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Abstract: Environmental factors may operate differently when relations are measured across 
different geographical locations, a phenomenon known as spatial non-stationarity. This study 
investigates the spatial non-stationarity effect of unhealthy food environments and green spaces on 
the T2DM prevalence rate at the neighborhood level in Toronto. This study also compares how the 
results vary between age groups, classified as all adults (20 and above), young adults (from 20 to 
44), middle adulthood (from 45 to 64), and seniors (65 and above). The geographically weighted 
regression model is utilized to explore the impacts of spatial non-stationarity effects on the research 
results, which may lead to biased conclusions, which have often been ignored in past studies. The 
results from this study reveal that environmental variables dissimilarly affect T2DM prevalence 
rates among different age groups and neighborhoods in Toronto after controlling for socioeconomic 
factors. For example, the green space density yields positive associations with diabetes prevalence 
rates for elder generations but negative relationships for younger age groups in twenty-two and 
four neighborhoods, respectively, around Toronto East. The observed associations will provide 
beneficial suggestions to support government and public health authorities in designing education, 
prevention, and intervention programs targeting different neighborhoods to control the burden of 
diabetes. 
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1. Introduction 
The rising number of diabetes cases worldwide is emerging as one of the fastest-

growing global healthcare emergencies of the 21st century [1,2]. More than half a billion 
people are living with diabetes, which is predicted to increase by 46% by 2045 [1]. Type-2 
diabetes mellitus (T2DM) accounts for more than 90% of diabetes cases [1,3]. It is 
characterized by excess blood sugar levels caused by insulin deficiency, whereby the 
pancreas cannot produce enough insulin, and insulin resistance, whereby target organs 
respond poorly to the insulin that is produced and take in less glucose from the blood 
[1,3]. Diabetes can cause severe damage to body systems such as the eyes, kidneys, heart, 
and vascular system [4]. Although T2DM is recognized to be more common in older 
adults, there has been a recent trend of increasing rates among young adults due to 
obesity, physical inactivity, and energy-dense diets [5]. Using Toronto, Ontario, Canada, 
as an example, more than one in ten adults aged 20 years and above have been diagnosed 
with T2DM, and the prevalence rate has doubled in the past two decades [6]. As a result, 
governments and public health organizations are working to limit and reduce the 
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prevalence of T2DM by understanding the environmental factors that contribute to its 
development in the hope of designing effective intervention programs. 

Public health and medical researchers have been studying the effects of various 
environmental factors, such as air pollution, food, greenness, noise, physical activity, and 
walkability, on diabetes for decades [4]. These factors can affect the risk of T2DM by 
altering behavioral, psychological, and physical stresses and influencing decision-making 
[4]. Numerous studies have been performed to further advanced our knowledge of how 
physical environmental factors [7–24] and social environmental factors [25–29] influence 
T2DM. It has been well established that physical inactivity and unhealthy food 
environments, which promote the consumption of energy-dense foods, are significant 
predictors of T2DM [5]. People are likely to exercise more in a well-designed environment. 
Recreational resources, green spaces, and walkways that encourage physical activity have 
been shown to reduce the risk of diabetes [7,8,14–16,19]. Having supermarkets with fresh 
food in the community can promote a healthy diet, while unhealthy food outlets can 
increase the risk of diabetes [11,12,22]. Age and social–economic status also play a critical 
role in T2DM prevalence. Evidence suggests that T2DM prevalence rates are positively 
associated with age and unemployment [1,26,30], while education and income are 
negatively associated with T2DM prevalence rates [26,30,31]. 

