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Abstract: Timetable optimization for urban subways is aimed at improving the transportation ser-
vice. In congested subway systems, the effects of crowding at stations and inside the vehicles have 
not been properly addressed in timetabling. Moreover, it is difficult to show the time of values in 
different riding conditions. In this paper, we consider the passenger-travel process as a physical 
activity expending energy and formulate a travel energy expenditure function for a heavily con-
gested urban subway corridor. A timetable optimization model is proposed to minimize the total 
energy expenditure, including waiting on the platform and travelling in the vehicle. We develop a 
heuristic generic algorithm to solve the optimization problem through a special binary coding 
method. The model is applied to the Yi-zhuang line in the Beijing subway system to obtain a pas-
senger-oriented energy-minimizing timetable. Compared with using the existing timetable, we find 
a 20% reduction in average energy expenditure per passenger and a RMB 47,500 increase in social 
profits as the result of the timetable optimization. 
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1. Introduction 
Timetable optimization of urban subway networks is aimed at improving transpor-

tation efficiency and passenger satisfaction by determining ordered arrival and departure 
times for each train at each station. The current practice in timetabling congested urban 
subway networks calculates passenger waiting time with the given vehicle’s capacity, de-
sired occupancy, and headway; timetable optimization is then either time-based or cost-
based. A key problem is how to estimate waiting times and generalized costs caused by 
overload at stations and inside vehicles. 

The existing literature is extensive regarding timetable optimization using waiting 
time [1–15], vehicle-related electrical energy consumption [16–21], and generalized costs 
[22–27] as the main considerations. Nevertheless, there are limited studies that consider 
passengers’ travel energy when optimizing the timetable. This paper presents a timetable 
optimization model to minimize the total energy expenditure, including waiting on the 
platform and travelling in the vehicle. The main differences and contributions of this pa-
per in comparison with the literature are: (1) an energy expenditure model for urban rail 
passengers that includes energy expenditure on the platform and in the train vehicle; and 
(2) a novel approach for a timetable optimization model based on energy expenditure 
under oversaturated conditions is proposed; and (3) a solution algorithm using the Beijing 
subway as a case study for optimal results is designed. 

The paper is organized as follows. Section 2 reviews some related studies on the pas-
senger waiting time, vehicle-related electrical energy consumption, and generalized cost. 
Section 3 constructs a passenger energy expenditure function. Additionally, then, an 
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energy-expenditure based timetable optimization model is constructed in Section 4 and a 
GA-based solution algorithm is proposed in Section 5. Section 6 presents a case study of 
the Yi-Zhuang line of the Beijing subway. Finally, we conclude the research in Section 7. 

2. Literature Review 
Waiting time is the main objective of optimizing train timetables. Nachtigall [1] stud-

ied the problem of periodic event scheduling with minimizing all local waiting time. Zhou 
and Zhong [2] proposed a train-scheduling model considering segment and station head-
way capacities as limited resources with the objective of minimizing both the expected 
passenger waiting times and total train-running times. Cevallos and Zhao [3] used a ge-
netic algorithm to produce a shift in existing timetables, enabling more coordination be-
tween lines and reducing the transfer time. Liebchen [4] used a periodic event-scheduling 
approach and a well-established graph model to optimize the Berlin subway timetable. 
Wong et al. [5] constructed a mixed-integer model for synchronizing timetables to mini-
mize the transfer waiting time of all passengers in the system. Hadas and Ceder [6] devel-
oped a timetable synchronization model with the objective of minimizing the travel time 
and average waiting time of all passengers. Niu and Zhou [7] focused on optimizing a 
passenger train timetable in a heavily congested urban rail corridor, taking the overall 
passenger waiting times as the objective. Evidently, waiting time or transfer time can be 
quantized according to headway, origin–destination demand, capacity, and so on; how-
ever, it is better to calculate passengers’ time in unsaturated situations where passengers 
are expected to be able to board the next train. Kang et al. [8,9] developed a last-train 
network transfer model to maximize the average transfer redundant time and network 
transfer accessibility. Wu et al. [10] developed a timetable-synchronization-optimization 
model to optimize passengers’ waiting time while limiting waiting time equitably over all 
transfer stations. Jiang and Zhou [11] established a timetable-rescheduling model with 
minimizing the processing time and the train operation time. Li et al. [12] developed a 
first-train timetable coordination model to minimize the total waiting time of passengers 
transferring between the two first trains of different lines. Guo et al. [13] developed a 
mixed-integer programming model to generate an optimal train timetable and minimize 
the total connection time for synchronized timetables combining. Yin et al. [14] con-
structed a bi-level programming model for the last-train-timetabling problem. The upper 
level was to maximize the social service efficiency, which was measured by reductions in 
absolute misses and passenger wait time. He at al. [15] proposed a complex new model 
combined with a matrix control algorithm of trajectory and overlap time, which overcame 
the lack of matching opportunity for overlap time as well as the precocity and instability 
of the genetic algorithm. It is common in passenger-route-choice modeling to consider not 
only travel time but also the travel cost generated by congestion in the train vehicle and 
on the platform. 

