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Abstract: In developing countries, decision-making regarding old rural houses significantly relies
on expert site investigations, which are criticized for being resource-demanding. This paper aims to
construct an efficient Bayesian classifier for house safety and habitability risk evaluations, enabling
people with none-civil-engineering backgrounds to make judgements comparable with experts so
that house risk levels can be checked regularly at low costs. An initial list of critical risk factors
for house safety and habitability was identified with a literature review and verified by expert
discussions, field surveys, and Pearson’s Chi-square test of independence with 864 questionnaire
samples. The model was constructed according to the causal mechanism between the verified factors
and quantified using Bayesian belief network parameter learning. The model reached relatively high
accuracy rates, ranging from 91.3% to 100.0% under different situations, including crosschecks with
unused expert judgement samples with full input data, crosschecks with unused expert judgement
samples with missing input data, and those involving local residents’ judgement. Model sensitivity
analyses revealed walls; purlins and roof trusses; and foundations as the three most critical factors
for safety and insulation and waterproofing; water and electricity; and fire safety for habitability. The
identified list of critical factors contributes to the rural house evaluation and management strategies
for developing countries. In addition, the established Bayesian classifier enables regular house checks
on a regular and economical basis.

Keywords: rural house; Bayesian classifier; safety; habitability; risk management

1. Introduction

Dilapidated houses in rural areas are a common and critical issue worldwide for
their high frequency and serious implications. In developing countries, being constrained
by certain economic factors, traditional raw soil structures, brick–timber structures, and
wooden structures accounted for a large proportion of rural dilapidated houses, of which
more than 60% of raw soil structures are dangerous [1]. According to Peshkov et al. [2],
areas with dilapidated houses have more than tripled since 1990, with an ageing rate of
1.5% per year, while new house construction projects are progressing slowly. Zhou et al. [3]
analysed the situation of rural houses in China and revealed that nearly 40% of provinces
are unqualified regarding rural house safety. Maniatis [4] and Triantafyllopouls [5] found
1800 vacant buildings in the centre of Athens, Greek, and nearly 85% of these buildings need
intervention for improvement. Lopez [6] found that the principal building material in rural
Jalisco was adobe brick. In addition, the vulnerability of adobe construction to the elements,
notably water, wind, and pests, required homeowners to continuously tend to their houses.

Currently, the common management strategies for rural houses rely on onsite visits
from trained experts [7]. Different interventions such as maintenance, renovation, and
demolition may be suggested based on the expert’s investigation results. However, such
strategies normally involve the experts’ long-distance travel and significant time expendi-
tures on sites and are highly dependent on expert manpower. For the same reason, this
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method is potentially susceptible to external and subjective inference. On the other hand,
the latest housing management system is based on image recognition and artificial intelli-
gence to identify the development of housing cracks [8–10]. However, the threshold for
using this method is relatively high in both expenses and professional knowledge. In areas
where dilapidated houses are centralised, such as rural villages, local dwellers cannot easily
access the resources required for such investigation methods. Therefore, the overarching
aim of this paper is to establish a simple artificial intelligence model by extracting and
visualising the experts’ knowledge and experiences. The Bayesian belief network model
can be used as an alternative to expert judgements on the spot to reduce the resources
consumed by experts’ onsite investigations. Furthermore, this model will also be able to
automatically classify rural houses into different risk levels, mimicking expert decisions
in order to avoid subjective biases made by experts on certain occasions. Therefore, this
model could directly benefit local dwellers by guaranteeing their safety and quality of life
and contribute to the formulation of rural house management strategies.

2. Theoretical Background

Research into house risk management can be found eminently in the literature. For
investigations into attitudes and policies for housing risk management, Peshkov et al. [2]
took the Russian national plan as a sample to explore the actions taken by the municipal
government in emergency situations and dilapidated houses through the literature and
onsite investigations. They discovered that the main tasks faced by the governments of
Russian cities were to clear blocks of dilapidated housing, relocate citizens, and create
favourable conditions for investors to effectively integrate the development of built-up
areas. The researchers recommended developing uniform, whole-country rules to determine
the amount of compensation for homeowners during their resettlement to emergency
houses and to strengthen control over the quality, completeness, and timeliness of major
repairs to apartment buildings. In order to explore the gap between rural and urban house
management, Tiwari [11] conducted quantitative statistical analyses and found that, in
rural areas of India, mismatches between required and available housing stock were not
as stark as urban areas but the quality of houses left much to be desired. Only 45 per cent
(58.10 million) of residential and 42.2 per cent (2.52 million) of non-residential houses were
in good condition, and 6.3 per cent (8.14 million) of residential and 4.5 per cent (0.27 million)
of non-residential houses were in a dilapidated condition. The author concluded that the
policies formulated by the government needed to be applied flexibly to urban and rural
areas. Whatever the level of power devolution, adequate funding is a prerequisite. It is
important to recognize that the rural housing problem is a national problem and cannot be
funded only at the local level. Wei et al. [12] took Anhui Province in China as an example
to analyse its risk level and the fault characteristics of houses from both qualitative and
quantitative perspectives. Then, he suggested that Level C and D houses with safety risks
and that could not be reinforced should be dismantled as soon as possible to avoid collapse.
Government departments should put forward requirements for newly built rural houses and
offer professional suggestions on geological conditions, housing design, and construction so
as to improve the quality of newly built houses in rural areas. These suggestions all reflect
the current situation of old houses in various countries and some of the policies adopted.
In most countries, rural houses need to be invested with a lot of money and manpower to
provide a safe living environment for rural populations.

The standards of house risk management in different countries were also reflective of
attitudes and policies. The standard of house risk management presented different situations
relevant to economies. In developing countries, safety might still be the main concern. The
safety of rural houses or general houses can mainly be evaluated by whether the stress of
the main structure meets safety requirements. Specifically, the main structure includes the
main stress components, such as walls, beams, columns, roofs, and floors. Experts judge the
house level through damage to these main components. For example, regulations in certain
countries [13–15] classify house safety by evaluating the house structure and the quality of
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building materials and equipment. Failure to meet the safety requirements incurs severe
outcomes, such as complete collapse [16]. In addition to the above safety requirements, some
developed countries push the frontier by including some housing comfort requirements,
such as the lighting time of the house, fire rescue access, wall insulation performance,
sanitary facilities, etc. [17]. It can be observed that current prevailing policies in developing
countries normally only focus on safety risks while ignoring the comfort aspect. The ultimate
purpose of houses is to create a living environment for people, and yet, the current lack
of habitability consideration in developing countries has led to insufficiency in reflecting
this purpose.