With the increased use of geographic information science (GIS) and spatial analytical 
techniques, there have been growing concerns regarding how the environment affects 
human health worldwide [32]. Many studies have discovered associations between 
environmental factors and T2DM. For instance, some studies have found significant 
positive associations between the food environment and T2DM [12,13,22,23], while others 
have found no significant associations [10,25,28]. These examples highlight the uncertain 
geographic context problem (UGCoP) [33] and the modifiable area unit problem (MAUP) 
[34], which refer to the fact that associations found at different geographical scales (e.g., 
neighborhood, city, province, and country levels) may differ. The results may also be 
impacted by the various methods used to determine the contextual location when 
measuring exposure effects, such as using road networks or buffers to measure 
neighborhood health outcomes. However, environmental factors can affect different 
geographic areas dissimilarly when relationships are measured across space, a 
phenomenon known as spatial non-stationarity [35,36]. For example, an unhealthy food 
environment may positively correlate with the T2DM prevalence rate in one city but 
negatively correlate in another. Nevertheless, research often assumes that the 
relationships between environmental factors and diabetes effects are stable or stationary 
over space. Such presumptions may lead to incorrect conclusions about how the 
environment affects health outcomes [35]. While very few studies have focused on the 
spatial non-stationarity effect of the environment on T2DM, most have only examined this 
effect at the county level [37–39]. To the best of our knowledge, little research has been 
performed on the spatial non-stationarity effects between the environment and T2DM at 
the citywide neighborhood level; thus, this is worthy of investigation. Understanding the 
geographic variation in T2DM rates at the city level can help when planning and 
determining where management and prevention resources should be allocated [37]. 

The goal of this paper is to address the research gap by (1) examining the spatial non-
stationarity associations between T2DM and contextual variables (focusing on green space 
densities and unhealthy food environments) and (2) determining to what extent these 
associations differ between age groups at the neighborhood level in Toronto, Canada. It 
is worth noting that spatial autocorrelation may exist for the prevalence of T2DM. Spatial 
autocorrelation measures the extent to which geographic features and associated values 
are clustered together or dispersed in space. For example, a higher incidence of diabetes 
in the city center may indicate that some processes, such as clusters of fast food 
restaurants, contribute to the increased prevalence in that location. Therefore, this study 
will use global and local Moran’s indexes to assess the existence of spatial autocorrelation 
and explore the spatial non-stationarity effect of the environment on T2DM through 
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geographically weighted regression (GWR). The GWR model addresses the issue of 
spatial autocorrelation and reduces inaccurate spatial data estimations due to non-
randomness errors. This research further intends to advance our understanding of how 
these relationships vary based on Toronto’s geographical locations and age groups. The 
findings from this study could provide valuable evidence and suggestions to support the 
government and public health authorities in designing customized education, prevention, 
and intervention policies. The intervention policies will target different neighborhoods, 
age groups, and minority populations to control and reduce the increasing rate of diabetes 
in Toronto. 

2. Materials and Methods 
This study investigated the spatial non-stationarity relationships of T2DM 

prevalence rates with both green space and unhealthy food environments in the 158 
neighborhoods in Toronto. The neighborhood-level geographic unit was used as a 
contextual area for all analyses. Four geographical weighted regression (GWR) models 
were employed to investigate the spatial non-stationarity associations between 
environmental factors and T2DM prevalence rates in different age groups. The four 
dependent variables are the T2DM prevalence rates for individuals aged (1) 20 and above 
(all adults), (2) between 20 and 44 (young adults), (3) from 45 to 64 (middle adulthood), 
and (4) 65 and above (elder generations). The independent variables included the green 
space density, unhealthy food outlet density, and social–economic status (as control 
variables), which were kept the same for all GWR models. Figure 1 illustrates the 
workflow of this study using the GWR models. 

 
Figure 1. Using geographically weighted regression model to examine the spatial non-stationarity 
effects of green space density (a) and unhealthy food environment (b) with container buffer (d) for 
type-2 diabetes mellitus prevalence rates (c). With mappings of local coefficients (e) and t-value (f). 
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2.1. Study Area 
Toronto, the capital city of Ontario, is located in southern Ontario and has a land area 

of 630.2 km2. It is the most populated municipality in Canada, with an estimated three 
million culturally diverse inhabitants living at a density of 4720 persons per km2 in 2019 
[40]. According to the city of Toronto and the 2016 Canadian census, 47% of the population 
is made up of immigrants [41]. The city has 158 officially registered neighborhoods, which 
serve as a microcosm of the population. Unlike census tracts or dissemination areas, these 
social planning neighborhood boundaries change infrequently over time, making them 
suitable for statistical reporting [42]. Given the diverse environments and demographic 
characteristics of Toronto’s neighborhoods, it is likely that spatial non-stationarity effects 
exist between environmental factors and T2DM. This research, therefore, conducts a large 
population-based study, covering all of Toronto’s neighborhoods, to investigate whether 
environmental exposure is associated with the prevalence of T2DM. The 158 
neighborhoods in Toronto have an average area of 4.07 km2, with a median of 3.14 km2 
and a standard deviation of 3.87 km2. The smallest neighborhood, North Toronto, has an 
area of 0.40 km2, while the largest neighborhood, West Humber-Clairville, covers 30.16 
km2. 

