
 

 
 

 

 
Sustainability 2023, 15, 1862. https://doi.org/10.3390/su15031862 www.mdpi.com/journal/sustainability 

Article 

An Intelligent Health Care System in Fog Platform with  

Optimized Performance 

Subhranshu Sekhar Tripathy 1,2,*, Mamata Rath 2, Niva Tripathy 2, Diptendu Sinha Roy 1,  

John Sharmila Anand Francis 3 and Sujit Bebortta 2 

1 Department of Computer Science and Engineering, National Institute of Technology,  

Meghlaya 793003, India 
2 Department of Computer Science and Engineering, DRIEMS Autonomous College,  

Cuttack 754025, India 
3 Department of Computer Science, King Khalid University, Abha 62529, KSA, Saudi Arabia 

* Correspondence: subhranshutripathy@driems.ac.in or p19cs013@nitm.ac.in 

Abstract: Cloud computing delivers services through the Internet and enables the deployment of a 

diversity of apps to provide services to many businesses. At present, the low scalability of these 

cloud frameworks is their primary obstacle. As a result, they are unable to satisfy the demands of 

centralized computer systems, which are based on the Internet of Things (IoT). Applications such 

as disease surveillance and tracking and monitoring systems, which are highly latency sensitive, 

demand the computation of the Big Data communicated to centralized databases and from data-

bases to cloud data centers, resulting in system performance loss. Recent concepts, such as fog and 

edge computing, offer novel approaches to data processing by relocating the processing power and 

other resources closer to the end user, thereby reducing latency and maximizing energy efficiency. 

Existing fog models, on the other hand, have a number of limitations and tend to prioritize either 

the precision of their findings or a faster response time, but not both. For the purpose of applying a 

healthcare solution in the real world, we developed and implemented a one-of-a-kind architecture 

that integrates quartet deep learning with edge computing devices. The paradigm that has been 

developed delivers health management as a fog service through the Internet of Things (IoT) devices 

and efficiently organizes the data from patients based on the requirements of the user. FogBus, a 

fog-enabled cloud framework, is used to measure the effectiveness of the proposed structure in 

regards to resource usage, network throughput, congestion, precision, and runtime. To maximize 

the QoS or forecast the accuracy in different fog computing settings and for different user require-

ments, the suggested technique can be set up to run in a number of different modes. 
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1. Introduction 

The IoT has seen widespread adoption in the healthcare industry in recent years, 

particularly in applications using ubiquitous sensors and actuators interacting via Wire-

less Sensor Networks (WSN) and systems for real-time data analysis and suggestion [1]. 

The cloud computing approach uses the internet to deliver on-demand services to cloud 

users and has become an essential part of the modern economy [2]. Currently, the cloud 

has become the ultimate use of computing and is gaining a lot of attention from businesses 

and schools. At present, thanks to the provision of services and infrastructure, cloud com-

puting can enable new application models such as IoT, fog computing, edge computing, 

as well as Big Data [3,4]. New study fields are being created for cloud computing due to 

technological breakthroughs such as edge computing, fog computing, mist computing, 

the IoT, and smart cities [3]. To enable fog computing to meet the demand of latency-

sensitive or real-time applications, these developing technologies offer storage space and 
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computing with transmission edge devices. This facilitates enhanced portability and se-

curity, and reduced latency and network throughput [5,6]. Fog computing reduces the 

network latency and reaction time by placing computing resources, such as switches and 

routers, gateways, and mobile base stations, in densely populated areas. 

Latency and response time have been found to be the utmost critical factors, as well 

as the greatest challenges, to optimizing Quality of Service (QoS) specifications in real-

time fog scenario, according to research carried out by Mutlag et al. [7]. They investigated 

these difficulties of fog computing in the context of healthcare applications. Fog compu-

ting has been implemented in healthcare, which has resulted in encouraging develop-

ments in this area. The healthcare industry is one of the most prominent application sec-

tors that require precise and real-time data. Through the use of fog computing, resources 

can move nearer their respective users, reducing latency and, as a result, increasing the 

level of security. However, the faster delivery of findings is insufficient because, with the 

data being so sensitive, we cannot make any concessions regarding the correctness of the 

results. Utilizing state-of-the-art analysis software, such as those that make use of deep 

learning and its variants, which have been trained on a vast dataset, is one method for 

achieving high levels of accuracy in one’s work. 