Vehicle-related electrical energy consumption is also the main problem of timetable 
optimization studies. Yang et al. [16] proposed a timetable optimization model to increase 
the utilization of regenerative energy by adjusting the departure time and train-running 
time between two adjacent stations. Huang et al. [17] developed a two-objective model to 
optimize the timetables based on energy-saving strategies and passenger travel time. Sun 
et al. [18] formulated a bi-objective timetable optimization model to minimize the total 
passenger waiting time and the pure energy consumption for a metro line. Yang et al. [19] 
developed an energy-efficient rescheduling model under delay perturbations for metro 
trains to minimize the net energy consumption under the premise of reducing or elimi-
nating the delay. Yang et al. [20] designed energy-efficient metro timetables and speed 
profiles with a stop-skipping pattern. Yin et al. [21] developed two algorithms via expert 
knowledge and an online learning approach to deal with uncertain passenger demands 
and realize real-time train operations satisfying multi-objectives, including energy con-
sumption. 
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A more pragmatic approach in timetabling is to consider minimizing generalized 
cost. Chowdhury and Chien [22] developed a time-varying total cost function, which in-
cludes connection delay and missed-connection costs, as well as vehicle-holding costs. 
Yan and Chen [23] and Yan et al. [24] proposed a model for intercity bus routing and 
scheduling with the objective of minimizing total cost, consisting of operating costs, wait-
ing costs, and so on. Vansteenwegen and Oudheusden [25] constructed a new periodic 
timetable by using a linear program for the Belgian railway network. A waiting-cost func-
tion, weighting different types of waiting time and late arrivals, was designed and mini-
mized. Gallo et al. [26] considered a weighted sum of transit-user costs, car-user costs, 
operator costs, and external costs as the objective function, where transit-user costs de-
pend on on-board time, waiting time, and access/egress time. Dotoli et al. [27] developed 
a periodic event-scheduling approach to minimize passenger travel time with constraints 
on travel times, station stopping time, connections, synchronizations, rolling-stock inver-
sions, and safety standards. Although these models are closer to real practice, it is difficult 
to show the time of values in different riding conditions. For example, there must be seats 
available or passengers having to stand in the train vehicle must be able to do so without 
overcrowding. 

Timetabling problems are mainly based around passenger-oriented models, and pas-
sengers in urban subway systems expend their travel energy walking on the platform, 
waiting on the platform, sitting or standing in the train vehicle, and so on. Therefore, it is 
reasonable to assume that travel energy has an important influence on the passengers and 
should be considered in timetabling. It has obvious distinctions for different riding con-
ditions and can be calculated and estimated easily. Kölbl and Herbing [28] demonstrated 
that average travel time has a close relationship with biological factors, and further indi-
cated the average daily human energy expenditure for travel. In contrast to the utility 
functions of classical decision models, their model contains only physical variables such 
as journey times and energies, which are easily measurable. Therefore, their travel distri-
bution model, which resulted in a canonical travel-energy distribution with a correction 
term for short trips, was able to be critically evaluated. 

As a summary, there are a limited number of studies devoted to timetabling prob-
lems that consider passengers’ travel energy. In this paper, we intend to address the fol-
lowing: (1) the development of an energy expenditure model for urban rail passengers 
that includes energy expenditure on the platform and in the train vehicle; (2) a proposal 
for a timetable optimization model based on energy expenditure under oversaturated con-
ditions; and (3) a design for a solution algorithm using the Beijing subway as a case study 
for optimal results. 

3. Passenger Energy Expenditure Function in the Urban Subway 
Generally, passenger travel in the urban subway is a chain, including walking from 

the device to the platform, waiting for the approaching train, sitting or standing in the 
vehicle, and walking from the platform to the device, as shown in Figure 1. The main 
energy expenditure has two parts: on the platform (waiting for the train) and in the vehicle 
(sitting or standing). Energy expenditure in the urban subway depends on riding condi-
tions. When defining discomfort [29], the most comfortable situation is when a passenger 
has a seat and, at this stage, less energy is expended. Standing in the vehicle is acceptable 
when there is no crowding and the trip is not lengthy, but more energy is consumed than 
when sitting on a seat. When timetabling is related to travel energy, two expenditure pro-
cesses should be considered. One is waiting in the station, and the other is sitting or stand-
ing in the vehicle, where much energy is expended. Waiting in the station can be also 
divided into two situations: standing with no crowd and standing in a crowd. Therefore, 
we can consider the following energy expenditure expressions in the timetabling, shown 
in Figure 2a. 



Sustainability 2023, 15, 1930 4 of 23 
 

Entrance Exit

Walking Walking

Waiting in 
the platform

Sitting or 
standing in 
the vehicle

Time

Energy 
expenditure

 

Figure 1. Passenger trip chain in the urban subway system. 

 

Figure 2. Energy expenditure functions on the platform and in the vehicle. The blue line indicates 
the energy in the platform, and the red one represents the energy in the vehicle in different situa-
tions. (a) Illustration of the energy expenditure functions in nonlinear forms; (b) Illustration of the 
energy expenditure functions in linear forms. 

Generally, the expression of energy expenditure should be a piecewise linear form 
relating to the passenger. It reflects a constant energy expenditure for an uncrowded wait 
on the platform followed by seating in the vehicle. An upwards jump reflects an energy 
expenditure increase for crowded waiting on the platform and standing in crowded con-
ditions in the vehicle. Therefore, with an increase in passengers, more energy will be ex-
pended. For ease of calculation, we adopt the smooth function suggested by de Palma et 
al. [29], approximating the piecewise linear function and preserving the advantages and 
removing the disadvantage of discontinuity and a piecewise definition of energy expendi-

ture. An illustration is shown in Figure 2b. Let 
( )p nω

 and ( )v nω  denote the energy ex-
penditure of n-th passenger at the platform and in the vehicle, respectively. 