2.2. Data 
2.2.1. Type-2 Diabetes Mellitus Prevalence Rates 

The type-2 diabetes mellitus prevalence data for Toronto neighborhoods used in this 
study were obtained from the Ontario Community Health Profiles Partnership (OCHPP) 
under the Adult Health and Disease section [43]. The diabetes data were sourced from 
validated disease databases maintained by the Institute for Clinical Evaluative Sciences 
(ICES) [44]. The database includes records of all citizens and permanent residents aged 20 
and above who interact with Canada’s universal healthcare system, regardless of their 
social status. The population demographics for Toronto’s 158 neighborhoods, classified 
by different age groups, are summarized in Table 1. These demographics were 
summarized according to the Ontario Ministry of Health and Long-Term Care Registered 
Persons Database (RPDB), including individuals who were alive and living in Toronto on 
1 April 2019 [43]. If an individual filed an Ontario Health Insurance Plan (OHIP) claim, 
had two doctor claims, or was admitted to the hospital for diabetes within two years, they 
were recorded in the database as being diagnosed with diabetes. This study analyzed the 
most recently published 2018/2019 Adult Health and Disease dataset, focusing on diabetes 
prevalence rates for individuals aged 20 and above at the neighborhood level in Toronto. 

The data were divided into age groups: 20 and above, 20 to 44, 45 to 64, and 65 and 
above. Each data record was matched and spatially joined with the boundary shapefile 
for the 158 neighborhoods in the City of Toronto to carry out spatial analyses. Figure 2 
illustrates the spatial distribution of the T2DM prevalence rates across Toronto 
neighborhoods. Higher rates of T2DM were observed in the eastern and northwestern 
areas of Toronto, while lower rates were found in the central downtown region. For 
instance, neighborhoods around Humbermede and Scarborough had higher T2DM 
prevalence rates, while those in the Young-Bay corridor had lower rates. 

Table 1. Toronto’s 158 neighborhoods’ population demographics by age group. 

Population Minimum Maximum Mean Median Standard Deviation Total 
All ages 20+ 5360 29,457 15,167 14,392 5419 2,396,337 
Age 20 to 44 2318 19,463 7241 6738 3064 1,144,070 
Age 45 to 64 1845 9726 4966 4634 1837 784,704 

Age 65 and above 679 7628 2959 2756 1340 467,563 
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Figure 2. Neighborhood-level type-2 diabetes mellitus prevalence rates in Toronto, April 2019. 

2.2.2. Unhealthy Food Outlets 
Recent studies have shown that unhealthy food environments can impact T2DM 

[13,22,23]. For instance, fast food restaurants and convenience stores often provide 
energy-dense and high-carbohydrate food sources that can quickly raise blood sugar 
levels. In order to analyze the effects of unhealthy food environments on T2DM in 
Toronto, this study used data on the locations of food outlets in 2021 provided by 
SafeGraph [45]. SafeGraph is a company that offers points of interest (POI) data containing 
physical location information at the address level [46–48]. The data were classified using 
the North American Industry Classification System (NAICS). Food outlets were obtained 
from SafeGraph Core Places data and filtered using the NAICS code for unhealthy food 
outlets. Previous studies have commonly classified convenience stores, confectionery 
stores, and limited-outlet restaurants (fast food) as “unhealthy” retail food outlets [49–51]. 
Therefore, this study contextualized unhealthy food outlets using the following NAICS 
codes: 722513—Limited-Service Restaurants; 722515—Snack and Non-Alcoholic Beverage 
Bars; 445292—Confectionery Stores; 447110—Gasoline Stations with Convenience Stores; 
445120—Convenience Stores; 311811—Retail Bakeries. The locations of unhealthy food 
outlets are shown in Figure 3. A total of 3964 of these outlets were located around Toronto. 
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Figure 3. Distribution of (a) unhealthy food outlets and (b) green spaces around Toronto. 
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2.2.3. Green Spaces 
Studies have found that neighborhood green spaces, such as parks, can reduce the 