Research is also available with respect to critical factors for the identification of house
safety and habitability. Ramli et al. [18] first identified these critical factors through a
literature review of current safety and health practices from journals and then distributed 50
questionnaires for analysis. It was revealed that the most significant building management
factors are documentation and evaluation, building services, and structural and finish
integrity. Kaklauskas et al. [19] and Gibson et al. [20] explored and verified the relevant
factors that affect the safety of houses using systematic reviews and obtained the following
factors: housing and indoor environments; fuel poverty and thermal comfort; indoor
environmental exposures and overcrowding; water and sanitation; outdoor environments
and residential locations; neighbourhood deprivation; safety and physical activity; noise;
pollution; and environmental deprivation. These factors were also recognised by Keall [21],
who provided guidance on the development of housing-quality-assessment tools that
link the practical measures of housing conditions to their effects on health, safety, and
sustainability, with particular reference to tools developed in New Zealand and England.
Such factor prioritisation research, to a certain extent, has informed policymaking regarding
housing management, but it still cannot alleviate expert-demanding stress in case-specific
rural housing management decision-making.

With advancements in technology, some researchers have taken a further step by
using machine learning and image recognition techniques to detect and evaluate cracks in
houses. In order to evaluate changes in damage and cracks in houses after earthquakes,
Torok et al. [8] and Rouchier et al. [9] proposed an image-based three-dimensional (3D)
reconstruction method and a new 3D crack detection algorithm by conducting experiments.
The principle was to use digital image correlation and acoustic emission monitoring to
locate and estimate the size of cracks. For this approach, a small ground robot (with
a high-resolution camera) arrives on the scene and sets up at a safe distance from the
damaged structure. Bauer et al. [10] used quantitative passive thermography to measure
the extent of damage to building façade cracks. This information could be obtained by
monitoring the initial 40 min of data, which differentiated the Delta-T values from the
cracks, thus evaluating their depth relationship and allowing for the determination of
crack damage width. This required a temperature-detection system to receive the infrared
radiation emitted by the target object and transform it into temperature readings using data
characteristic of the material and inspection conditions (emissivity, reflected temperature,
etc.). In order to ensure the safety of houses, Xu et al. [22] observed the inclination and
formed a safety test system through data collection, data preprocessing, feature extraction,
and a prediction model. Experiments involved applying wireless sensor technology to
obliquely observe buildings, and the real-time dynamic monitoring of buildings was
achieved. Wu and Liu [23] focused on computer vision technology in artificial intelligence,
studying an image classification algorithm and semantic segmentation algorithm based on
the deep learning method, and they applied it to the field of building crack image analysis.
The intelligent defect detection prototype system built took the scalability of the application
into account, including water leakage, deposition, and other defect-detection projects. The
study used a combination of UAV and human digital cameras to obtain images of onsite
house damage. To sum up, the existing artificial intelligence technology could be used to
observe and evaluate the cracks in houses. However, it requires professional equipment
and further manual analysis to realize the above processes.
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The current house risk management strategies present three gaps. First of all, with
respect to inspection standards, those of developing countries often neglect the aspect of
habitability. If houses are only evaluated by their safety, the standard deviates from its
original aim of providing both safety and comfort to dwellers. An uncomfortable house is
more likely to be abandoned in rural areas, left in an increasingly deteriorating situation
and inflicting more resource waste on society. Second, the current housing inspection
standards in rural areas require regular checks on long lists of factors and may dictate long-
distance travel. Such inspection mechanisms highly depend on expert site investigations,
but trained expert manpower is not abundant. Third, the latest technology, both the existing
3D detection algorithms and image recognition technology, are only used to identify the
cracks in the house. Cracks are only one aspect of judging a house’s safety, and it is not
possible to evaluate a house as a whole just by observing the cracks. Furthermore, the
premise of adopting such algorithms in investigating house safety risks dictates hardware
investment and a certain level of understanding algorithms, which creates application
barriers to rural areas in developing countries especially [24,25]. Compared with the
aforementioned methods, this paper aims to identify housing risk factors for both safety
and habitability as the inputs to construct a Bayesian classifier. The model is designed to
be accessible and operable for rural house dwellers with no engineering backgrounds to
evaluate their own houses. In this case, all of the dwellers can be engaged in the rural
house management scheme by initiatively and regularly evaluating and understanding
their own houses. If the Bayesian classifier returns an alarming result, experts can then be
hired for a site investigation for a more comprehensive evaluation. The model can not only
reduce the human burden as an assistance to expert surveys but also reduce overreliance
on expert judgments.

3. Research Methods
3.1. Research Procedure and Data Collection

The overarching aim of this paper is to construct a Bayesian classifier for house risk
evaluation. As model inputs, critical factors for the safety and habitability risks of rural
houses were identified in a literature review. The relationship between the factors was
proposed based on a logical deduction and a further literature review and then verified by
expert opinions and statistical analysis, producing a shortlist. The verified relationships
were then used to build the model structure. After being complied, a functioning artificial
intelligence classification model was established. The classifier after being justified by the
experts went through two accuracy tests, one with expert-collected data and the other
with data from local residents. Finally, a sensitivity analysis was conducted to further
understand the classification model and the issue of dilapidated houses in rural areas.
Experts collected sample data by observing damage to houses. Based on the collected
data, the model imitated the logic of experts to learn and judge so as to classify housing
risk levels. Compared with experts, who may be affected by external environmental and
subjective factors, it was more objective to classify houses through models. The purpose
of this model is to help villagers check their houses daily to avoid using the resources
consumed by experts. At the same time, the model assisted the experts in maintaining
objectivity during site investigations.

Two expert groups were formed for data collection. All experts had over ten years
of academic or practical experience in the relevant fields. Expert group A contained five
experts who were partially located in different villages in the southeast coastal area of China
to ensure that the data collected by the experts were not duplicated. They were responsible
for the site investigations in the target areas and data collection regarding evaluations of the
safety and habitability situations of rural houses. At the same time, experts filled in rural
housing danger and habitability test forms onsite and took photos of house damage for
evidence. They did not necessarily know each other, and communications were purposely
not organised between them so that independence and impartiality were maintained to
the utmost extent. Furthermore, the correctness of data collection was not judged by only
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one expert. In the later stage of data collection, our research team reviewed the photos of
houses one by one to reduce the subjective bias of the experts. This research investigated
864 rural houses in 51 villages in the investigated areas. All houses in these areas were
numbered. A total of 605 houses (70% of the total) were randomly selected as samples
for model construction. The inspection lasted for ten months, from March to December
2021. Collected data included the construction era, structural form, the layout of the house,
the area of the field measurement, the existence of dangerous points in each house, and
the evaluation of the safety and habitability levels. All data were measured, noted, or
photographed. Samples of the investigation report and instruments used for investigation
are available in S1 of the Supplemental Data for the specific onsite expert evaluation form.
Expert group B also contained five experts and was organised for auxiliary purposes. Three
online focus groups with expert group B were conducted to verify the factor list, model
structure, and model accuracy and sensitivity results. The two authors with the most
industrial experience in the relevant field acted as organisers for the focus groups in order
to keep the discussion on track.

