate demand. As the main pumping
stations of the city are located in the same location of the production systems, their electricity
consumption is accounted in the corresponding inventory. Furthermore, an additional
consumption of ~1.3 × 10−3 kWh per FU was reported by the water company for the
remaining pumping processes in the distribution network, which was also accounted in
the inventory.

Bibliographic sources were used to construct the bottled water inventory [7,17]. For
this process, a surface water intake was assumed, as most of the bottled water companies
in Chile process water coming from mineral springs, and do not extract it from under-
ground. The transport distance of the manufactured product (bottled water) was estimated
as the distance between a bottling plant located in the O’Higgins Region (34◦10′15′′ S,
70◦44′40′′ W) and the point of consumption (Chillán), resulting in 321 km.

For the life cycle inventory of well water, it was assumed that the main consumption
is associated with the electricity needed to extract water from shallow wells; therefore,
consumption in kWh of a 0.5 HP pump was used as a reference, with estimated maxi-
mum and minimum flows determined based on technical data sheets of pumps available
on the market.

The life cycle inventories for the background processes were obtained from the Ecoin-
vent v3.8 database. Electricity consumption for all processes was assumed to come from
the national electricity mix. The Chilean energy mix was modified with data updated to
2020 from the National Electric System [18], resulting on a 35.1% contribution from hard
coal, 26.6% from hydroelectricity, 17.7% from natural gas, 9.8% from photovoltaic systems,
7.1% from onshore wind turbines, 2.4% from biomass, 0.8% from oil, 0.3% from geothermic
plants, and 0.2% from wood co-generation. A summary of the used Ecoinvent processes
can be consulted Table S1 of the Supplementary Material.

2.2. Life Cycle Impact Assessment

The impact categories used in this study were selected by means of a literature review
of similar studies [4,7,19]. The resulting categories were global warming, terrestrial acidifi-
cation, freshwater eutrophication, freshwater ecotoxicity, human carcinogenic toxicity, land
use, and fossil resource scarcity. The ReCiPe 2016 midpoint method in its hierarchical ver-
sion was used for the assessment, through its implementation in the SimaPro v9.2 software.
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2.3. Consumption Profiles

In order to establish the consumption and end use of residential water by the in-
habitants of the city, a survey aimed at seven dimensions was developed, validated, and
applied. These dimensions include a sociodemographic description; access to the dif-
ferent water sources (tap, well, and bottled); water consumption habits for (a) personal
hygiene, (b) cleaning, (c) outdoor uses, and (d) intake; and water saving practices. The
instrument was prepared based on a literature review and was subsequently validated
by four evaluators (two environmental professionals with postgraduate degrees and two
water community managers with a minimum of two years of experience in their positions).
The validation process consisted of a review of four criteria using a score sheet with a
range of 1 to 4: clarity, relevance, and coherence of each question, and sufficiency of each
dimension. The free-marginal multirater Kappa parameter was used as a measure of the
level of agreement among the validators [20]. The validation results and comments allowed
the instrument to be improved before its application to the population. The average values
for the four criteria assessed during the validation, as well as the Kappa values obtained
for each category and dimension can be reviewed in Tables S2 and S3 of the supplementary
material. Due to the social restrictions resulting from the COVID-19 pandemic, the survey
was applied through a digital formulary (between 28 September and 4 November 2021). A
total of 123 surveys were received, of which those answered incorrectly were discarded,
leaving a total of 104. Considering a total population of 79,130 households, this results in
an error margin of 9.41% with a confidence level of 95%.

Based on the survey results and estimated specific consumption values of appliances
and activities (Table S4), the water consumption of each household was quantified, as well
as the percentage contribution of each water source. The end-uses included in the survey
included dish washing, toilet use, tooth brushing, showering, irrigation, and pool use.
Due to the difficulty of obtaining reliable data on some water uses by conducting surveys,
the following assumptions were made to complement the information collected by the
instrument: dish washing time was assumed to be equal to 5 min (with the faucet open);
the daily frequency of toilet use was assumed to be six times to urinate and once to defecate;
full-loads in washing machines were assumed to be of 9 kg; tooth brushing was assumed
to be performed twice a day, with a duration of 3 min if people leave the faucet open and
1 min if the faucet is closed [21].

Two consumption profiles were constructed based on the information collected in the
survey, in which the distinctive criterion was the presence of a well at the respondents’
homes. A LCA of each profile was performed, based on the estimated contribution of
each water source. The functional unit used for the environmental comparison of the
profiles was the “annual per capita water consumption”. It is important to mention that the
quality of water was not included in the inventory of neither of the water sources, mainly
due to the lack of data necessary to quantify the probable presence of potentially toxic
micro-pollutants in water.