risk of T2DM by promoting physical activity [4,7,8]. Exposure to green spaces and 
recreational facilities around residential neighborhoods can promote physical activity and 
benefit individuals’ health [52–54]. When there is more green space in a community, 
residents will have easier access to these spaces for physical activity. The green space data 
were obtained from the Park Sports Field Region–2019 dataset published by DMTI Spatial, 
Inc., on Scholars GeoPortal [55]. The dataset includes polygon shapefiles of all parks and 
recreation areas in Canada, such as sports fields, open spaces, campgrounds, and golf 
courses. Toronto has a total green space area of 131.9 km2, covering more than 20% of the 
city, as shown in Figure 3. 

2.2.4. Socioeconomic Status 
In addition to unhealthy food outlets and green spaces, socioeconomic status also 

significantly affects T2DM. Previous studies have shown that older adults and the 
unemployed have a higher risk of being diagnosed with T2DM [1,26,30]. Education and 
income are often negatively correlated with T2DM [26,30,31]. Regarding ethnicity, recent 
studies have found that the non-Hispanic white population has a lower prevalence rate of 
T2DM compared to other ethnic groups [56,57]. Certain immigrant groups were also 
found to have a higher risk of developing T2DM earlier in their life in Canada [26,58]. For 
example, South Asian and black immigrants are more likely to develop T2DM earlier than 
immigrants from the UK. Therefore, this study used socioeconomic characteristics to 
represent social environmental factors that impact T2DM. The socioeconomic factors used 
in this analysis included income, unemployment rate, low-education rate, and 
immigration rate. These variables were extracted from the 2016 Canadian Dissemination 
Area (DA) Level Census published by Statistics Canada [40]. The low-education rate was 
calculated by dividing the number of individuals without education certificates by the 
total population in each DA. The immigration rate was calculated similarly, by dividing 
the number of individuals identified as immigrants by the total population in each DA. 
The variables were then aggregated to the neighborhood level using ArcGIS Pro’s 
(Version 3.0) Spatial Join function by calculating the average value of each variable for 
each neighborhood, as the boundaries of DA match the neighborhoods [59]. A summary 
of the variables used in this study is listed in Table 2. 

Table 2. List of variables used in geographically weighted regression analyses. 

Variable Description Year Source 
Dependent Variable 

Type-2 Diabetes Mellitus 
Prevalence Rates 

Total cases of diabetes by population in 
neighborhood 

2019 Ontario Community Health 
Profiles Partnership 

Independent Variable 
Unhealthy Food Outlet 

Density 
(Count per km2) 

Number of locations of limited-service (fast food) 
restaurants, confectionery retailers, bakeries, and 

convenience stores by neighborhood area 
2019 SafeGraph 

Green Space Density  
(% km2) 

Area of parks and recreation spaces by 
neighborhood area 2019 DMTI Spatial Inc. 

Medium Total Income Median total income among recipients ($) 2015 

2016 Canadian Census 

Unemployment Rate Percentage of residents who are unemployed 2016 

Low-Education Rate Percentage of residents who have not obtained any 
certificates, diplomas, or degrees 