Deep learning [8] has grown in popularity over the past few decades, particularly in 

the fields of object recognition [6] and voice recognition [8]. Ensemble learning is used to 

combine the best findings of various classifiers [9]. The bagging classifier ensemble trains 

the base classifier on the random subsets of data, then aggregates their predictions by 

voting or by average. Randomization in dataset distribution reduces variance compared 

to a single estimator. In order to train and forecast accurately, modern healthcare deep 

learning models are computationally intensive and resource intensive [10]. Sophisticated 

neural networks take time to train and interpret data. Training and using these compli-

cated neural networks to interpret data takes a substantial amount of time. Higher accu-

racy requires a more advanced network and longer prediction time [11]. Healthcare and 

other IoT applications that necessitate real-time findings have needed help. As computa-

tion on the edge reduces turnaround time, merging complicated ensemble deep learning 

models with edge computing to achieve high-accuracy real-time outputs is a new research 

field. This work intends to address this gap and create a computing framework which 

leverages edge resources for low latency and deep learning frameworks for high accuracy. 

To minimize the result delivery time, processing has been brought to Edge devices nearer 

to the patient. Some of these works rely on simulations [12] and need a deployable frame-

work. 

Conventional healthcare systems in which fog or cloud computing platforms are in-

tegrated with IoT collect patient’s information in a timely manner through pre-configured 

devices. Predictions of cardiac issues have been the focus of numerous prior works’ at-

tempts to utilize IoT. However, due to the strict constraints enforced by medical standards 

agencies, they have not yet been successful. These laws require a particular level of accu-

racy. As deep learning has grown in popularity in recent years, more current technologies 

have even outperformed medical professionals in the accuracy of heart disease diagnosis 

[13,14]. This research intends to merge deep learning and IoT in the healthcare sector to 

persuade medical standards agencies to adopt a reduced latency, high-precision model to 

assist in easing the current doctor shortage. Only some works, such as [15], seek to com-

bine these two paradigms. None of these initiatives, however, take advantage of edge 

computing’s decentralized nature to boost performance through the deployment of ag-

gregate deep-learning models. 

An engrained IoT, fog computing, and cloud computing based computation frame-

work is needed to provide efficient computing services to heart patients, as well as for 

other applications that demand real-time results. These services must be provided to users 

who require real-time results. This work was motivated by the need for more models or 

frameworks that combine high-accuracy deep learning models with edge computing 

nodes’ low latency. 
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Using deep learning and the IoT, our cloud-based smart healthcare system, Health-

Fog, can automatically diagnose cardiac conditions. HealthFog is a healthcare platform 

that provides a less invasive fog service and efficiently stores vital patient data. These 

numbers are collected from a wide range of IoT gadgets. 

The important aspects of this paper are: 

 It has been suggested that fog computing could be used as an example of a general-

ized system design for the advancement of collaborative deep learning. 

 HealthFog uses deep learning to automatically analyze cardiac patient data. 

 HealthFog was deployed with the FogBus framework so that it could integrate with 

IoT-edge-cloud to perform real-time data processing. 

 Performance characteristics, such as accuracy, reaction time, and network capacity, 

are demonstrated and studied for the HealthFog deployment. 

The remaining sections of the paper are laid out as follows: the existing healthcare 

systems and related projects are presented in Section 2; Section 3 presents the proposed 

model; Section 4 illustrates the components of the model; Section 5 details the implemen-

tation of the proposed work; Section 6 details the comparative analysis; and Section 7 il-

lustrates the conclusion and future scope. 

2. Literature Review 

Fog computing is an innovative technology for analyzing IoT-generated healthcare 

data. Fog computing can manage cardiac patient data at edge devices or fog nodes with 

large processing capacities to reduce the delay. Edge devices are closer to IoT than cloud 

data centres. 

Considerable work has gone into creating IoT–based solutions for remote health 

monitoring. Continuous health monitoring using tailored 6LoWPAN is proposed by Gia 

et al. [16]. The technology provides effective real-time, remote ECG monitoring via an 

established network. 

Patients with chronic conditions can benefit from Gomez et al.’s [17] introduction of 

an IoT-based patient monitoring system, which tracks their current health and advise 

them on improving it through exercise. Not only does the system gather bio-signals (such 

as an electrocardiogram), but it also collects environmental information (i.e., time and lo-

cation). With the use of an Android app, both the doctor and the patient will have access 

to the data that has been gathered. 