3.1. Energy Expenditure of Passengers 
(1) Definition of energy expenditure in the subway 

Let ( )nω  be the energy expenditure for the n-th passenger in the vehicle (at the 
platform), with ns number of seats of the vehicle (free-standing capacity of the platform), 
and a comfortable standing capacity nx. We define the following variables: 
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where a, c are the parameters related to the number of passengers in the vehicle or on the 

platform. 0a , 1a  and 2a  are the energy expenditure for seating (or free standing), 

standing without a crowd and standing with a crowd ( 0 1 2a a a< < ). 
sn  and 

xn  denote 
the number of seats of the vehicle (or free-standing capacity of platform) and the standing 
capacity in the vehicle (or the standard design capacity of platform). In general, the stand-
ing capacity is often exceeded at peak times [29]. 

Assumption 1. In this paper, x sn n+  represent the threshold for crowding. It means that the 
crowding effects will be generated when t s x

jn n n> + . We assume the maximum number of pas-
sengers is max  1.6( )t x s

jn n n= + . 

Let 
t
jn  represent the number of passengers in the vehicle j  (at the platform j ) at 

time t . Therefore, the total energy expenditure 
t
jTEV  in the vehicle j  and 

t
jTEP  on the 

platform j  at time t  can be expressed as 
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(4)

Lemma 1 (Convexity of energy expenditure in vehicle). Let 0t
jn ≥ , 0 1 2a a a< < . Then, the 

energy expenditure in the vehicle is a convex function of the passenger flow. 

Proof. A standard result from optimization theory is that a (smooth) function of one var-
iable is convex if and only if its second derivative is positive on its domain. We rewrite 
Equation (4) with continuous forms. 
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This completes the proof for Lemma 1.□ 
(2) Total energy expenditure in the subway 

In the calculation of total energy expenditure, within the given study period [ ]0,T , 
all of the platforms and all of the vehicles should be considered. The denoted 

{ }| 1, 2, ,U u u N= =   and { }| 1, 2, ,V j j J= =   are the sets of stations and vehicles, re-
spectively. In order to represent semi-continuous passenger flow records, Niu and Zhou [7] 
divided [ ]0,T equally into several extremely small time intervals such that no more than one 
passenger arrives at a station during this time interval. For different cities, the time interval k  
should be determined according to the passenger flow distribution. Similarly to Niu and Zhou 
[7], the given period T  is divided equally into several extremely small time intervals to rep-
resent semi-continuous passenger flow records. Then, the total energy expenditure (TEE ) in 
the urban subway is written as 

[0,T] [0,T]

t t
j u

k j V k u U
TEE TEV TEP

∈ ∈ ∈ ∈

= +    . 

Lemma 2 (Convexity of total energy expenditure). The total energy expenditure is a convex func-
tion of the passenger flow. 

Proof. t
jTEV  and t

uTEP  are two convex functions. Therefore, convex functions add to give 

a convex function. This completes the proof for Lemma 2. □ 

3.2. Energy Expenditure with Different Activities 
Generally, there are two important activities in an urban subway system, sitting and 

standing. However, standing can be divided into relaxed standing and restless standing. Kölbl 
and Helbing [28] measured average values of energy consumption per unit time for different 
kinds of activities, shown in Table 1. 

Table 1. Average values of energy consumption per unit time. 

Activities Energy Consumption (KJ min−1) 
Sitting 1.5 

Standing, relaxed 2.6 
Standing, restless 6.7 

In this paper, to distinguish the energy expenditure in the vehicle and on the platform, 
we define the related parameters with superscript v  and p . The related parameters in the 
vehicle are set as 0 1.5va = , 1 2.6va =  and 2 6.7va = . According to Van Goeverden et al. [30], 
waiting times outside of the train are about three times that of in the vehicle. Therefore, we set 

0 03p va a= , 1 13p va a=  and 2 23p va a= . More empirical work is clearly required. 

4. Model Framework 
4.1. The General Framework of Proposed Model 

An energy-expenditure-based timetable optimization model and a GA-based solution 
algorithm are proposed. Using the basic line and station data, train-running time and dwelling 
time, and time-dependent passenger demand as the input, the model outputs the optimized 
timetable and travel energy expenditure at the station and in the train. A schematic framework 
of the proposed model can be found in Figure 3. 
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Figure 3. A schematic framework of proposed model. 

4.2. Problem Description 

Assume that the local subway system is a bi-directional rail line with N  stations and J  
trains for each direction. Therefore, the number N denotes the start terminal and the return 
terminal index of the station. In this study, no transfer station is considered, due to the pres-
ence of many lines in the larger cities, for example, the Yi-zhuang line, Fang-Shan line, Ba-
Tong line, and so on, as shown in Figure 4. The trains are assumed to follow the published 
running time between two consecutive stations and the dwelling time. Therefore, the aim of 
our study is to determine the departure time of each train at the start terminal. 

 

Figure 4. Map of Beijing subway, 2014. 
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Let ( )u v kδ →
 denote the time k that the passengers arrive at station u and travel to-

wards station v. Because the time interval is sufficiently small, at most, one passenger will 
arrive at a station during a time interval. This means that ( )u v kδ →

 can be represented by 
a binary variable: 

1, a passenger arrives at station  toward  at time  
( )

0, otherwise
u v u v k

kδ → 
= 


  

(1) Vehicle events 
There are four events for the vehicles: arriving, dwelling, departing, and running, as 

shown in Figure 5. Let u and v be the index of stations. Note that the section running time 

between stations u and u + 1 is ru. The arrival time of vehicle j in station u is 
u
jA . The 

departure time of vehicle j from station u is 
u
jD . The dwelling time of vehicle j at station u 

is . 