2016 

Immigration Rate 
Percentage of the residents who are, or who have 

ever been, landed immigrants and permanent 
residents 

2016 
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2.2.5. Derivation of Environmental Variables 
The problem of an uncertain geographic context (UGCoP) arises from the use of 

arbitrary areal units while calculating area-based variables. Researchers do not have 
perfect knowledge of how different spatial and temporal configurations can affect health 
outcomes [33]. This study quantifies the effects of the environment on T2DM using a small 
spatial scale. However, it is not accurate to assume that residents in the arbitrary areal 
units (e.g., neighborhoods in this study) only have access to outlets and locations within 
their neighborhoods. People living near the borders of these units may have closer access 
to facilities in adjacent neighborhoods, which can influence the analysis results. This 
phenomenon is known as the “edge effect” [60]. This study used a container-based 
(buffer) measurement to address this issue. The analysis unit was given a buffered 
distance as a boundary to include locations outside each neighborhood as measurements 
of accessibility. However, there is a lack of agreement on the appropriate buffer threshold, 
as it depends on the areal units used in different studies [61]. The buffer distances in 
previous studies ranged from 500 m to 5 km. One study found that most buffers used to 
measure the density and proximity of retail food outlets varied between 2 and 3 km [62]. 
Therefore, this study created a buffer zone around the border of each neighborhood to 
include environmental variables (unhealthy food outlets and green space) up to 2.5 km 
away in the analysis, as shown in Figure 3. 

This study calculates the density of unhealthy food outlets and green spaces within 
each neighborhood and their surrounding areas (buffer zones) to standardize the 
measurements of accessibility and environmental exposure. The density of unhealthy 
food outlets was calculated by dividing the number of locations within a 2.5 km buffer of 
each neighborhood by the area of the neighborhood with the container buffer. The density 
of green spaces was calculated in the same way, using the total area of the green spaces 
within a 2.5 km buffer of each neighborhood, and divided by the area of each 
neighborhood with the container buffer. A higher density indicates that citizens will have 
greater access to their surrounding environment. The variables included in the regression 
models are shown in Table 2. 

2.3. Statistical Analysis 
2.3.1. Spatial Autocorrelation 

Spatial autocorrelation in the prevalence of T2DM in Toronto neighborhoods was 
examined using global Moran’s index statistics in ArcGIS Pro [59]. Using a default setting 
with an inverse Euclidian distance, the calculation yielded a Moran’s I of 0.7995, with a z-
score of 18.05 (p < 0.001). This indicated that a strong positive spatial autocorrelation exists 
in Toronto neighborhoods, meaning that similar T2DM prevalence rates tend to be 
clustered spatially. This can also be seen in Figure 2. Anselin’s local Moran’s I was applied 
at the neighborhood level to further identify local clusters or spatial outliers in the T2DM 
prevalence rates. Figure 4 illustrates the results of this analysis, using ArcGIS Pro’s Cluster 
and Outlier Analysis program with a default setting of an inverse Euclidean distance. 
Statistically significant (at the 95% confidence level) clusters of high T2DM prevalence 
rates (HH) were found in northeastern and eastern Toronto. In contrast, clusters of low 
(LL) prevalence rates were located in central Toronto. The Regent Park neighborhood was 
an outlier, as it had a high T2DM prevalence rate but was surrounded by neighborhoods 
with low rates (HL). 

Both the global and local Moran’s I analyses indicated that spatial autocorrelation 
exists for the T2DM prevalence rates in Toronto neighborhoods. However, many studies 
that examine the associations between T2DM prevalence and environmental factors 
frequently ignore how spatial autocorrelation may impact the research results. To address 
this, this study used a spatial regression model called geographically weighted regression 
to account for the effects brought on by spatial autocorrelation. 
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Figure 4. Analysis of Anselin’s local Moran’s index (a) for type-2 diabetes mellitus prevalence rates 
in Toronto neighborhoods with results of z-score (b), p-value (c), and statistically significant cluster 
(d). 

2.3.2. Geographically Weighted Regression (GWR) 
The geographic weighted regression (GWR) model is an extension of the traditional 

OLS regression model that generates local regression models for each spatial unit (e.g., 
each neighborhood in this study). The ordinary least squares (OLS) regression model is a 
widely used statistical model used to determine the relationships between variables 
[63,64]. The OLS approach models a continuous dependent variable as a linear function 
of one or more independent variables, allowing for us to understand how the independent 
variables contribute to the outcome. However, OLS regression models do not consider 
spatial variability, nor do they handle spatial autocorrelation in georeferenced data. GWR 
is a spatial regression model that controls the bias created using spatial autocorrelation 
and can be used to explore and address the issue of spatial non-stationarity [65]. The 
equation of the GWR model is shown below: 𝑦௜  =  𝛽௜଴  + ෍ 𝛽௜௞𝑥௜௞௅