A comprehensive information and communication technology system has been pre-

sented by Fanucci et al. [18] to monitor patients at home. The ECG, SpO2, weight, and 

blood pressure of a patient are all collected by the system using biomedical sensors. The 

captured data are then sent to the hospital’s information system so that remote monitoring 

can occur. As it can assist in the early detection of changes in patients’ vital signs, the 

system contributes to a decrease in the cases of subsequent hospitalizations. 

The authors offer an intelligent healthcare system using the IoT [19]. This setup can 

track various signals, including glucose level, ECG, blood pressure, body temperature, 

and SpO2, and then wirelessly transfer the gathered information to Raspberry Pie using 

Zigbee. Through a smartphone application, end-users, such as doctors and caregivers, can 

watch the data being collected. 

Mahmud et al. [20] propose a Fog-based IoT-Healthcare (FIH) integrated design and 

analyze the CloudFog services in the compatible healthcare systems. IFogSim [21] is used 

to assess FIH’s energy usage and response time. Speed and precision measure FIH’s effi-

ciency. 

Using patient EHRs in the Fast Healthcare Interoperability Resources (FHIR) format, 

Alvin et al. [22] suggested a Scalable and Accurate deep learning (SADL) model. Without 

the need for site-specific data harmonization, the deep learning methods in the SADL 

model can accurately predict a wide variety of medical events from various locations. In 

addition, the proposed method is validated with de-identified Electronic Health Record 
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(EHR) data from two US academic medical facilities with 216,221 adult patients hospital-

ized for at least 24 h, thus enhancing the prediction accuracy. 

To offer humans contextual information and monitor their vital signs using a robot 

assistant, Pham et al. [23] developed a Cloud-based Smart Home Environment (CoSHE) 

to deliver home healthcare. CoSHE initially employs non-invasive, wearable sensors to 

obtain audio, motion, and physiological signs in order to subsequently provide this con-

text of the residents’ everyday activities. The effectiveness of CoSHE is evaluated via a 

case study of robotic assistance using Google APIs. CoSHE, on the other hand, is a generic 

healthcare application that collects and processes patient data on a modest scale without 

data analytics. Its effectiveness in the QoS parameters has not been validated on a proper 

cloud system. 

Alam et al. [24] suggested Edge-of-Things Computation (EoTC) to reduce healthcare 

data processing costs. In addition, a distributed provisioning technique based on the Al-

ternating Direction Method of Multipliers (ADMM) is described, along with a portfolio 

optimization strategy for choosing virtual machines (VMs) to handle healthcare data. Fur-

ther, the experimental data demonstrate that the EoTC paradigm performs better than the 

proposed methodology with regard to cost, despite the fact that the EoTC paradigm does 

not permit a performance evaluation based on the QoS considerations. 

Sanaz et al. [25] presented an end-to-end security strategy for a mobility-enabled 

healthcare IoT that uses DTLS to protect the transmission across intelligent gateways 

without device layer reconfiguration. The suggested technique reduces communication 

costs by 26% and delays by 16% when applied in Cooja, a simulation environment. 

Information technology will allow healthcare providers and patients to improve their 

experiences and services due to the increased availability and real-time data interchange. 

Despite these promising technological advances, data integrity and consistency still need 

to be solved. Thus, engineering a fix is crucial. This paper [26] proposes two models for 

using fog computing in healthcare: private fog computing distribution and public fog 

computing distribution. Each model has a unique scheme to assess malicious attack dam-

age, correctly identify the affected transactions, and restore the destroyed data. Both mod-

els monitor system transactions using a transaction-dependency graph. These models 

worked after the examination. 

The Smart e-Health Gateway exploits the gateways’ strategic location at the net-

work’s edge to provide incorporated data mining, truly local computation, and file access. 

Creating an ageo-distributed intelligence layer between the cloud and sensor nodes pro-

vides scalability, power efficiency, and adaptability [3]. 

To leverage IoT-based fog computing in healthcare, it is necessary to find solutions 

to the following problems: 

1. A real time application based on the concept of IoT in healthcare that can manage a 

huge amount of data collected from patients, with reduced latency and minimized 

power consumption. 

2. Fog computing scenarios need a well-organized resource scheduling mechanism to 

accomplish user workloads and meet deadlines. 

3. A deep learning-based fog computing algorithm can accurately assess heart disease 

severity. 