2.4. Statistical Analysis and Estimation of the Variability of Results

A statistical analysis was carried out for each inventory parameter of the water produc-
tion systems, including the calculation of the average value, maximum, minimum, mode,
and standard deviation. In addition, the normality of the data was evaluated by means of
a Shapiro-Wilks test (α = 0.05) using the InfoStat v2020 software (Table S5). In this study,
the variability of each primary datum of the inventory was represented by means of the
standard deviation (for parameters that presented a normal distribution), or assuming a
triangular distribution with maximum, minimum, and representative values (mode) (for
parameters that presented a non-normal parameters). In the case of data obtained from
literature, the variability was estimated by the implementation of the Pedigree matrix
through the SimaPro v9.2 software [22]. Variability of the characterization results was
estimated by means of a Monte Carlo analysis, using a fixed value of 1000 iterations.
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3. Results and Discussion
3.1. Life Cycle Inventories

Table 1 shows the inventory of the five drinking water production systems. In com-
parative terms, there is a large difference in electricity consumption, which in the case of
the northeast extraction system is ~34 times greater than the consumption of the Chillán
production system. This difference is mainly related to the scale and efficiency of the
systems, as well as the fact that surface intake accounts for 96% of the water extracted
in the Chillán production system, unlike the rest of the systems, which have exclusively
groundwater intakes and a higher electricity requirement for pumping.

Table 1. Simplified inventory for the operation of the five water production systems.

Parameter Unit
Production System

SCh NE N S SE

Electricity kWh/m3 0.04 1.35 0.79 0.80 0.96
Chlorine gas kg/m3 2.4 × 10−3 8.10 × 10−4 1.9 × 10−3 1.2 × 10−3 1.2 × 10−3

Calcium hydroxide kg/m3 3.1 × 10−4 - - - -
Oil consumption kWh/m3 5.6 × 10−5 4.9 × 10−3 1.5 × 10−3 2.6 × 10−3 -

Aluminum sulphate kg/m3 8.3 × 10−3 - - - -

SCh: central purification system of Chillán; NE: northeastern extraction system; N: northern extraction system;
S: southern extraction plant; SE: southeastern extraction system.

In the case of bottled water, the production system is more complex, as it requires the
incorporation of material for bottles, packaging, and the transport requirements for the fin-
ished product (Table 2). If we compare the inventory data on energy consumption, bottled
water has a consumption ~222 times greater than water extracted from wells (0.09 kWh
per m3) and ~98 times greater than the average Chillán production and distribution system
(0.21 kWh per m3).

Table 2. Inventory of the bottled water production process.

Parameter Unit Mean References

Inputs

Surface water m3 1.26 Garcia-Suarez et al. (2019) [17]
Polypropylene (PP) kg 1.40 Garcia-Suarez et al. (2019) [17]

Corrugated carton boxes kg 3.01 Garcia-Suarez et al. (2019) [17]
Kraft paper kg 0.07 Garcia-Suarez et al. (2019) [17]

Ozone, liquid kg 0.35 Garcia-Suarez et al. (2019) [17]
Packaging film kg 4.03 Garcia-Suarez et al. (2019) [17]

Polyethylene Terephthalate (PET) kg 18 Garcia-Suarez et al. (2019) [17]

Auxiliary
processes

Electricity kWh 20 Garfí et al. (2016) [7]
Injection molding kg 1.4 Garcia-Suarez et al. (2019) [17]

Blow molding kg 18 Garcia-Suarez et al. (2019) [17]
Transport, truck tkm 321 Garcia-Suarez et al. (2019) [17]

Wastes Wastewater m3 0.26 Garcia-Suarez et al. (2019) [17]

3.2. Environmental Impact Assessment: Production and Distribution Systems

The production systems that make up the city’s network present differences in their
unit operations and processing capacities. The Chillán production system provides the
greatest amount of water to the network, equivalent to 80% of the total, followed by the
northern extraction system (9%), southern and southeastern systems (5% each), and north-
eastern system (1%). Correspondingly, an analysis of the contribution of each production
system to the environmental impacts of the tap water network shows that the Chillán
production system has the highest contribution, with 8.7–50.6% depending on the category,
while the lowest contribution is the northeastern extraction system, with 3.6–6.1%. Electric-
ity consumption represented the highest contributing process in all impact categories. In
fact, in the case of the southeastern production system the contribution is close to 99% in
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all categories. Due to the relevance of electricity consumption and the differences observed
between systems based on surface intake and sub-surface intake, the comparison of the
production systems (Figure 3) reveals a notable difference between the Chillán production
system and the other systems, which are mainly based on extraction from wells. In terms
of climate change potential, the Chillán system presents an impact 23 times smaller than
the northeastern extraction system. It is important to mention that the high variability
observed in the characterization results is mainly associated with the variability of the
inventory parameters reported by the water company (Table S5).
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Similar to our results, Ortiz-Rodríguez et al. (2014) [19] reported that in the case
of four water treatment plants in Colombia, 86% of the impact for the global warming
category comes from electricity (which is attributed mainly to the pumping stage), with
results ranging from 0.013 to 0.383 kgCO2 eq per m3 of tap water produced. The differences
between the systems of that study were associated to the type of treatment, the quantity of
chemical products used, and the energy mix.
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3.3. Environmental Impact Assessment: Bottled Water