 

Figure 5. Vehicle events between two stations. 

(2) Passenger events 
There are four events for passengers once they are on the platforms of the subway 

system: waiting, boarding, moving, and leaving. If train j arrives at the station u, the num-

ber of passengers who board and get off the train is 
u
jq  and 

u
jp . 

u
jR  Fand ( )u u

jn D  are the 
number of passengers in train j when the train departs from station u. Before train j + 1 
arrives, the number of passengers Su on platform u is changing as time passes. 

Property 1. The maximum passengers u
jq  boarding the train j at station u is: 

( ) ( )
( )1

2
1

1
1,

min ,
u u
j j

Nuu u u v u u
j j j j

v uk D D

q n D k c R pδ
−
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  
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   (5)

where 0;,,3,2;12,,3,2 0 ==−= =
u
jDJjNu  . 

Remark 1. If there is enough capacity for all passengers arriving before the departure time of train 
j, the maximum passengers u

jq  boarding the train j at station u can be determined with the number 
of waiting passengers: 

( ) ( )
( )1

2

1
1,u u

j j

Nuu u u v
j j
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q n D k
−

→
−

= +∈

 
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 

  δ  (6)

Otherwise, the number of boarding passengers is related to the capacity of the train which can 
be described as 

1u u
j jc R p−− +  in oversaturated conditions. Therefore, Equation (5) is satisfied. 

,
Dwell
j ut

u

1+u
ur

u
jA

Dwell
u

u
j

u
j tAD +=

Dwell
ut

uu
j

u
j rDA +=+1
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Property 2. The number of passengers in train j when the train departs from station u is 
u
j

u
j

u
j

u
j pqRR −+= −1

, where JjNu ,,2,1;2,3,2  == . 

Remark 2. This equation means that the number of passengers alighting from train j at station u 
equals the number of passengers boarding the train before station u. 

The calculation of energy expenditure on the platform is difficult because the total 
number of passengers on the platform varies. We can obtain the following Equation (7) to 
calculate the passengers on the platform u. 

Property 3. The number of passengers at time interval k on the platform u before train j arrives is: 

( ) ( )
( )1

2

, 1
1,u u

j j

Nuk u u v
u j j

v uk D D

S n D k
−

→
−

= +∈

= +   δ  (7)

where 0;,,3,2;12,,2,1 0 ==−= =
u
jDJjNu  . 

Remark 3. When train j departs from station u , the number of passengers is: 

( ) ( )
( )1

2

1
1,

( )
u u
j j

Nu uu u u v u
j j j

v uk D D

n D n D k q
−

→
−

= +∈

= + −  δ  (8)

where 02,3, , 2 1; 2,3, , ; 0u
ju N j J D == − = =  ;

( ) ( )
( )1

2

1 1
10, u

Nu u u v u

v uk D

n D k q→

= +∈

= −  δ
. 

The number of passengers at time k  between train j  departing and train 1j +  
arriving can be calculated by 

( ) ( )
( )

( )
1

2

, 1 1
1,

, ,
u u
j j

Nuk u u v u u
u j j j j

v uk D D

S n D k k D D
−

→
− −

= +∈

= + ∈  δ
  

(3) Underlying assumptions 
Further assumptions used throughout this paper are as follows: 

Assumption 2. The total passenger demand in the subway system is stable and unaffected by 
service operation, that is, the timetable. However, during actual passenger traveling, the volume of 
passenger flow is affected by individual decision and day-to-day evolution. 

Assumption 3. All passengers make rational choices and are served according to the first-in-first-
out principle. This means that passengers will board the first coming train to minimize their wait-
ing time. 

Assumption 4. Every passenger strongly prefers to sit when provided with an available seat. 

4.3. Operation Constraints 
In this section, we will discuss operation constraints in the timetabling. 

(1) Timetable constraints 
In the timetabling, given the dwelling time at the station and running time between 

two stations, and the arrival and departure time of each train, it should satisfy the follow-
ing equations: 
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JjurDA uu
j

u
j ,,2,1;211 =≥+= −−  (9)

JjNutAD Dwell
u

u
j

u
j ,,2,1;2,2,1  ==+=  (10)

2,3, ,h H h j J+
− ≤ ≤ =   (11)

Property 4. The headway constraint should satisfy the following equation: 

0
0max( , )

max 60 max u
u u u

L T W kh H
d

×≤ ≤
× δ

 
(12)

Proof. For each line in the subway, there are lower and upper bounds of the headway to 
meet line-planning and train safety requirements. Assume that in the study period T, the 

headway should ensure that the passengers in the highest loaded stop maxu ud  can be 

transported efficiently. It means that the lower-bound headway h_ equals 
0

m a x u u

L T
d , 

where ud is the demand of station u and 0L  is the desired passenger flow on the train. 
For a given load factor γ , let 0 sL n= ×γ , 0 1< ≤γ . In consideration of the safety constraint, 
the headway should not be smaller than 0h . Therefore, the lower-bound headway should 
satisfy 

0
0max( , )

maxu u

L T
h h

d− =  (13)

On the other hand, the subway service should offer the maximum service level cor-
responding to the upper bound h

+
. In actual operations, the maximum number of wait-

ing passengers on the platform should be no more than the given value W. Assume that 
the average maximum demand within a time interval k  (e.g., 0.1 s) at rush hour (e.g., 

7:00–8:00 am) is max u
u δ . Therefore, the following equation should be satisfied 

60 max /uuh k Wδ+ × × = . That is, 

60 max u
u

W kh
δ

+ ×=
×  (14)

Taking into account the constraint h H h+
− ≤ ≤ , the following headway can be ob-

tained: 

0
0max( , )

max 60 max u
u u u

L T W kh H
d δ

×≤ ≤
× . 