For the model accuracy tests, theoretical tests were first conducted with the unused
259 (30% of the total) samples collected by the expert group. The theoretical tests evaluated
the model’s consistency with expert judgements. In addition, fifty random local residents in
different villages were involved in the practical tests. The established model was presented
to the participants for them to provide information based on their own perceptions of the
housing situation, and the classification results were also compared with expert judgements.
The practical tests evaluated the model’s capability of producing accurate risk classifications
as an alternative and aid to expert judgements.

3.2. Data Analysis Method

The statistical verification of the relationship between factors was performed using
Chi-square tests. Its purpose was to compare the consistency between the actual sample
frequency and the expected frequency if equally distributed [26]. Considering the character-
istics of the data in this research, Pearson’s Chi-square test was selected, with calculations
following Equation (1), where Oi represents the observed frequency associated with the ith
frequency class, and Ei represents the expected frequency calculated from the theoretical
distribution law for the ith frequency class [27].

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(1)

After establishing the model structure, Bayesian belief network parameter learning was
used for structure quantification. A Bayesian belief network is a graphical data structure
that compactly represents the joint probability distribution of an event of interest by
exploiting conditional dependencies and uses prior information to estimate posterior
information to predict the unknown parameters of the distribution [26,28,29]. As shown in
Equation (2), P(A) was the prior probability, indicating knowledge and assumptions about
the parameter before the sample was observed, regardless of any value of B. P(A|B) was the
conditional probability of A after the known occurrence of B. As an a posteriori probability,
it represented an update of the original knowledge after making new observations. P(B|A)
was the conditional probability of B given that A had occurred.

P(A|B) = P(B|A)

P(B)
·P(A) (2)

For multiple factors that jointly lead to housing risk factors, the chain rule of Equa-
tion (3) can be applied. In practical applications, the joint probability is constrained by the
conditional independence prerequisite, relying on the chain of conditional probability [30].

P(X1, X2, . . . Xn) = P(X1)P(X2|X1) . . . P(Xn|X1, X2, . . . Xn) (3)
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4. Analyses and Results
4.1. Factor Identification

The resulting model is expected to be an abstract of expert decisions. Thus, the factor
identification should mimic the logic of experts during their investigations and evaluations,
i.e., from the perspective of the mechanical structure. According to the structure of the
houses, factors were divided into three categories from bottom to top, i.e., the foundation,
superstructure, and roofing system. In order to reflect habitability, a literature review was
also conducted to identify relevant factors. Factors identified for habitability include five
aspects, i.e., lighting and ventilation; insulation and waterproof; water and electricity
pipelines; sanitary equipment; and fire safety, which are summarised based on the current
literature. Detailed factors under each category and factors for habitability with references
and sources are summarised in Table 1.

Table 1. Risk factor identification table for rural houses.

Safety

Categories Risk Factor Sources of Risk Factor

Underground Foundation Nigeria National Building Code [13], Deng and Sun [31],
Zhang and Xiong [32]

Superstructure
Wall Municode [33], Deng and Sun [31], Guo et al. [34]

Bonding material Cambodia Code [15], Guo et al. [34], Zhang et al. [35]

Beam and column Nigeria National Building Code [13], Zhang et al. [35]

Roofing system Purlins and roof trusses Zhou et al. [1]

Roof and floor Deng et al. [36]

Others

Private reconstruction and expansion Author added factor

Structure type Zhou et al. [1], Fang et al. [37], Li and Deng [38]

Site environment Zheng et al. [27], Chou and Zhang [39]

Seismic structure Guo et al. [34], Anagnostopoulos and Moretti [40]

Construction era Zhou et al. [1], Li and Deng [38]

Habitability

Categories Risk Factor Sources of Risk Factor

Habitability

Insulation and waterproof Honolulu Code [41], Australian Code [42]

Fire safety Ho et al. [7], Hasofer et al. [43], Australian Code [42]

Lighting and ventilation Ho et al. [7], Honolulu Code [41], Klein et al. [44]

Sanitary equipment Honolulu Code [41], Stewart [45], Robb [46]

Water and electricity lines Ho et al. [7], Guo et al. [34], Australian Code [42]

4.2. Evaluation Criteria
4.2.1. Overall Evaluation Criteria

The investigation results for dilapidated houses show grades revealing their level of
danger and habitability. By synthetically considering research and regulations in different
countries and areas [47–50], four levels were devised:

A. The structure meets the requirements of normal use; no dangerous points are found
and the house structure is safe; the owner may strengthen the daily maintenance of
the main structure and shall not dismantle the stressed components at will or change
the building function.

B. The structure basically meets the requirements of normal use. Individual structural
components are in a dangerous state, but the main structure safety basically meets
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the normal use requirements; the owner of the house shall carry out the timely
maintenance and treatment of dangerous components in the house.

C. Part of the load-bearing structure does not meet the requirements of normal use. There
is a local, dangerous situation that constitutes a local dangerous building; the owner
should be informed of the danger of the house immediately, a dangerous house sign
should be posted at the door of the house, and the house should be reinforced and
repaired in time.

D. The load-bearing structure can no longer meet the requirements of normal use; the
owner is required to immediately stop using it or living there, and a cordon should be
set up around the house.

At the same time, the classifications of house habitability were also divided into three
levels. The assessment of specific factors is based on the lowest level of habitability risk
factors [36,51].

A. The houseowners can live comfortably when the house has complete facilities, suf-
ficient lighting and ventilation, insulation and waterproofing, water and electricity
pipelines, and fire safety, thus meeting the basic requirements of the residents; only
daily maintenance is required.

B. The housing facilities are basically complete. The lighting and ventilation are basically
sufficient. The insulation and waterproofing, water and electricity pipelines, and
fire safety basically meet the requirements of the residents; repair is dictated for
improvement.