௞ ୀ ଵ  + 𝜖௜              𝑖 =  1, 2, … , 𝑛 (1) 

The dependent variable 𝑦௜  represents the neighborhoods, i, in this study. The local 
regression coefficients 𝛽௜௞  and values for the kth independent variable 𝑥௜௞ at each 
location 𝑖 are used to predict 𝑦௜; 𝛽௜଴ is the intercept and 𝜀௜ is the random error, where 𝜀 ~ 𝑁(0, 𝜎ଶ) at location 𝑖. Unlike the “global” OLS model where the coefficients 𝛽௞ are 
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fixed, the regression coefficients 𝛽௜௞ in the GWR model vary by location. Four continuous 
(Gaussian) GWR models were created to examine the relationships between 
environmental factors and T2DM prevalence rates for ages 20 and above, from 20 to 44, 
from 45 to 64, and 65 and above. ArcGIS Pro (version 3.0) was used to run the GWR 
models for this study [59]. 

In ArcGIS Pro, a weighting procedure was applied for each location i. Bandwidths 
were calculated at each location to determine which other neighborhoods would be 
included in the estimation of each local model. The observations were weighted based on 
their proximity to location i [66]. The distance bandwidth was determined using the 
golden selection procedure, selecting the regression model with the lowest model Akaike 
information criterion (AIC) that best fits the data. A local t-value was also calculated to 
estimate the significance of the regression coefficients in this study. This was calculated 
by dividing the local regression coefficient by the local standard error for each observation 
(in this case, neighborhoods in Toronto). These t-values act as pseudo-t-statistics, testing 
the null hypothesis that the regression coefficients are equal to zero. Since GWR tends to 
overfit the model, the t-values can be used to identify the regional areas where 
relationships occur [67]. 

2.3.3. Multicollinearity 
Multicollinearity can occur when two or more independent variables are highly 

correlated in a regression model. The existence of multicollinearity in a regression model 
inflates the standard errors of regression coefficients and hinders the interpretation of 
regression results. To ensure that multicollinearity did not exist between the independent 
variables, this study used the variable inflation factors (VIF) measured from the 
companion to applied regression (car) package in R [68,69]. A higher VIF value indicates 
severe multicollinearity. Independent variables included in the regression analyses 
should have VIFs that are less than four [70]. The selection of variables started with all 
variables included in the regression model. If any variables were found to have VIF values 
greater than four, indicating multicollinearity, the variable with the highest VIF value was 
removed from the model. This process was repeated until all the model variables had VIF 
values of less than four. There was no evidence of multicollinearity among the selected 
independent variables (all VIF values < 4); hence, all of them were included in the 
regression analyses, as shown in Table 2. 

3. Results 
3.1. Descriptive Statistics 

The summary statistics of the T2DM prevalence rates, environment, and 
socioeconomic variables are shown in Table 3. The prevalence rates of T2DM among 
citizens aged 20 and above ranged from 2.3% to 22.5% in the neighborhoods of Toronto. 
The average prevalence rate of T2DM in Toronto neighborhoods was 12.2%, with a 
standard deviation of 4.4%. The average prevalence rate for the age group of 20–44 was 
2.6%, while this increased to 14.6% for the age group of 45–64 and 31.6% for the age group 
of 65 and above. The standard deviation also increased from 1.14 for the 20–44 age group 
to 5.81 for the 45–64 age group and 7.8 for the 65 and above age group. On average, 19% 
of the Toronto neighborhoods were covered with green space. There were an average of 
7.6 unhealthy food outlets per km2 in Toronto neighborhoods. Toronto’s neighborhoods 
also had diverse socioeconomic characteristics, as the percentages of immigrant 
populations varied from 20.73% and 70.23%, including neighborhoods with both local 
residences and immigrants. The percentages of residents without certificates, diplomas, 
or degrees varied from 2.47% to 30.46%. There were neighborhoods with annual incomes 
ranging from CAD 19,797 to CAD 65,639 and unemployment rates ranging from 5.43% to 
12.28%. The variations in environment and socioeconomic status among Toronto’s 
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neighborhoods may contribute to spatial non-stationarity and environmental influences 
on T2DM prevalence rates. 