Figure 4 presents the contribution of the different processes to the environmental
burden of bottled water production. The consumption of polyethylene terephthalate (PET)
for the bottles, and the transportation of the bottled water to the retailers are the processes
with the highest contributions, with ranges of 8.7–53.6% and 12.3–39.2% depending on the
category analyzed, respectively.
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Similarly, the study published by Thomassen et al. (2021) [4] reported that PET and
the transport of bottled water to the retailer contributed around 27% and 25% to the global
warming category, respectively. In the study conducted by Garcia-Suarez et al. (2019) [17],
bottle production was also the process with the greatest contribution to the environmental
burdens of bottled water, with values of 89% for freshwater eutrophication, 80% for fossil
resource depletion, 77% for terrestrial acidification potential, and 73% for global warming.

3.4. Comparison of the Environmental Impacts of Water Sources

A comparison of the environmental impacts of the three studied water supply sources
reveals large differences. For example, in the global warming category, the potential impact
of bottled water is around 3300 times greater than that of well water. This difference
is smaller between well water and drinking water, with the latter having a potential
impact 2.2 times greater. The behavior of the other categories follows a similar trend,
as can be seen in Table 3. In the case of drinking water and well water, electricity is
almost the only significant factor from an environmental perspective. For bottled water, a
series of additional bottling, packaging and transport operations are required, resulting in
comparatively major impacts.

In the study conducted by Thomassen et al. (2021) [4], tap water had the lowest
environmental load in the climate change category, with 0.17 kgCO2 eq, followed by well
water with 0.9 kgCO2 eq, and bottled water with 259 kgCO2 eq. Our results are similar to
those reported by Fantin et al. (2014) [23], who based on an extensive review of several
LCA studies, reported average values of 0.9 kg CO2 eq per m3 for tap water, and 162.4 kg
CO2 eq per m3 for bottled water. The observed differences between the studies are most
likely related to the scope of the study and the processes included in the assessment,
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as not all LCA studies include aspects such as the materials used for infrastructure, its
decommissioning after the end of lifetime, or the management of post-consumption waste.

Table 3. Comparison of environmental impacts of the three water supply sources.

Impact Category Unit
Well Water Tap Water Bottled Water

Average SD Average SD Average SD

GW kg CO2 eq 0.05 0.01 0.11 0.03 165.99 5.81
TA kg SO2 eq 2.4 × 10−4 1.0 × 10−4 5.6 × 10−4 1.3 × 10−4 0.56 0.02
FEu kg P eq 3.3 × 10−5 0.00 7.3 × 10−5 3.19 × 10−5 0.04 0.00
FEc kg 1,4-DCB 1.0 × 10−3 1.2 × 10−3 2.5 × 10−3 2.1 × 10−3 5.88 0.29

HCT kg 1,4-DCB 2.3 × 10−3 7.8 × 10−3 7.1 × 10−3 0.02 4.99 0.65
LU m2a crop eq 2.9 × 10−4 1.04 × 10−4 6.9 × 10−3 2.1 × 10−4 8.18 0.41
FRS kg oil eq 0.01 3.9 × 10−3 0.03 8.1 × 10−3 67.75 2.46

SD: standard deviation, estimated from the coefficient of variation; GW: global warming; TA: terrestrial acidifica-
tion; FEu: freshwater eutrophication; FEc: freshwater ecotoxicity; HCT: human carcinogenic toxicity; LU: land use;
FRS: fossil resource scarcity.

3.5. Consumption Profiles: End-Uses of Water in Households

Figure 5 shows the percentage contributions of the different end-uses in the two
household profiles. Around 25% of the survey respondents declared to possess a well
within their households. It can be seen that shower and toilet use together account for
most of the total consumption, with 59.7% and 66.5% of total water use in homes with and
without well access, respectively, which is similar to results in previous studies [21,24]. The
greatest difference between the two profiles is associated with the contribution of water use
for outdoor activities, namely pools and irrigation. These activities are associated with a
significant water consumption and represent an additional monetary cost for users, which
suggests that access to well water (whose operating costs are lower) favors an increased
water consumption associated with outdoor uses.
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A comparison of the results found in this study with those obtained by Castillo-Ávalos
et al. (2013) [21] reveals differences mainly in the use of water for tooth brushing, with these
authors finding a contribution of 14.9% compared to the 6.0–6.9% of this study. According
to Castillo-Ávalos et al. (2013) [21], turning off the faucet during brushing generates a
yearly difference of 13.1 m3 per capita. In our study, an estimation of water consumption for
this use resulted in an average consumption value of 4.9 m3, below the range reported by
Castillo-Ávalos et al. (2013) [21] (6.6–19.7 m3). Another important difference observed with
respect to the literature is related to the consumption associated with washing machine
use. In a study conducted in USA by the Water Research Foundation (2016) [24], the water
consumption of laundry washing reached a value of 3504 gallons per capita-year (13.3 m3),
accounting for 17% of the total consumption. In our study this end use represents only
3.4–4.1% of total consumption, which may be due to the type of household appliances
(including washing machine size and water efficiency), cultural practices (such as washing
frequency and load), or the estimation methods applied in both studies.