C. The housing facilities are not complete; the lighting and ventilation are insufficient;
the insulation and waterproofing, water and electricity pipelines, and fire safety do
not meet the requirements. Renovation and redecoration are necessary.

4.2.2. Specific Evaluation Criteria

Each of the factors identified in the literature was evaluated using questionnaire
responses, and for each factor, evaluative options were provided in the questionnaire for
the respondents to select from. The evaluative options were A, B, C, and D, indicating an
ascending order of risk propensity for ordinal factors such as construction time, foundations,
walls, etc., as well as categorical meanings for nominal factors such as structure type, site
environment, seismic structure, etc. More details about the meaning of the evaluative
options of each factor are available in the Supplemental Data.

4.3. Model Structure

When using a Bayesian belief network to analyse rural dilapidated houses, the network
structure containing the associations between the identified factors must be established
first. With respect to the mechanical structures of the houses, the load is transmitted to the
main load-bearing structure through the roof or floor, and then, the load-bearing structure
transfers the load to the foundation. Combining the relevance of various risk factors, the
factors were decomposed into the following influence paths according to the structure of
the house’s stress, which were then corroborated by logical judgments and literature data
to form the basis of the Bayesian belief network’s topology.

(1) Foundation, roofing system, load-bearing system→ overall safety level.
The load-bearing system and roof system constitute the upper structure of the house,

and the foundation represents the lower structure of the house, so the load-bearing system,
roofing system, and foundation together constitute the overall safety level of the house.
Between these three factors, the foundation had the highest proportion of influential factors.
The reason is that the quality of the foundation also directly affects the upper load-bearing
system. Therefore, the foundation accounts for a larger share in the post-option revaluation.

(2) Wall, Beam and column, Bonding material, Purlins and roof truss→ Load-bearing
system.

The wall; beam and column; bonding material; and purlins and roof trusses all affect
the safety of the load-bearing system. The roof truss purlins transfer the load of the upper
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part of the house to the wall, beam, and column, thus constituting the load-bearing system
of the house. Deng et al. [36] combined actual engineering experience and concluded that
when carrying out a house risk appraisal on a load-bearing system composed of walls,
beams, and columns, the correlation status of each component should be considered. The
relevance of the contact structure determines the scope of its impact.

(3) Purlins and roof truss, Roof and floor→ Roofing system.
Purlins, roof trusses, and roof slabs are inseparable from each other. When the roof truss

is damaged, a break in the purlins inevitably leads to the destruction of the roof, and the roof
damage will also accelerate the corrosion of wooden roof trusses and wooden purlins.

(4) Construction era, Site environment→ Foundation.
Chou and Zhang [39] used data survey methods to analyse 956 dilapidated rural

houses in Gansu Province and found that the rural areas were remote. Most of the housing
construction site projects involved hiring a feng shui master to check the local geomancy
and lacked geological exploration, so the quality of the foundations could not be guaranteed
in later periods.

(5) Construction era, Seismic structure, Structure type, Foundation → Wall, Beam
and column.

The construction era is the main factor that affects the wall and the beam and column.
The older the construction, the more serious the ageing of the wall and the beam and column.
This manifests as cracking and peeling on the surface layer, which causes severe structural
damage and cracks. The seismic structure mainly affects the stability of the house’s structure.
Ring beams and structural columns connect the wall to the whole house and restrain the
deformation of the wall to a certain extent. In a survey of the current situation of 4817 rural
houses in Inner Mongolia, Hao et al. [52] concluded that the longer the construction period,
the more serious the damage to the house. This was due to different construction techniques
during construction, a low economic level, the poor quality of building materials, and the
long-term influence of the natural environment. The proportion of B level houses with
shorter construction periods had also gradually increased.

(6) Construction era, Structure type→ Bonding material.
Fang et al. [37] found that the bonding materials used in houses with different structures

were not exactly the same in an investigation of the status quo of rural houses in Fujian
Province. The poor cohesiveness of raw soil houses generally led to the presence of fine
or long cracks in most walls; masonry-structure houses were built due to the low level of
construction technology, the poor quality of construction materials, low mortar strength,
and insufficient mortar joints, resulting in poor house quality; stone-structure houses had
many types of bonding materials, such as yellow mud masonry, mortar masonry, gravel
stacking, etc.; different bonding materials eventually resulted in big differences in the
integrity of houses.

(7) Construction era, Structure type, Wall→ Purlins and roof truss.
As the construction period becomes longer, the wooden roof trusses and wooden

purlins of houses gradually shrink due to the influence of the natural environment, which
causes serious moth-eaten damage, rot, and deformation. The structural type also has a
certain influence on roof trusses, purlins, and slab roofs. At present, rural stone-structure
and raw soil-structure houses generally adopt wooden roof trusses, wooden purlins, and
double-sloping tile roofs using firewood bases. Masonry-structure houses have adopted
prefabricated flat roofs without roof trusses or purlins. When a wall is damaged and
skewed, the roof truss placed above it will also be affected.

(8) Construction era, Purlins and roof trusses→ Roof and floor.
When the construction era is longer, the reed wood base layer of the roofs commonly

used in rural houses is likely to rot and break, and the tiles fall off and break. When the
purlins and roof trusses deform, the roof also shows different degrees of sinking trends,
which leads to roof collapse.

(9) Insulation and waterproofing, Fire safety, Lighting and ventilation, Water and
electricity pipelines, Sanitary equipment→ Overall habitability level.



Sustainability 2023, 15, 1785 9 of 18

The Municode [33] and Honolulu Code [41] stipulate that the safety of houses involves
the following factors: water and electricity pipelines are connected normally without ageing
or damage; walls are equipped with thermal insulation and a moisture-proof layer; the
roof is waterproof; the waterproof coating is not aged and damaged; houses have enough
fire, rescue, and escape channels that meet the requirements of the design size; daylight
and ventilation provide sufficient natural illuminance; the opening positions of rooms can
directly circulate outdoor air; houses have independent sanitation and shower equipment;
etc. All of these factors affect the overall habitability level of the house.

(10) Roofing system, Wall→ Insulation and waterproofing.
Tong [53] evaluated external wall insulation systems, roof waterproofing quality,

wall cracking and falling off, and roof panel seepage. He found that the external thermal
insulation of the subject’s walls was hollow and severely disconnected; the external thermal
insulation system had serious water seepage and dampness; and the roof waterproofing
membrane was cracked and detached, resulting in a lack of insulation and a waterproof
function for the house. It could be seen that the roofing system, the wall, the insulation,
and the waterproofing had a certain correlation.