This completes the proof for Property 4.□ 
(2) Passenger flow constraints 

According to Niu and Zhou [7], the effective passenger-loading time periods can be 
determined by the following equation: 
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( )
( 1

2

1,

0

min ,max{ }

; 1,2, , ; 0                           

u
j

N
u u u v u
j j j

v uk t

u
j

t D k q

u j Jfor any t
−

→

= +∈ 

=

  = ≤ 
  

= =

 
τ

τ δ



 (15)

Therefore, the number of passengers going to station v  boarding a given train j  

at station u  within time window 1( , ]u u
j jt t−  can be calculated by: 

( ]
( )kC

u
j

u
j ttk

vuvu
j 

−∈

→→ =
,1

δ  (16)

where 01,2, ,2 1; 1, 2, ,2 ; 1,2, , ; 0.u
ju N v u u N j J t == − = + + = =   Moreover, the number of 

passengers alighting from train j at station u satisfies the following equation: 

1

1

u
u u u
j

u
p C

−
′→

′=

=  (17)

where JjNu ,,2,1;2,,3,2  ==  
(3) Capacity constraints 

When train j departs from station u, the number of passengers in the train should be 
less than the train capacity. 

u
jR c≤ , ,u j∀  (18)

(4) Nonnegativity constraints 
All time constraints and passenger flow constraints have non-negativity. 

4.4. Objective Function 
In this paper, our main purpose is to minimize the total energy expenditure for all 

passengers on platforms and in the trains. Therefore, the objective function can be written 
as follows: 

( )1

2 2 1

,
1 1 1 1,

min  = ( ) ( )
u u
j j

N J J N
k u u
u j j

u j j uk D D

Z TEP S TET R r
−

−

= = = =∈

+ ⋅  
 

(19)

The first term is the total energy expenditure on the platforms, related to the variety 
of passengers, while the second term is the total energy expenditure in the trains which is 

related to the running time 
ur  between two stations u and u + 1. Before train j arrives at 

station u + 1, the number of passengers keeps a constant 
u
jR , considering the seated pas-

sengers and the standing passengers. 

4.5. Decision Variable 

The departure time of vehicle j from station u is 
u
jD . 

5. Solution Algorithm 
The timetable problem belongs to the NP-hard class [31]. For a real network, the pro-

posed model is difficult to solve using an accurate analysis algorithm or a commercial 
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optimization solver due to the large size of the variables. For example, there are 99 trains 
dispatched in one day on the Yi-zhuang line of the Beijing subway. Our model will gen-
erate 34,484 constraints and 32,190 variables. We used a B&B algorithm and ran the pro-
gram within the MATLAB 2012 environment on a PC with four 2.5 GHz CPUs and 4 GB 
of RAM. The initial feasible solution could be found in 50 h. Clearly, it is not applicable to 
a real urban subway. In a real application, researchers commonly use artificial intelligence 
techniques including a genetic algorithm (GA), a simulated annealing (SA) algorithm, a 
tabu searching (TS) algorithm, and an artificial neural network (ANN) algorithm. For 
model application, GA is a widely and effectively used stochastic optimization procedure 
and is, thus, adopted in this paper. The detailed algorithmic steps are described as follows: 

5.1. Initialization 
(1) Initialize parameters of GA 

It is given that the population size pop, the maximum generation gen, the crossover 
probability pc, and the mutation probability pm. 
(2) Initialize parameters related to network, trains, and passengers 

In this study, the time period is from 5:00 am to 23:00 pm. Therefore, it can be repre-

sented by [0, 1080] by one minute. Given the number of stations N, headways 0h , the 
maximum waiting passengers at station W, the load factor γ , and the capacity of train c, 
the maintain time mt at the last station is N th− . According to the data records, we can 

obtain the highest loaded stop maxu ud  and the average maximum demand max u
u δ . 

(3) Determine the headway 

Calculate the minimum and the maximum headway h−  and h
+

 according to 

Equations (13) and (14). Moreover, compute the desired passenger flow 0L  on the train. 

5.2. Generating Initial Population 
Assume that J0 trains are assigned for the passenger service. Consider a separated 

line where a train will depart from the start terminal and return from the last station in 
the opposite direction. The decision variables in the proposed model are the departure 
time of each train at their stations of origin. Therefore, they are chosen as genes within the 
study period for any chromosome in the GA. A vector 

1 1 1 1 2 2 2 2
1 2 1 2( ,  ,..., ,..., ,  , ,..., ,..., ,..., )j J j J jD D D D D D D D Dκ        

 

forms the genes of a chromosome in the algorithm, where jD
κ

 is the departure time of 
train j from the start terminal in the κ  rounds, as shown in Figure 6. For simplicity, we 
give the corresponding relationship between gene and departure time. For example, the 
start time is 5:00 am and the end time is 23:00 pm in the study period. The total simulation 
time is 1080 min. Therefore, we can rewrite it with the range [0, 1080]. If the train departs 
from a station at 5:01 am, the gene is represented by 1. Thus, the gene is represented by 
128 for the departure time 7:08 am. In this paper, the first chromosome is initialized ran-
domly in the feasible domain according to the given minimum and maximum headways, 
and the maintaining time at the start terminal. For example, the departure time of the first 
train 

1
1D  is randomly generated in the range [h−, h+]; then, the departure time of the second 

train  is randomly generated in the range [h− + 
1
1D , h+ + 

1
1D ], and so on. For each train 

completing one round, the service time is the summary of the running time, dwelling time, 

and maintaining time MT at the start terminal, . Therefore, 
2

1D  is 
randomly generated in the range [ RT  + h−, RT  + h+]. 