Table 3. Descriptive statistics for T2DM, environmental, and socioeconomic variables. 

Variables Minimum Maximum Mean Median Standard Deviation 
T2DM Prevalence Rate 

Age 20+ (%) 
2.30 22.50 12.20 12.00 4.40 

T2DM Prevalence Rate 
Age 20–44 (%) 0.90 5.50 2.60 2.30 1.14 

T2DM Prevalence Rate 
Age 45–64 (%) 4.70 31.00 14.60 13.70 5.81 

T2DM Prevalence Rate 
Age 65+ (%) 

14.70 50.00 31.60 30.90 7.80 

Green Space Density (% km2) 7.70 64.00 19.00 20.30 8.60 
Unhealthy Food Outlet Density 

(Count per km2) 
1.66 52.0 7.6 12.6 12.4 

Immigration Rate (% Population) 20.7334 70.2330 44.9463 45.8499 12.4900 
Low-Education Rate (% Population) 2.4690 30.4626 13.2855 13.1108 6.1950 

Medium Annual Income ($) 19,797 65,639 34,701 32,387 10,360 
Unemployment Rate 

(% Population) 4.5272 12.2839 7.9010 7.4982 1.5618 

3.2. GWR Regression 
This study created four geographically weighted regression models to examine 

spatial non-stationarity and environmental effects on the prevalence rates of T2DM in 
different age groups: “20 and above” (model 1), “20 to 44” (model 2), “45 to 64” (model 3), 
and “65 and above” (model 4). The results of these models are shown in Tables 4–7. The 
global R2 values that measure the proportions of variation in the T2DM prevalence rates 
explained by the relationships with independent variables were 0.9173, 0.9018, 0.8769, and 
0.9012 for the four models, respectively. The local R2 values at the neighborhood level 
ranged from 0.74 to 0.90, 0.50 to 0.94, 0.67 to 0.93, and 0.76 to 0.95 for the four models, 
respectively, as shown in Figure 5. Most neighborhoods had local R2 values of 0.80 or 
above (blue areas in Figure 5e–h), indicating that the GWR modes accurately predicted 
the T2DM prevalence rates in these neighborhoods. The residuals for the GWR models, 
shown in Figure 5a–d, were also examined. Positive residuals (mapped as green) 
represented underestimated T2DM prevalence rates, while negative residuals (mapped 
as purple) represented overestimated rates. No significant spatial autocorrelations existed 
in the residuals of any of the four GWR models, as indicated by the Moran’s I values of 
0.1227, −0.0318, 0.047, and 0.0529 for the residuals in Figure 5a–d, respectively. The 
positive and negative coefficients, which estimate the percentages of the corresponding 
statistically significant coefficients (with |t-values| ≥ 2.0), are presented in Tables 4–7. 
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Table 4. Summary of GWR model 1. 

Variables 

GWR Model 1 
Response Variable: T2DM Prevalence Rate (Age 20 and Above) 

(R2 = 0.9173; Adjusted R2 = 0.8982; AIC = 581.1; Distance Band = 13.3870 km) 
Positive 

Coefficien
t 

Estimates 
(%) 

Significant 
Positive 

Coefficient 
Estimates 

(%) † 

Negative 
Coefficient 
Estimates 

(%) 

Significant 
Negative 

Coefficient 
Estimates 

(%) †† 

Minimum 
Coefficien
t Estimate 

Median 
Coefficient 

Estimate 

Mean 
Coefficien
t Estimate 

Maximum 
Coefficien
t Estimate 

Green Space Density 
(β1) 

72 18 28 3 −10.5258 2.4558 11.5205 11.5205 

Unhealthy Food 
Outlet Density 

(β2) 
0 0 100 87 −1.1155 −0.0547 −0.1761 −0.0251 

Immigration Rate (β3) 89 70 11 3 −17.7147 8.3376 7.4683 30.153 
Low-Education Rate 