3. Proposed Model 

3.1. System Architecture 

In order to highlight how the components can be dispersed across three levels and 

employed in smart hospitals, Figure 1 shows a thorough architecture of a IoT based health 

care system. Among these categories, the implanted sensors store this patient’s health-

related information. Assisting the patient allows for the private monitoring of many vari-

ables. Date, time, location, temperature, and other factors can be incorporated into this 

health information to enhance it. Circumstance awareness makes it possible to recognize 
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a typical design and generates more precise inferences about the circumstances. For the 

information transfer from machines, equipment such as CAT scans and magnetic reso-

nance imaging can also be used with various medical devices. The architecture of the ma-

chine contains the subsequent essential elements: 

 

Figure 1. Proposed system architecture. 

 Sensors and Actuators: Signals from this body and environment can be collected us-

ing the continuous identification, sensing, and transmission capabilities, as well as 

biomedical and perspective signals. Networks of intelligent e-Health, which use 

wireless or wired communication protocols, such as Bluetooth and Wi-Fi, to help 

transmit the data to the access. 

 Gateways: This layer is formed after a number of intelligent e-Health gateways that 

are geographically distributed, similar to creating a simulated fog. Each gateway fa-

cilitates different transmission protocols by acting as a source of communication be-

tween the sensor nodes and the regional router or Web. The data from various sub-

networks and the bearings’ protocol conversion must be provided in order for the 

higher-level features, such as data aggregation, filtering, and dimensionality deple-

tion, to be received [27–30]. 

 Back-End System: This back-end strategy results in a cloud computing program that 

runs streaming, data warehouse, and data analytics. Lastly, it can be used as an ad-

dition to the web client’s GUI for the output and feedback. This available health, as 

well as environmental, data can be used as a source of huge data [31–36] for the sta-

tistical and epidemiological forecasting of upcoming epidemic diseases. 

This gateway’s primary job is to support various wireless features and control device-

to-device communication. According to this section, we develop its specific component, 

which turns out to be a fog enabler, by building the orchestra by connecting gateways and 

putting in place various features, such as acting as a repository to momentarily store user 

data gathered by the sensors and fusing it with the other data using aggregation, inter-

pretation techniques, and data fusion. These methods are crucial for the local pre-pro-

cessing of sensor data and can be referred to as an intelligent e-Health Gateway. 
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3.2. Fog-Based Data Management and Analytics 

As smart cities implement innovative IoT programs and try to glean more insights 

from regularly generated data in massive amounts to enhance or supply new smart ser-

vices and respond to emergencies, they will need to employ new strategies and data man-

agement techniques. Traditional databases and business intelligence architectures will al-

ways be necessary for smart cities; however, IoT technologies require specialized compe-

tencies to manage varied data, continually, from different sources and in different forms. 

Data management is developing into a comprehensive field in the IoT context, covering 

preprocessing, batch, stream, and storage methodologies and platforms. This comprises 

several disciplines that deal with data, including data governance, data provisioning, data 

quality management, and data integration (propagation, consolidation, and federation). 

Consequently, handling IoT data within organizations, such as smart cities, is a difficult 

task, particularly when predictive analytics and decision-making involve the use of size-

able amounts of data from various heterogeneous sources. These companies use algo-

rithms to filter data from diverse sources before it reaches a centralized information bank, 

delivering different levels of information quality. They also use automated data aggrega-

tion and classification techniques at the edge and in the fog to hasten the production of 

insights from data streams and safeguard data repositories against massive information 

volumes and high data velocity. 

4. Fog Based Smart Healthcare Components 

4.1. Hardware Component 

 Network of Body Area Sensor devices: This element consists of three main sensing 

components: environmental sensors, activity sensors, and health sensors. Medical 

sensors include electrocardiogram (ECG) sensors, electroencephalogram (EEG) sen-

sors, electromyogram (EMG) sensors, respiration sensors, thermocouple sensors, and 

differential pressure sensors with potentiometric sensors. Through related gateway 

devices, these components are in charge of the transmission of data from the patient’s 

body. 

 Gateway: Fog nodes, which include cell phones, laptops, and tablets, collect the data 

from the sensors throughout the environment and relay that information to the Bro-

ker/Worker units for in-depth analysis. 