1
2D

2 1 2 1

,
1 , 1

N N
u Dwell

j u
u j u

RT r t MT
− −

= ∀ =

= + + 
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2-0J 1-0J 0J

+− ≤−≤ hDDh 1
1

1
2

+− ≤−≤ hDDh 1
12

1
13 +−− ≤−≤ hDDh JJ

1
1

1
00

MTRTDDand ++≥ 1
1

1
13 MTRTDDand JJ ++≥ −

1
12

1
00

 

Figure 6. Illustration of chromosome. 

5.3. Selection 
A proportion of the existing population is selected to breed a new generation during 

each successive generation. Individual solutions are selected according to the fitness 

value. Then, we calculate the surviving probability 
1( ) (1 )iprob i ξ ξ −= −  of individual i, 

where (0,1)ξ ∈  is the selection pressure. Therefore, the selection probability of individual 

i  can be given by 
( )

( )i
prob isp prob i=   in the roulette wheel. 

5.4. Crossover and Mutation Operators 
For simplicity, we propose a binary method to describe the decision variables in each 

population. For example, for a population (3, 5, 8,...), we can transfer it to (0, 0, 1, 0, 1, 0, 0, 
1,…). The crossover operator is to generate new solutions with a given probability of pc 
between two individuals. We adopt a one-point crossover method in the crossover oper-
ation in which a gene is replaced by the same gene in another individual, as shown in 
Figure 7. 

 

Figure 7. Illustration of one-point crossover in GA. 

Similarly, the mutation operation is used to generate a new individual by the gene 
mutation with a given probability of pm  in an individual. Figure 8 gives the random 
mutation procession in GA. However, the new individual should satisfy the given 

0J
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minimum and the maximum headways, and the maintaining time at the start terminal. 
Otherwise, the new generated individual should be deleted. 

0J

 

Figure 8. Illustration of the random mutation in GA. 

5.5. Calculation of Fitness Function 
The total energy expenditure is the objective of our model. We choose the fitness 

function as follows: 

1fitness Z=
  

5.6. Convergence 
Generally, the given maximum number of iterations is used in the convergence test 

which is also adopted in this paper. Here, the maximum number of iterations is 100. 

6. Case Study: The Yi-Zhuang Line of the Beijing Subway 
6.1. Data and Parameters 

Beijing, in China, has the world’s busiest subway, serving the urban and suburban 
districts of the Beijing municipality with an average ridership of approximately 10 million 
passenger journeys in one day [32,33]. In practice, we can predict the future passenger 
volume in station level and network level with the marching learning method for dynamic 
timetable-scheduling scenario [34,35]. Here, we apply the proposed model to the Yi-
zhuang line extending from Line 5’s southern terminus to the Yi-zhuang Economic & 
Technological Development Zone in the southeastern suburbs of Beijing. This line has 13 
stations, as shown in Figure 9. Basic data including the station, running time, vehicle, and 
GA parameters are listed in Tables 2–5. 
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Figure 9. Map of the Yi-Zhuang line, Beijing subway. The red line is the Yi-Zhuang line of Beijing 
subway. 

Table 2. Station-related data *. 

Station ID 
Dwell Time (s) Average In-Flow 

Up Down 5:00 am–23:00 pm in 1/10 s 
1 Songjiazhuang 60  2355 0.003443 
2 Xiaocun 30 30 7631 0.011156 
3 Xiaohongmen 30 30 3577 0.00523 
4 Jiugong 30 30 14,605 0.021352 
5 YizhuangQiao 35 35 9595 0.014028 
6 YizhuangWenhuayuan 30 30 5724 0.008368 
7 WanyuanJie 30 30 9457 0.013826 
8 RongjingDongjie 30 30 8670 0.012675 
9 RongchangDongjie 30 30 13,097 0.019148 

10 TongjinanLu 30 30 18,217 0.026633 
11 JinghaiLu 30 30 7001 0.010235 
12 CiquNan 35 35 1512 0.002211 
13 Ciqu   6621 0.00968 

* The data are from the Beijing Metro Operation Co., Ltd. (Beijing, China). 

Table 3. Time in adjacent station pairs. 

Adjacent Station Pair Running Time (s) Adjacent Station Pair Running Time (s) 
1-2 190 13-12 100 
2-3 108 12-11 141 
3-4 157 11-10 150 
4-5 135 10-9 162 
5-6 90 9-8 103 
6-7 114 8-7 101 
7-8 103 7-6 111 
8-9 104 6-5 90 

9-10 164 5-4 135 
10-11 150 4-3 157 
11-12 140 3-2 105 
12-13 102 2-1 195 
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Table 4. Vehicle-related data. 