(11) Wall→Water and electricity pipelines.
As current hydropower pipelines are generally pre-buried inside walls, the normal

operation of hydropower pipelines is also be affected when walls are damaged or collapse.
The authors used the SPSS 25.0 software to calculate the Chi-square value between

these two risk factors, as can be seen in Table 2. When the degree of freedom was fixed, each
Chi-square value corresponded to the p-value. A cut-off point of 0.05 was used to judge the
statistical significance of the relationships above. The statistical analysis results indicated
that all THE above relationships passed the significance test. The results are summarised in
Table 2. The model structure was thus established with the tested relationships, shown as
the structure of the model in Figure 1. The model structure was verified by a focus group
with expert group B.

Table 2. Pearson’s Chi-square test of independence.

Factors χ2 p Value DF Relationship
Verified

Foundation→ Overall safety level 204.139 0.000 9 Yes

Roofing system→ Overall safety level 474.805 0.000 9 Yes

Load-bearing system→ Overall safety level 1370.320 0.000 9 Yes

Wall→ Loadbearing system 1538.987 0.000 9 Yes

Beam and column→ Load-bearing system 517.974 0.000 9 Yes

Bonding material→ Load-bearing system 526.743 0.000 9 Yes

Purlins and roof truss→ Load-bearing system 301.127 0.000 12 Yes

Purlins and roof truss→ Roofing system 1033.952 0.000 12 Yes

Roof and floor→ Roofing system 1336.368 0.000 9 Yes

Construction era→ Foundation 19.170 0.004 6 Yes

Site environment→ Foundation 127.493 0.000 3 Yes

Construction era→Wall 34.628 0.000 6 Yes

Seismic structure→Wall 17.400 0.001 3 Yes

Structure type→Wall 42.305 0.000 9 Yes

Foundation→Wall 119.571 0.000 9 Yes

Construction era→ Beam and column 29.816 0.000 6 Yes

Seismic structure→ Beam and column 13.776 0.003 3 Yes

Structure type→ Beam and column 17.382 0.043 9 Yes



Sustainability 2023, 15, 1785 10 of 18

Table 2. Cont.

Factors χ2 p Value DF Relationship
Verified

Foundation→ Beam and column 81.507 0.000 9 Yes

Construction era→ Bonding material 37.736 0.000 6 Yes

Structure type→ Bonding material 25.323 0.003 9 Yes

Construction era→ Purlins and roof truss 62.751 0.000 8 Yes

structure type→ Purlins and roof truss 102.548 0.000 12 Yes

Wall→ Purlins and roof truss 300.170 0.000 12 Yes

Construction era→ Roof and floor 29.323 0.000 6 Yes

Purlins and roof truss→ Roof and floor 561.039 0.000 12 Yes

Insulation and waterproofing→ Overall habitability level 643.960 0.000 4 Yes

Fire safety→ Overall habitability level 490.034 0.000 4 Yes

Lighting and ventilation→ Overall habitability level 192.696 0.000 4 Yes

Water and electricity lines→ Overall habitability level 345.623 0.000 4 Yes

Sanitary equipment→ Overall habitability level 55.502 0.000 2 Yes

Roofing system→ Insulation and waterproofing 490.670 0.000 6 Yes

Wall→ Insulation and waterproofing 262.425 0.000 6 Yes

Wall→Water and electricity lines 201.817 0.000 4 Yes
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4.4. Structure Quantification

The training of the Bayesian belief network model was divided into structure training
and parameter learning. The training of the model structure of the Bayesian belief net-
work parameter learning was assisted by the Netica 32.0 software [54]. Structural training
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determined the independence and dependence of each factor and established the causal
relationship between the factors, which were connected by arrows. Meanwhile, model
parameter learning determined the conditional probability of each node given the link
structures and the data [55]. Data from the 605 samples were organised according to their
probabilistic distributions. After constructing the structure in Netica’s interface with nodes
and connections, each node was attached to a table containing probabilistic distributions of
said node dependent on its parent nodes. The above identification factors were transformed
into the parent node, intermediate node, and child node in the Bayesian belief network.
With the help of the Netica 32.0 software, the model was drawn, and the parameters were
learned using the Incorp case file in the software. Furthermore, the original statistical data
were input into the prior probability and conditional probability tables. Finally, the Bayesian
belief network structure diagram was formed, as shown in the structure of the model in
Figure 1.

For application, a user needs to first evaluate the house performance pertaining to
the nodes in the model. For more details on related evaluation criteria, please refer to
the Supplemental data S2. When it is difficult to evaluate the purlins and roof truss, site
environment, or other nodes, the user can leave the form blank. Therefore, the model can
classify when some nodes are unknown. After assigning states to these nodes, the model
will automatically classify the distribution of the safety state and the habitability state of the
house. The user can take measures to resolve risks based on the model classification results.

4.5. Model Accuracy Test
4.5.1. Theoretical Test

The model accuracy was tested using two methods in parallel, i.e., the theoretical
test and the practical test. During the theoretical test, the Bayesian neural classifier was
tested under both conditions of complete data and incomplete data with the remaining
206 samples (30%) collected by the questionnaire survey. All nodes in the classifier were
assigned with conditions according to the collected questionnaires for the complete data test,
while different scenarios were designed to simulate possible situations of data unavailability.
For incomplete data, the node with missing data was set as the initial probability. Then, the
model brought the initial probability to sub-nodes for further calculation so as to obtain the
probability of the final classification result. The incomplete data test mainly accounted for
situations where certain factors were unobservable or observations of certain factors were
vague. It was designed for dwellers with no civil engineering backgrounds as the users of
the model and simulated the following three situations:

1. Scenario I: Difficulties in observing indoor roof ceilings, purlins, and roof trusses and
uncertain judgement of fire safety;

2. Scenario II: Difficulties in obtaining construction eras; site environment unknown;
and the beam and column damage is not clearly defined;

3. Scenario III: The foundation, bonding material, insulation, and waterproofing are
unknown.

For risk level classification, the model achieved accuracy rates of 100% and 98%
for complete and incomplete data, respectively; for habitability classification, the model
achieved 96% and 91.3%. Detailed test results for each case are summarised in Tables S2
and S3 in the Supplemental Data. The accuracy of the model when dealing with incomplete
data was slightly lower than when the data was complete, but it was still acceptable. The
lowest accuracy rate for the habitability level was also above 80%, which could assess a
house smoothly as well.