 Cloud Data Center: If the fog framework becomes saturated, services are latency-

sensitive, or, if the length of the incoming data is significantly longer than usual, this 

fog-enabled innovative health makes use of the fog infrastructure or cloud data cen-

ter resources. 

4.2. Software Components 

The relevant software components from the fog-enabled innovative health care 

model are data cleaning and processing, data analytics, resource supervising, the judge-

ment module, the deep learning module, and the accumulating module. The relevant soft-

ware components form the Fog enabled Smart health model are: 

1. Data cleaning and pre-processing: preprocessing begins as soon as the data are sub-

mitted in order to filter the information, which also includes the use of data analytics 

technologies. In order to obtain the essential components of the data feature vectors 

that influence patient health conditions, the filtered data are condensed to a lower 

size, adopting Principal Component Analysis (PCA) and utilizing Set Partition 

[28,29] and are protected using the Singular Value Decomposition (SVD) method 

[30]. It immediately draws a conclusion from the input data, recommends medication 

and the relevant checkups based on the continuously trained healthcare experts who 

deal with the data, and then saves it in a database for future training, as needed. 

2. Resource supervisor: the two elements that constitute this framework are the work-

load management and arbitration modules [27]. The task queues and job requests for 
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data processing are monitored by this workload manager. The fog or cloud resources 

that have been supplied for the processing tasks that have been planned and handled 

by this workload supervisor are assigned by the arbitration component. The Arbitra-

tion element, which is connected with this Broker end node, decides whether the 

cloud data center, the fog worker end node, or the fog computing node must provide 

this information in order to determine the results [27]. The main goal is to distribute 

the duties among several devices in order to balance the load and guarantee optimal 

performance. Fog-enabled innovative health permits users to tailor their load balanc-

ing and arbitration methods depending on the necessities of their applications. 

3. Deep learning Module: The dataset is utilized to build a computational framework 

for locating data endpoints, which will contain the vectors created after pre-pro-

cessing the data acquired from this wireless body area network. This forecasts and 

processes the output for the information acquired from these intelligent gateway de-

vices based on the task assigned by the resource supervisor. 

4. 4. Ensemble Module: This component estimates the output class, or if the individual 

has cardiac dysfunction, utilizes the polling data from a variety of models. The fea-

ture, which is hosted on the task’s FogBus node, is responsible for conveying the ac-

cumulated dependable out-run through many worker end nodes. 

5. Implementation 

The demonstrated fog computing architecture in the preceding section collected the 

data of heart patients from the sensor and computed the results before transmitting them 

back to the data center, where the person has the coronary illness, with case probability. 

The directly visible gateway interface, the ensemble deep learning modules, and the data 

from the preparation modules are used in its execution. All of the elements listed in Sec-

tion 3’s various components were carried out using Python programming languages. To 

take advantage of the Python programming language, the implementation’s prepro-

cessing and deep learning with ensemble technique components were rearranged. Based 

on the spread, minimum, and maximum expected values of the area boundaries in the 

datasets, the preprocessing module uniformizes the data. Deep learning with the ensem-

ble technique was implemented using the scikit learn Machine Learning Library in the 

Python environment [31]. The scikit learn module’s bagging classifier approach was used 

to build the voting system in our suggested models. The deep learning network is em-

ployed as the classifier as the model base, and the number of classifiers are used as the 

input. As the model is being developed, the information is being dispersed randomly 

across the classifiers. It now accepts the predicted output of the core components and all 

of the anticipated classes as the input. 

5.1. Data Processing Phase of Heart Patient 

One must be prepared in advance to determine the estimations for numerous high-

lights of the contributions to deep learning models because the data from basic pule-oxi-

meters or ECG devices is organized in a simple graphical manner [31,32]. The framework 

must take care of the domain information particular to each application’s standardizing 

age information, as shown in Figure 1. In essence, patients with heart disease showed 

more severe hypertension than patients without heart disease, according to the data on 

resting blood pressure, which is comparably slow in both groups of patients. The commu-

nication of a healthy patient is leptokurtic, just as comprehending cholesterol levels re-

flects some objective, obvious behavior. In practice, even with the highest pulse, all pa-

tients who are deemed to be in healthy status have a much higher pulse rate, at approxi-

mately 160, compared to those who have heart disease, at approximately 150. Several cri-

teria, particularly chest discomfort and fasting blood sugar, should be constantly altered 

from virtue to absolute virtue. Similarly to how the cardiac position recovered following 

the thallium test, the peak exercise ST section did as well. 
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5.2. Application of Deep Learning Ensemble 

In this model, a deep Q network (DQN) ensemble method is applied for our careful 

application and prediction analysis. The model is used to address issues with binary clas-

sification. The Cleveland dataset’s patient’s cardiac continuous data were employed to 

develop the first model; this was subsequently utilized in order to approximate the out-

comes from the persistent information input using the matching training model as shown 

in Figure 2.  