Parameter Value (Persons) 
Seat capacity ns 256 

Stand capacity nx 1204 
Maximum capacity c 1460 

Table 5. GA-related parameters and energy-related parameters. 

Parameter Value Parameter Value 
pop 40 Pc 0.98 
gen 30 Pm 0.15 

0
va

 (KJ min−1) 
1.5 0

pa
 (KJ min−1) 

4.5 

1
va

 (KJ min−1) 
2.6 1

pa
 (KJ min−1) 

7.8 

2
va

 (KJ min−1) 
6.7 2

pa
 (KJ min−1) 

20.1 

Five days of commuting data and over 416,757 valid passenger records were ana-
lyzed. Approximately 80,000 passengers ride the subway daily. The passenger distribu-
tion over time is plotted in Figure 10 in which four subgraphs are given according to the 
entry volume in hours, minutes, seconds, and 1/10 s (only 10 min volume is used to illus-
trate). Evidently, 1/10 s satisfies the requirement of extremely small time intervals. 

 
Figure 10. Illustration of passenger distribution over time. 

6.2. Optimization Results 
We first adopted our model for the Beijing Yi-zhuang line. By using the GA proposed 

in this paper, we arrived at the solution after 3 h. The final timetable is shown in Figure 
11 and Table 6. Clearly, during rush hours, that is, 7:00–9:00 am and 17:00–19:00 pm, the 
headway will be shorter due to high demand patterns. Therefore, in order to decrease 
travel-energy expenditure, high dispatch frequency is required. 
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Figure 11. Optimized timetable for the Yi-Zhuang line. 

Table 6. Optimized departure times of trains at the start terminal. 

Train 
Num. 

DT 
before 

DT 
after 

Train 
Num. 

DT 
before 

DT 
after 

Train 
Num. 

DT 
before 

DT 
after 

Train 
Num. 

DT 
before 

DT 
After 

1 5:06 5:17 28 9:39 9:29 55 15:00 14:30 82 19:41 18:47 
2 5:19 5:27 29 9:53 9:39 56 15:13 14:42 83 19:53 18:53 
3 5:31 5:38 30 10:07 9:50 57 15:25 14:54 84 20:07 19:01 
4 5:43 5:50 31 10:17 10:02 58 15:35 15:05 85 20:19 19:12 
5 5:57 6:01 32 10:27 10:14 59 15:46 15:17 86 20:29 19:23 
6 6:08 6:11 33 10:40 10:26 60 15:58 15:27 87 20:39 19:33 
7 6:19 6:23 34 10:50 10:38 61 16:09 15:38 88 20:51 19:43 
8 6:29 6:33 35 11:02 10:49 62 16:19 15:49 89 21:04 19:55 
9 6:43 6:44 36 11:14 11:01 63 16:33 16:01 90 21:18 20:06 

10 6:56 6:55 37 11:28 11:13 64 16:45 16:11 91 21:31 20:18 
11 7:08 7:05 38 11:40 11:24 64 16:59 16:22 92 21:42 20:29 
12 7:17 7:15 39 11:51 11:34 66 17:10 16:34 93 21:54 20:41 
13 7:25 7:22 40 12:04 11:45 67 17:20 16:44 94 22:04 20:52 
14 7:34 7:32 41 12:17 11:55 68 17:27 16:55 95 22:14 21:03 
15 7:42 7:39 42 12:29 12:06 69 17:37 17:06 96 22:24 21:15 
16 7:51 7:46 43 12:40 12:17 70 17:46 17:12 97 22:37 21:25 
17 7:59 7:53 44 12:50 12:28 71 17:53 17:20 98 22:49 21:36 
18 8:09 8:00 45 13:02 12:40 72 18:00 17:27 99 23:00 21:46 
19 8:19 8:10 46 13:13 12:50 73 18:09 17:33 100  21:57 
20 8:25 8:16 47 13:23 13:02 74 18:19 17:41 101  22:07 
21 8:31 8:25 48 13:36 13:12 75 18:26 17:51 102  22:18 
22 8:37 8:31 49 13:47 13:24 76 18:35 17:58 103  22:29 
23 8:45 8:38 50 13:59 13:35 77 18:43 18:05 104  22:41 
24 8:53 8:48 51 14:12 13:46 78 18:53 18:11 105  23:00 
25 9:00 8:58 52 14:23 13:58 79 19:03 18:21    
26 9:13 9:08 53 14:36 14:08 80 19:13 18:30    
27 9:26 9:19 54 14:47 14:18 81 19:27 18:39    

Note: DT means the departure time. 
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To describe the travel-energy distributions in stations and in vehicles, respectively, 
we calculate the average passenger-energy expenditure as shown in Figure 12. Different 
colors represent the travel-energy expenditure level. We can see that a few stations and 
adjacent station pairs have greater energy expenditure for passengers. It means that in the 
corresponding period, there are many passengers in the station and the vehicle, leading 
to congestion, especially during the rush hours. 

 

 
Figure 12. Average travel energy expenditure (above: at the station; below: in the train). From the 
blue to dark red, the darker the color is, the more the travel energy expends. 

6.3. Effects of Minimum Headway h−  
Next, we give the effects of different headways on the optimal timetable. According 

to the analysis above, the lower bound of the headway is determined by m ax
s

u u

n T
d

γ × ×

, where 
load factor 0 1< ≤γ . In the real operation, the headway is always an integer number. 

Therefore, we give differing values for h− , that is, h−  = 3 min, 4 min, 5 min, 6 min, and 7 
min, to nudge the load factor γ . 