4.5.2. Practical Test

In order to better enable dwellers to self-identify their houses, the dwellers must be
informed of the basic house evaluation criteria in Supplemental Data S2. For situations
where villagers cannot distinguish or identify fuzzy components, the factors can be put into
the initial test state. After all the risk factors are determined, the model will automatically
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provide the probability distribution of the house risk. This research randomly selected
50 villagers for onsite self-identification, and the accuracy of the model is shown in Table
S4 in the Supplemental Data. The accuracy rate of the classification of the house safety level
was 94%, and the habitability level was 92%, which was basically consistent with the above
classification results based on the data sample. Part of the reason for the classification error
was that a small number of villagers made mistakes in the identification of house components
or had a greater subjective impression, which led to a certain bias in the evaluation.

4.6. Sensitivity Analysis

The sensitivity analysis of the Bayesian belief network was meant to analyse the
influence relationship of the changes in various nodes on the output results. By using
a Bayesian belief network in the management of rural houses, based on the sensitivity
coefficients of each factor, it was possible to quickly find out the factors that have a greater
impact on the results so that dwellers can take timely measures to relieve the dangers of their
houses. Factors that were less sensitive were ignored or eliminated to reduce the complexity
of the model. In the Netica 32.0 software, a sensitivity analysis of the Bayesian belief network
was performed. We selected the “overall safety level” and “overall habitability level” and
clicked “Sensitivity to Findings” to perform a sensitivity analysis, as is shown in Table 3.

Table 3. Node sensitivity analysis table.

Node
Overall Safety Level Overall Habitability Level

Mutual
Info

Per Cent
%

Variance of
Beliefs

Mutual
Info

Per Cent
%

Variance of
Beliefs

Overall safety level 1.839 100 0.498 0.010 0.751 0.003

Overall habitability level 0.010 0.547 0.001 1.340 100 0.340

Bearing system 0.557 30.300 0.130 0.004 0.295 0.001

Wall 0.112 6.100 0.021 0.029 2.190 0.007

Roofing system 0.088 4.770 0.009 0.083 6.230 0.020

Purlins and roof truss 0.044 2.390 0.005 0.030 2.310 0.008

Foundation 0.034 1.870 0.005 0.002 0.139 0.000

Insulation and waterproofing 0.029 1.590 0.003 0.167 12.500 0.038

Roof and floor 0.019 1.030 0.002 0.021 1.540 0.005

Water and electricity lines 0.015 0.844 0.002 0.073 5.470 0.014

Bonding material 0.016 0.734 0.002 0.000 0.011 0.000

Beam and column 0.013 0.709 0.002 0.000 0.023 0.000

Construction era 0.005 0.262 0.001 0.003 0.253 0.000

Site environment 0.001 0.080 0.000 0.000 0.001 0.000

Structure type 0.001 0.067 0.000 0.000 0.007 0.000

Seismic structure 0.000 0.000 0.000 0.000 0.008 0.000

Lighting and ventilation 0.000 0.000 0.000 0.009 0.707 0.001

Sanitary equipment 0.000 0.000 0.000 0.010 0.791 0.001

Fire safety 0.000 0.000 0.000 0.031 2.330 0.003

The relevant information in the table indicates the degree of influence of the node on
the final node. The larger the value, the greater the sensitivity. It can be seen that the top
three factors affecting the overall safety level of houses are walls, purlins and roof trusses,
and the foundation. The top three factors affecting the habitability rating are insulation
and waterproofing, water and electricity pipelines, and fire safety.
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5. Discussion and Findings
5.1. The Implication of Critical Factors for Dilapidated Housing Management

According to the sensitivity analysis of the Bayesian belief network, the three important
factors affecting the safety level of houses were walls, purlins and roof trusses, and the
foundation. The focus group with expert group B revealed that this was consistent with the
actual procedure of expert investigation since their first instinct was to examine these three
factors. This demonstrated the model’s capability as an alternative tool to an expert’s actual
site investigation. These results were also consistent with the theoretical criticality of the
factors. The wall and the roof trusses and purlins are the main force-bearing components,
damage to which would endanger the safety of the house [38,56]. It is worth noting that the
relevant research lists the foundation as the primary factor affecting the safety of a house.
However, since the evaluation of the safety of rural houses in this study mainly relied
on the observation of the superstructure of the house, the evaluation of the underground
foundation depended on the cracks generated by the superstructure. In addition, for the
existing houses in this study, there were few samples of houses that completely collapsed
into ruins due to foundation damage, so the factor of foundation ranked lower than that of
wall and roof purlins in the sensitivity analysis.

Unlike the safety factors that were mechanically associated, the habitability of houses
was measured with factors concerning dwellers’ subjective perceptions. In practice, the
dwellers were more concerned about water leakage and wall insulation. However, the
site investigation revealed something more severe. Ageing electric wires were a common
issue in the investigated rural houses. In addition, rural houses were too often covered
with weeds on the wall surface, which are highly flammable. These factors compromise
both habitability and safety levels. These further demonstrate the necessity of including
habitability factors in inspection frameworks for rural houses.

In summary, after identifying the above critical factors, we should pay more attention
to the observation of the above factors in later housing management. When there is a
problem with the house, the homeowner can take effective measures in time to resolve the
danger. For house wall reinforcement, prestressed seismic reinforcement technology and
reinforced concrete surface reinforcement technology can be used. The seismic performance
and overall performance of the wall can be improved with strengthening. For the repair
of purlins and roof trusses, decayed roof trusses can be replaced in time, and split rods
can be reinforced by adding steel ferrules. For factors related to habitability, it is generally
possible to transform the housing environment through interior decoration to improve the
comfort of the house. For fire safety, firefighting equipment must be equipped indoors, and
escape and rescue channels must meet national regulations.

5.2. The Implication of the Classification Model for Dilapidated Housing Management

At present, the inspection and appraisal of old rural houses are based on onsite ap-
praisals by experts. The advantage of expert onsite inspection is that the experts are experi-
enced in house appraisal. They analyse the damage to the house from a more professional
perspective and have clear judgments of the whole house. A field survey of rural houses
in Suixi County, Huaibei City, Anhui Province, combined with the hazard levels of houses
in the area, comprehensively analysed the causes of house hazards [31]. Dwellers need to
submit an application for house inspection to the housing management department. After
the approval is completed, experts are responsible for on-the-spot inspections and photogra-
phy. Within 15 days, a document is created and distributed to the households according
to the actual situation of the houses. Although this method is more accurate, it consumes
manpower and material resources. It can be seen that the whole process takes a long time,
and it takes at least half a month from the dwellers’ applications to the receipt of documents.
For some dangerous or emergency houses, such a long wait is clearly unbearable.