 

Figure 2. Deep learning module of proposed model. 

This dataset is categorized into three parts for training, testing, and validation in the 

proportion 7:2:1. The dataset is classified into three categories: the training dataset, which 

composes 70% of the dataset; the validation dataset, which composes 10% of the dataset; 

and this testing dataset, which makes up 20% of the dataset and is used for assessing how 

well the model works with fresh data. By stowing each node in a particular dataset, the 

training model may be applied to all nodes that have been previously specified for han-

dling. The model may be trained independently using a different process that focuses on 

datasets created using a different model. Effective communication promotes methods that 

deliver hastily verified dataset information to multiple edge hubs in order to create a sin-

gle model in advance of propagation [33]. At any point during a patient’s assessment, a 

hub has started an undertone; it obtains the patient information that is a vector of shape. 

The data are taken into account as a model input while making a forward pass to the DQN 

for the binary output, i.e., either 1 or 0, which signals the patient either has a heart disease 

or does not, respectively. When making a diagnosis, we employ the bagging process, an 

ensemble method that combines this output of various models in order to generate highly 

accurate results. The worker receives the data, which is then forwarded to various worker 

nodes. Every worker adds it to their line, and the projected outcomes of every worker 

node are transmitted back to the worker who was authorized for this particular assign-

ment. This primary element of the expectation class is then sent from bagging to the gate-

way’s devices. When the desired results are inertia roots, this model gives the user the 

ability to disable this element. We demonstrated the deep learning model’s performance 

as well as the ensemble method. It leads to an improved performance, quick responses, 

and reduced network overhead. The flow chart for the adopted approach has been pre-

sented in Figure 3. 
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Figure 3. Flow chart of proposed method. 

5.3. Proposed Deep Q Learning Based Prediction 

The environment is taken to be in the state �(�) ∈ � for some given time t, where S 

is the set of all conceivable states. The agent observes the current state s(t) and chooses the 

best course of action �(�) ∈ �, where A is the set of all of the potential action vectors. 

When action a(t) is taken, the environment changes from state s(t) to state s(t + 1), and the 

agent receives the reward r(t). The agent receives a reward for each state transition as it 

repeatedly acts in accordance with the policy and the observed state. As the reward that 

the agent receives in the future is considerably less significant for the decision-making at 

hand, the discounted reward can be obtained as: 

�(�) = ∑ ���(� + � + 1)�
���   (1)

where � ∈ [0,1] represents the discount factor. 

The agent’s goal is to identify the best course of action that will maximize the long-

term predicted discounted payoff. In accordance with a policy, when the environment is 

in states, the expected value of the discounted reward that the agent receives after taking 

action is provided by: 

����(�), �(�)� = ��[�(�)|�(�) = �, �(�) = �]  (2)

In Equation (2), the expectation operation is represented as ��. 

Using Bellman’s equation, Q-learning makes it possible to learn the Q function for a 

particular policy: 

����(�), �(�)� = ����(�) + � ∑ ����(� + 1)|�(�), �(�)� ×�(���)∈�

∑ ���(� + 1), �(� + 1)�����(� + 1), �(� + 1)��(���)∈� �  
(3)

In the above Equation (3), ����(� + 1)|�(�), �(�)� denotes the state transition proba-

bility having action �(�). 

The Bellman optimality equation yields the optimal action-value function for the op-

timal policy �∗: 
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�∗��(�), �(�)� = �(�) + � max
�(���)

�∗��(� + 1), �(� + 1)�  (4)

The state value function is obtained as: 

���(�)� = max
�(�)∈�

���(�), �(�)�  (5)

Employing �(�) as the immediate reward and the state value in Equation (5), the Q-

value can be updated as: 

������(�), �(�)� = (1 − ��)����(�), �(�)� + �� ��(�) + �����(� + 1)��  (6)

where �� ∈ (0,1] is the rate of learning. 

The best Q policy is provided as, once the optimal Q function has been determined. 