The optimized results are shown in Table 7 where TNV is the total number of vehi-
cles. Two typical cases are analyzed, rush hour (RH) and non-rush hour (NRH). Evidently, 

with the increase in minimum headway h− , the passengers will expend considerable en-

ergy while travelling. For the current timetable, h−  is 6 min during rush hours, and the 
average energy expenditure is approximately 179.23 KJ. However, compared with the 



Sustainability 2023, 15, 1930 20 of 23 
 

original timetable, there is an approximately 20.01% improvement with our optimized 
model (bold number in the table). Therefore, the average energy expenditure is decreased. 

Table 7. Optimized results for differing h−  values. 

h−  γ  TNV 
Average Energy Expenditure Improvement (%) 

RH NRH Total RH NRH Total 
Origin - 99 117.78 61.45 179.23 - - - 

3 0–0.2 112 96.21↓ 35.06↓ 131.27↓ 18.31 42.95 26.76 
4 0.2636 109 101.48↓ 37.84↓ 139.32↓ 13.84 38.42 22.27 
5 0.3294 106 103.95↓ 38.85↓ 142.8↓ 11.74 36.78 20.33 
6 0.3953 105 107.63↓ 41.71↓ 149.34↓ 8.62 32.12 20.01 
7 0.4612 103 110.75↓ 43.75↓ 154.5↓ 5.97 28.80 13.80 

To show the relationship between travel energy and waiting time, we analyze the 
effects of minimum headway on the waiting time of passengers as shown in Table 8. 

Table 8. Waiting time for different h− . 

h−
 Waiting Time (s) h−

 Waiting Time (s) 
RH NRH Total RH NRH Total 

3 344,322 519,095 863,417 6 406,629 515,233 921,862 
4 383,014 494,570 877,584 7 442,746 547,531 990,277 
5 389,388 495,659 885,048     

6.4. Effects of Different Objectives on Waiting Time 
Next, we analyze the waiting time of passengers with different objectives: minimum 

energy and minimum waiting time for h−
 = 6. As seen in Table 9, the waiting time will 

decrease for minimum energy and minimum waiting time compared with the original 
timetable. Waiting time during rush hours will have a small improvement by minimizing 
waiting time compared with the minimum energy objective. However, it needs one more 
train for the objective of minimizing waiting time. 

Table 9. Waiting time with differing objectives. 

Objectives (h−  = 6) TNV 
Waiting Time (s) Improvement (%) 

RH NRH Total RH NRH 
Origin 99 469,788 586,480 1,056,268 - - 

Minimize energy 105 406,629 515,233 921,862 13.4 12.1 
Minimize waiting time 106 371,515 447,020 818,535 20.9 23.8 

6.5. Social-Profit Analysis of Timetabling with Minimized Travel Energy 
Assume the passengers who ride the subway are the level of moderate physical labor. 

For this class of worker, working for 8 h will expend approximately 500 KJ/hour aver-
agely. The average income of each person is RMB X each day (“RMB” is short for 
“Renminbi”, which is a currency name of China. Additionally, its standard symbol is 

“CNY”, which is short for “ChinaYuan”), which equates 8 500
X

×  RMB/KJ. From Table 

7, we can see that each person will save approximately 30 KJ during their travel for h−  = 

6. That is, the extra output of each person is 
308 500

X ××  RMB. Therefore, the total extra 

output of 
_ _

80
Xtotal output total passengers= ×

 RMB, where _total passengers  is the to-
tal number of passengers in the subway system daily. The cost of adding one train is 
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defined as OperatingCost . We calculate that the total extra operating cost (TEOC ) caused 
by the _total number  extra trains is: 

_TEOC total number OperatingCost= ×   
Therefore, social profit due to timetable optimization can be estimated by: 

_ _social profit total output TEOC= −   
For this Yi-zhuang line case study, there are about 80,000 passengers daily. Assume 

that half of all passengers are commuters and each person earns RMB 200 daily. The av-
erage operating cost of one train in the Beijing subway is approximately RMB 50,000. 
Compared with the original timetable, the social profit of the optimal timetable is approx-

imately RMB 47,500 for h−  = 6. However, further empirical work on the actual operation 
is also required. 

7. Conclusions 
Energy expenditure can quantitatively describe the degree of comfort on a heavily 

congested urban rail line. In this paper, we propose a timetable optimization model based 
on the energy expenditure of passengers in the station and in the vehicle. The proposed 
programming model discovers the relationship between energy expenditure, passenger 
waiting, passenger loading, and the departure time of trains. In order to solve the model, 
we develop a GA-based heuristic solution algorithm using a special binary code method 
in the crossover and mutation operators. The Yi-zhuang line of the Beijing subway is used 
as a case study to show the effectiveness of the model in solving the problem in an actual 
operation. The results show that with the increase in minimum headway, the passengers 
will expend considerable energy while travelling. Additionally, our proposed energy-
based timetable optimization approach can obviously decrease energy expenditure and 
gain potential social profit by improving the quality of train timetables. 

However, the optimized timetable must have a strong relationship with passenger 
demand distribution. In this paper, the model solution is based on real passenger data 
from smart-card records. Therefore, analyzing the effects of passenger demand on the op-
timized timetable is challenging. Additionally, the timetable optimization model should 
be further developed to consider transfer passengers. Finding the practical energy-ex-
penditure functions in different operating conditions is a key area for future research. 
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