Under these circumstances, the authors established a Bayesian classifier model as a
supplement to expert site investigations. When the input data was complete, the model
reached an accuracy rate of 100% for house safety classification and 96% for habitability
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classification. The Bayesian classifier also considered scenarios simulating the model appli-
cation of non-civil engineering professionals when they are not sure about the evaluations of
certain input data, and, therefore, we designed Scenarios I, II, and III to account for certain
missing input data. When in Scenarios I, II, and III, respectively, the overall safety level is
98%, 98%, and 98%, and the overall habitability level is 96%, 96%, and 82%. In the actual use
process of dwellers, the overall safety level is 94%, and the overall habitability level is 92%.
Before using the model, the user needs to have a general understanding of the criteria of
each factor. During the actual investigation, users could evaluate the house by themselves
if provided with simple instructions. Most of the users acknowledged the user-friendly
design of the Bayesian classifier model interface. However, it is worth noting that the
self-evaluation assisted by the classifier might be biased subject to users’ own economic
intentions and preferences, which also caused certain deviations in the evaluation results.
For another application scenario, the model could be utilised by the person in charge of the
rural community, thereby reducing the subjectivity of the homeowner’s self-judgment.

Compared with field inspection, by using our model, dwellers could conduct pre-
liminary identifications of their own houses by themselves, so the dangers of the houses
could be found and dealt with early. The relevant node factors in the model are highly
consistent with the onsite expert identification factors, so the models could be judged by
highly simulated experts. At the same time, the actual situation of the user is also taken into
account. When some factor evaluations are ambiguous, the relevant factors in the model
could be placed in the initial probability, thereby ensuring the normal output of the final
model. Although the classification accuracy of the model is not as high as that of expert
onsite detections, the model is reliable and could be used for the preliminary identification
of users’ homes. In addition, although many houses in rural areas were not classified as
dangerous houses, their habitability was poor, leading to abandoned houses. This model
incorporates habitability into the appraisal of rural houses to reflect the humanized design.

Compared with the existing models, this Bayesian belief network model reduces sub-
jective bias and assists in the ready acceptance of the classification results. For example,
the presentation of the multilayer perceptron model is a black box. The users enter data
at the input terminals and set the output nodes. The model automatically calculates the
output results. The operation mechanism of the middle hidden layer of the model is not
transparent. Conversely, the Bayesian belief network model is presented in a form of a white
box. Each of the nodes in a Bayesian belief network represents a random variable and em-
bodies practical implications. Based on this, users can clearly understand the working logic
principles between nodes. Users can also understand the process of model establishment
more intuitively, and the results of the model output are also easier to accept. Moreover,
in certain cases where human experts might be affected by the external environment and
subjective biases, the model remains objective. The model input modifies some outliers
and details that experts ignore. By judgement, these outliers are probably results induced
by experts’ subjective biases or external pressures such as experts’ emotions or dwellers’
requirements. On the whole, the model simplifies the process of onsite appraisal by experts,
provides effective digital assistance, and helps residents evaluate house grades indepen-
dently. Bayesian model classification analysis is a kind of inference classification based on
previous sample data learning.

6. Conclusions

Old rural house management is a critical issue faced by developing countries. This
paper contributed to this issue from several perspectives. This paper updated the current
key factors in the evaluation of old rural houses, including the overall safety level and the
overall habitability level. It was mainly based on a literature review of factor identification,
field survey data of 864 dilapidated rural houses on the southeast coast of China, and a
Chi-square analysis of factor selection. Different structural forms were taken into account
for the investigation of critical factors. In addition, the overall habitability level of houses
was also taken into account, whereas existing literature has mostly focused on the safety
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aspects. The purpose was to make houses not only safe to live in but also comfortable to
live in. This research provides a more reasonable theoretical method for the evaluation of
rural houses and provides relevant theoretical and technical support for the renovation
of old rural houses to ensure the safety of people’s lives and property. More importantly,
this research established a Bayesian classifier to automatically generate the corresponding
house level according to the user’s choice. The accuracy and sensitivity of the model were
analysed in different situations. For safety level classifications, the model achieved accuracy
rates of 100% and 98% for complete and incomplete data, respectively; for habitability
classifications, the model achieved 96% and 91.3%. Furthermore, in the practical test, the
accuracy rate of the classification of the house safety level was 94%, and the habitability level
was 92%. Through sensitivity analysis, it could be seen that the top three factors affecting
the overall safety level of houses are walls, purlins and roof trusses, and the foundation.
The top three factors affecting the habitability rating are insulation and waterproofing,
water and electricity pipelines, and fire safety. The proposed Bayesian model in this paper
could be used by dwellers or government managers to assist in the initial appraisal and
management of houses. The easy selection of model inputs and the automatic features
enable residents with non-civil-engineering backgrounds to make judgements regarding
the safety and habitability levels comparable with trained experts so that houses can be
checked on a regular and economical basis. In the end, the model sensitivity analysis
suggested that people should pay more attention to walls, purlins, and foundations for
safety evaluations and insulation and waterproofing; water and electricity; and fire safety
in evaluating living conditions.

However, this research also comes with certain limitations. The samples collected in
this research were all from the southeast coast of China, with a sample size of only 864.
However, the experts in the field survey all have more than 20 years of experience in the
civil industry and rich work experience. The samples collected were of high quality and
had a certain degree of representativeness. At the same time, when Netica is used for model
classification, a computer is needed, and mobile phone apps can be explored in the future
so that people can make preliminary identifications of their houses more convenient at a
mobile terminal.
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mdpi.com/article/10.3390/su15031785/s1: S1. Data Collection. S2. Specific evaluation criteria. S3.
Model accuracy test.