�∗(�, �) = ��� max
�∈�

�∗(�, �)  (7)

The agent chooses the action with the highest Q value for a given state when the 

function Q(s,a) has the form of a table. Algorithm 1 describes the proposed DQN algorithm 

and computation steps. 

Algorithm 1 Proposed algorithm 

function DQN (�, �, ��, �, �) 

Input: �, �, ��, �, � 

Output: ��(�), ��(�, �) 

Initialize: 

� ←Set of states � = {��, ��, ⋯ ��} 

� ←Set of actions � = {��, ��, ⋯ ��} 

�� ←Probability of transitioning the present state 

� ←Set of rewards 

� ←Reward discount factor 

Compute: 

�(�|�) = �(��|��) 

for � do 

if �~� and ��~�(. |��) do 

��(�) = ��~�[�(�)|��] 

��(�) = ���~�(.|��) �� ���(��, ��)|��

�

���

� 

��(�, �) = ��~�[�(�)|��, ��] 

��(�, �) = ���~�(.|��) �� ��

�

���

�(��, ��)|��, ��� 

end if 

end for 

return ��(�), ��(�, �) 

Exit 

6. Experimental Setup 

6.1. Dataset 

The UCI database was deployed for the cardiac arrhythmia data mining, as has al-

ready been indicated. There are 452 examples of ECG signals in this database from people 

of various ages and sexes. From these signals, 279 features in total were identified. Among 

the most significant are: • Age (years) (years) • Sex (male = 0; female = 1) • Weight • 
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Height (cm) (kg) • QRS duration (average QRS length in milliseconds) • P-R distance 

(Average time interval between the start of waves P and Q in milliseconds) Q-T distance 

(Average time interval between the start of wave Q and end of wave T in milliseconds) • 

T Distance (Average time interval of wave T in milliseconds)• P Distance (Average P wave 

distance in milliseconds) • QRS(Degree vector angles on the screen) (Degree vector angles 

on the screen) T (screen-based degree vector angles) P (Degree vector angles on the screen) 

• QRST (Degree vector angles on the screen) (Degree vector angles on the screen) • J (De-

gree vector angles on the screen) (Degree vector angles on the screen) • Pulse rate (Heart 

rate per minute). 

6.2. Performance Metrics 

The important QoS factors that are used to evaluate the fog services are as follows: 

1. Efficiency: as these fog nodes are nearer to the end user, it is closely integrated with 

the individual needs, which improves the performance and the efficiency of the en-

tire framework. Combining the computational and storage resources across end-user 

devices and the cloud can also increase the performance [37,38]. 

2. Latency: certain essential services should not ever be suspended or deferred. There-

fore, real-time stream processing for latency-sensitive applications, such as compli-

cated event processing or stream mining, should be provided via fog computing to 

reduce the delay [39]. 

3. Reliability: to decrease latency, the fog computing technique should be employed to 

provide real-time stream processing for latency-sensitive applications such as com-

plicated event processing or stream mining [39]. A fog computing-based system 

should be dependable in that it can carry out its assigned tasks and deliver the correct 

results under predetermined conditions and within a specified time limit. 

4. Energy utilization: in a fog computing environment, resources may use some energy 

to deliver the required services or to resend some requests to the cloud for additional 

data processing. Users ought to take into account this energy consumption [40,41]. 

5. Scalability: in the midst of increasing operational demands, such as a rise in the vol-

ume of service requests or the application of resources, a scalable system can main-

tain or improve its level of effectiveness and performance. 

6. Security: protecting the available cloud and fog data from threats using safe solutions 

is the major security problem in fog computing, along with device authentication at 

any gateway. An intrusion detection system (IDS) needs to be installed at each tier of 

the platform in order to address this issue [40]. 

7. Resource utilization: this describes the most effective use of a system’s resources and 

is crucial for maintaining efficiency. 

8. Accuracy: this refers to any parameter that is close to the ideal value or the accepted 

benchmark. Each calculation must be completed accurately, and the output must be 

error-free. 

9. Precision/Recall: two significant criteria for evaluating models and algorithms are 

recall and precision. The first displays the proportion of all relevant results that the 

algorithm successfully classified, while the second displays the proportion of algo-

rithmic findings that are connected to the chosen topic. 

10. Throughput: the term “throughput” specifies the greatest amount of data that can be 

sent from one point to another, or the most requested service rate that can be handled 

by the system in a specific amount of time. 