3.6. Comparison of Consumption Profiles and Their Environmental Impacts

Table 4 shows that in both studied profiles, volumetric consumption of tap water
accounts for most of the total consumption, with 99.5% in households without wells and
68.7% in households with wells. This may be associated with the accessibility, low monetary
value, and high quality of tap water in Chile, which allows its use in any type of domestic
application. The differences between the two profiles are associated with well water
consumption, which can reach 31.5%. In terms of economic costs, the overall spending of
money in water supply is mainly determined by the higher costs of bottled water compared
to the alternatives (Table 4).

Table 4. Contribution of each water source to total water consumption in households with and
without wells.

Water Source

Homes without Well Homes with Well

m3 inhab−1

year−1
Percentage

Contribution
US$ inhab−1

year−1 *
m3 inhab−1

year
Percentage

Contribution
US$ inhab−1

year−1 *

Tap water 55.5 99.5%

291.8

44.1 68.4%

148.6
Well water - - 20.3 31.5%

Bottled water 0.3 0.5% 0.1 0.1%
Total 55.8 100% 64.5 100%

* Estimated cost: tap water: 1.99 US$ per m3; well water: 0.02 US$ per m3; bottled water: 604.6 US$ per m3.

Figure 6 shows the contribution of each water source to the total environmental load
of the assessed impact categories. In both profiles the greatest contribution comes from
bottled water, which accounts for 38.8–90.3% despite its consumption being less than 1% of
the total volume. Tap water accounts for between 9.7 and 61.1% of the total impacts in the
profile without a well, and between 43.2 and 91.9% in the profile with a well. In the latter,
well water contributed between 6.8 and 46.8% depending in the impact category. These
results are similar to those reported by Thomassen et al. (2021) [4], who determined that
even though bottled water accounts for only 0.4% of the population’s water use in Flanders,
it is responsible for 80% and 66% of the contributions to the global warming and resource
footprint categories, respectively.

The high contribution of bottled water to the environmental impacts is associated with
the factors discussed in Section 3.3. Well water is the source with the smallest contribution
due to its operational impacts being only associated with energy consumption. The high
contribution of bottled water to the environmental impacts also causes that although the
per capita water consumption is 7.2% greater in households with wells, the environmental
loads in the two profiles are similar, with differences lower than 2%. It is important to
mention that, as this study did not include information regarding the quality of water and
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the possible presence of potentially toxic compounds in the consumed water, the per capita
results of categories such as HCT is most likely underestimated, and the contribution of
the different processes could be different depending on the quality of the different water
sources. Future studies should account the presence of the most important pollutants in
water sources, in order to improve the quality and reliability of the obtained results and
to quantify the potential health and environmental trade-offs associated with different
consumption patterns [25].
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4. Conclusions

From a production standpoint, electricity consumption for potabilization and dis-
tribution of tap water results in the greatest contribution to its potential environmental
impacts, accounting for 26.7 to 99.0% depending on the production system and impact
category. One of the most important factors for electricity consumption during tap water
production is the type of source from which the water is taken (surface or groundwater),
due to the higher pumping costs of groundwater intake systems. With respect to bottled
water, PET bottle production and transportation from plant to the retailer represent the
greatest contributions, accounting for up to 53.6% and 39.2% depending on the impact
category, respectively. A comparison of the impacts of the production systems showed a
large difference in potential impacts, as the results of bottled water are up to 3300 greater
than those associated with well water.

From a consumption standpoint, in terms of volume the most important end-uses of
water in the assessed households are shower and toilet use, without differences associated
with the presence of a well at the respondents’ homes. The study of the profiles showed
that the presence of wells results in an increase in water consumption for outdoor uses
(irrigation and pools), without replacing other water sources or resulting in a decrease
in the evaluated per capita environmental impacts. Even though bottled water accounts
for <1% of the per capita volumetric consumption, it makes the greatest contribution to the
studied impact categories.

Overall, the results demonstrate the importance of including the consumption stage in
LCA studies of water supply, as this allows the identification of possible trade-offs that are
not identified using process-oriented LCA, improving the scope of the tool as a support for
decision-making.
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