Author Contributions: Conceptualization, M.S. (Mingzhi Song) and Z.Z.; methodology, P.W.; soft-
ware, P.W. and K.W.; validation, C.F., K.W. and Z.Z.; formal analysis, Z.L. and M.S. (Mingzhi Song);
investigation, M.S. (Ming Shan), Z.Z., C.F. and Z.L.; resources, M.S. (Mingzhi Song); data curation,
Z.Z. and P.W.; writing—original draft preparation, Z.Z. and P.W.; writing—review and editing, Z.L.
and M.S. (Ming Shan); visualization, C.F.; supervision, M.S. (Mingzhi Song) and Z.L; project adminis-
tration, K.W., Z.Z., C.F. and Z.L.; funding acquisition, M.S. (Mingzhi Song) All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: No ethical approval is required.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data, models, or codes that support the findings of this study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, T.; Duan, W.Q.; Mu, J.; Zhao, X.P.; Du, G.C. Statistical analysis and survey on the aseismatic performance of theraw-soil

Building Status in China’s rural areas. J. Xi’an Univ. Archit. Technol. 2013, 45, 487–492. [CrossRef]
2. Peshkov, V.V.; Gertsekovich, D.; Gorbachevskaya, L. Dilapidated and Dilapidated Housing in the Aspect of the Federal Project

“Ensuring Sustainable Reduction of Uninhabitable Housing”. In IOP Conference Series: Materials Science and Engineering; IOP
Publishing: Bristol, UK, 2019. [CrossRef]

https://www.mdpi.com/article/10.3390/su15031785/s1
https://www.mdpi.com/article/10.3390/su15031785/s1
http://doi.org/10.15986/j.1006-7930.2013.04.016
http://doi.org/10.1088/1757-899X/667/1/012075


Sustainability 2023, 15, 1785 16 of 18

3. Zhou, T.; Han, R.; Mu, J. Actuality investigation and statistical analysis of seismic performance of dangerous buildings in rural
area of western China. J. Nat. Disasters 2013, 22, 70–75. [CrossRef]

4. Maniatis, I. The 1800 Abandoned Buildings of the Center. 2016. Available online: https://www.athensvoice.gr/epikairotita/
politiki-oikonomia/125168/ta-1800-egkataleleimmena-ktiria-toy-kentroy/ (accessed on 25 September 2021).

5. Triantafyllopoulos, N. The Problem of Vacant and Abandoned Buildings in the Center of Athens. 2018. Available online: https:
//www.dianeosis.org/2018/02/abandoned-buildings-athens/ (accessed on 22 December 2021).

6. Lopez, S.L. The Remittance House: Architecture of Migration in Rural mexico. Build. Landsc. J. Vernac. Archit. Forum 2010, 17,
33–52. Available online: https://www.jstor.org/stable/20839348 (accessed on 28 September 2021).

7. Ho, D.C.W.; Yau, Y.; Poon, S.W.; Liusman, E. Achieving sustainable urban renewal in Hong Kong: Strategy for dilapidation
assessment of high rises. J. Urban Plan. Dev. 2012, 138, 153–165. [CrossRef]

8. Torok, M.M.; Golparvar-Fard, M.; Kochersberger, K. Image-based automated 3D crack detection for post-disaster building
assessment. J. Comput. Civ. Eng. 2014, 28, A4014004. [CrossRef]

9. Rouchier, S.; Woloszyn, M.; Foray, G.; Roux, J.J. Characterisation of concrete and mortar cracking by digital image correlation and
acoustic emission. Eur. J. Environ. Civ. Eng. 2013, 17, 467–477. [CrossRef]

10. Bauer, E.; Milhomem, P.; Aidar, L. Evaluating the damage degree of cracking in facades using infrared thermography. J. Civ.
Struct. Health Monit. 2018, 8, 517–528. [CrossRef]

11. Tiwari, P. Rural Housing in India. Growth. 2007. Available online: http://www.macw.ac.in/downloads/files/n5e8e92fbe7688.pdf
(accessed on 22 December 2021).

12. Wei, M.; Juan, L.; Yue, L. Risk Analysis of Rural Housing in Yingshang County Anhui Province—For example Brick-Wood Structure.
In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [CrossRef]

13. Federal Republic of Nigeria National Building Code. 2006. Available online: https://epp.lagosstate.gov.ng/regulations/
National_Building_Code_of_Nigeria_2006.pdf (accessed on 19 September 2021).

14. Myanmar National Building Code. 2016. Available online: https://www.mes.org.mm/content/myanmar-national-building-code
(accessed on 8 September 2021).

15. Law on Construction, Kingdom of Cambodia Nation Religion King. 2019. Available online: http://mlmupc.gov.kh/items/6120
20153529Law%20on%20Construction.pdf (accessed on 16 September 2021).

16. Ma, C.; Pang, Z.; Liu, Z. Analysis on rural residential earthquake around Lushan in Sichuan. Shanxi Archit. 2014, 6, 55–56. [CrossRef]
17. Cowan, D. Housing Law and Policy; Cambridge University Press: Cambridge, UK, 2011; Available online: https://sc.panda321

.com/extdomains/books.google.com/books?hl=zh-CN&lr=&id=o9QiE-OmTsoC&oi=fnd&pg=PR5&dq=Housing+law+and+
policy&ots=4_Am7oPUGI&sig=pbOPVBciaZrScodXtO5u1EPdOGw (accessed on 25 May 2022).

18. Ramli, A.; Akasah, Z.; Masirin, M. Factors contributing building safety and health performance of low cost housing in Malaysia.
J. Saf. Eng. 2013, 2, 1–9. [CrossRef]

19. Kaklauskas, A.; Krutinis, M.; Petkov, P.; Kovachev, L.; Bartkiene, L. Housing health and safety decision support system with
augmented reality. InImpact J. Innov. Impact 2016, 6, 131. [CrossRef]

20. Gibson, M.; Petticrew, M.; Bambra, C.; Sowden, A.J.; Wright, K.E.; Whitehead, M. Housing and health inequalities: A synthesis
of systematic reviews of interventions aimed at different pathways linking housing and health. Health Place 2011, 17, 175–184.
[CrossRef]

21. Keall, M.; Baker, M.G.; Howden-Chapman, P.; Cunningham, M.; Ormandy, D. Assessing housing quality and its impact on health,
safety and sustainability. J. Epidemiol. Community Health 2010, 64, 765–771. [CrossRef] [PubMed]

22. Xu, J.; Yan, C.; Su, Y.; Liu, Y. Analysis of high-rise building safety detection methods based on big data and artificial intelligence.
Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720935307. [CrossRef]

23. Wu, X.; Liu, X. Building crack identification and total quality management method based on deep learning. Pattern Recognit. Lett.
2021, 145, 225–231. [CrossRef]

24. Nena, T.D.; Musonda, I.; Okoro, C. A Systematic Review of the Benefits of Automation Inspection Tools for Quality Housing
Delivery. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022. [CrossRef]

25. Wang, P.; Fenn, P.; Wang, K.; Huang, Y. A Bayesian belief network predictive model for construction delay avoidance in the UK.
Eng. Constr. Archit. Manag. 2021. ahead of print. [CrossRef]
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