11. Response time: the time it takes for a system query to be replied to after being sent. 

For successful computing, quick response times could be essential. 

12. Execution time: this is the amount of time that passes between when a program be-

gins to run and when the user or operating system terminates it. 

6.3. Comparative Analysis 
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For the performance analysis, we compared our proposed approach with two similar 

approaches that were designed in the cloud platform. A cloud-IoT system based on the 

agents for remote heart rate monitoring was developed by the researchers in [36], which 

makes it easier to track and monitor patients with cardiovascular illness anywhere. The 

patient’s heart rate can be recorded, located, stored, and analyzed using the suggested 

system. In an emergency situation, it may also be necessary to make a speedy choice. Any 

healthcare professional may use it, not just the hospital. Using five well-known supervised 

learning-based machine learning techniques, a cloud-based architecture for the early iden-

tification of cardiac disease was planned in [37]. 

Figure 4 illustrates the latency analysis of our proposed approach and its comparison 

with other similar approaches. For this evaluation, we have taken two related approaches 

in [36] and [37] and it can be established that our proposed model shows comparatively 

less latency than the Cloud-IoT HMS and cloud based Machine Learning approach. 

 

Figure 4. Comparison of Latency with Cloud-IoT HMS and Cloud-ML. 

Figure 5 illustrates the execution time analysis of our proposed approach and its com-

parison with other similar approaches. For this evaluation, we have taken two related ap-

proaches in [36,37] and it can be found that our proposed model shows reasonably less 

execution time than the Cloud-IoT HMS and cloud based Machine Learning approach. 
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Figure 5. Comparison of Execution Time with Cloud-IoT HMS and Cloud-ML. 

Figure 6 demonstrates the accuracy rate analysis of our proposed approach and its 

comparison with other analogous approaches. For this evaluation, we have taken two in-

terrelated approaches in [36,37] and it can be found that our proposed model shows mod-

erately high accuracy rate than the Cloud-IoT HMS and cloud based Machine Learning 

approach. 

 

Figure 6. Comparison of Accuracy rate with Cloud-IoT HMS and Cloud-ML. 

Figure 7 displays the energy expenditure investigation of our proposed approach 

and its comparison with other similar approaches. For this evaluation, we have taken two 

related approaches in [36,37] and it can be found that our proposed model consumes com-

paratively lesser energy than the Cloud-IoT HMS and cloud based Machine Learning sys-

tem. 
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Figure 7. Comparison of Energy Consumption with Cloud-IoT HMS and Cloud-ML. 

Figure 8 depicts the throughput testing of our proposed approach and its assessment 

with other similar approaches. For this assessment, we have taken two related approaches 

in [36,37] and it can be found that our proposed model consumes comparatively advanced 

throughput than the Cloud-IoT HMS and cloud based Machine Learning model. 

 

Figure 8. Comparison of Throughput with Cloud-IoT HMS and Cloud-ML. 

7. Challenges and Future Work 

In this section, we address the challenges that have the potential for further research 

to optimize and improve the proposed system in the future. Internet: as the proposed sys-

tem is based on remote communication, as was discussed in the preceding sections, hav-

ing a fast, reliable internet connection is crucial for a system that can monitor patients in 

actual environments. For high-risk patients who require ongoing monitoring, the system 

feedback will be unfavorable if the internet connection is slow or down. Implementing the 

redundancy technique in the network is one of the options that can be suggested here. 

Storage: when the system is constantly receiving and saving patient data, a substantial 
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quantity of that data will end up in the memory of the device. One strategy to prevent 

running out of storage capacity is to only keep data on the fog layer for a short time—say, 

one day—and to keep the patient’s data permanently on the cloud layer. Wearable de-

vices: the elderly are one of our target community’s objectives when implementing the 

suggested system. As was previously indicated, a patient must be connected to a number 

of probes in order to receive electrocardiography; nevertheless, the patient may not be 

able to complete this task on their own. As a result, the above system should be created to 

present the fewest difficulties to this kind of patient. Utilizing wearable technology is one 

of the recommendations. In this work, a useful technique for keeping track of patients’ 

health was proposed. For patients with arrhythmias, this solution is built on fog compu-

ting and data mining. In order to reduce data transfer delays, patient information is used 

with fog technology rather than being sent to the cloud. 
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