(β4) 
97 92 3 0 −24.3151 25.9015 26.9508 53.8229 

Medium Annual 
Income (β5) 8 0 92 20 −0.000355 −0.000042 −0.000067 0.000029 

Unemployment Rate 
(β6) 96 50 4 0 −0.0475 0.3733 0.3475 0.6921 

 Mean Median Standard Deviation Minimum Maximum 
Local R2 0.8565 0.8648 0.03751 0.7408 0.9063 
Residual 0.0425 0.0256 1.2647 −3.1460 2.830 

† Number of positive significant (t-value ≥ 2.00) coefficient estimates/number of neighborhoods. †† 
Number of negative significant (t-value ≤ −2.00) coefficient estimates/number of neighborhoods. 
AIC: Akaike information criterion; sample size: n = 158. 

Table 5. Summary of GWR model 2. 

Variables 

GWR Model 2 
Response Variable: T2DM Prevalence Rate (Age 20 to 44) 

(R2 = 0.9018; Adjusted R2 = 0.8568; AIC = 223.89; Distance Band = 9.61 km) 

Positive 
Coefficient 
Estimates 

(%) 

Significant 
Positive 

Coefficient 
Estimates 

(%) † 

Negative 
Coefficient 
Estimates 

(%) 

Significant 
Negative 

Coefficient 
Estimates 

(%) †† 

Minimum 
Coefficient 

Estimate 

Median 
Coefficient 

Estimate 

Mean 
Coefficient 

Estimate 

Maximum 
Coefficient 

Estimate 

Green Space 
Density (β1) 

71 29 28 3 −2.8841 2.1885 1.7834 5.8218 

Unhealthy 
Food Outlet 

Density  
(β2) 

1 0 99 26 −0.4595 −0.0171 0.0588 0.1266 

Immigration 
Rate (β3) 

78 45 22 11 −13.0359 2.9434 1.6437 15.2293 

Low-
Education 
Rate (β4) 

88 45 11 3 −15.7521 4.3253 3.9859 12.9259 
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Medium 
Annual 

Income (β5) 
43 0 57 5 −0.0001 −0.000005 −0.00001 0.000059 

Unemploym
ent Rate (β6) 

89 55 11 0 −0.1551 0.1621 0.1920 0.5348 

 Mean Median Standard Deviation Minimum Maximum 
Local R2 0.7894 0.7974 0.0920 0.4946 0.9362 
Residual 0.0289 −0.0128 0.9730 −3.1591 2.3771 

† Number of positive significant (t-value ≥ 2.00) coefficient estimates/number of neighborhoods. †† 
Number of negative significant (t-value ≤ −2.00) coefficient estimates/number of neighborhoods. 
AIC: Akaike information criterion; sample size: n = 152. 

Table 6. Summary of GWR model 3. 

Variables 

GWR Model 3 
Response Variable: T2DM Prevalence Rate (Age 45 to 64) 

(R2 = 0.8769; Adjusted R2 = 0.8479; AIC = 705.04; Distance Band = 13.5573 km) 
Positive 

Coefficie
nt 

Estimates 
(%) 

Significant 
Positive 

Coefficient 
Estimates 

(%) † 

Negative 
Coefficien
t Estimates 

(%) 

Significant 
Negative 

Coefficient 
Estimates 

(%) †† 

Minimum 
Coefficient 

Estimate 

Median 
Coefficien
t Estimate 

Mean 
Coefficient 

Estimate 

Maximum 
Coefficient 

Estimate 

Green Space Density 
(β1) 82 24 18 1 −10.2352 5.7940 6.0480 21.5513 

Unhealthy Food 
Outlet Density 

(β2) 
21 0 79 28 −2.389 −0.0204 −0.2308 0.2108 

Immigration Rate 
(β3) 

71 49 29 11 −59.2993 9.6930 6.3398 58.8553 

Low-Education Rate 
(β4) 90 55 9 3 −75.4935 18.1957 15.5273 49.1686 

Medium Annual 
Income (β5) 

0 0 100 85 −0.001003 −0.000164 −0.000222 0.000067 

Unemployment Rate 
(β6) 

100 63 0 0 0.0134 0.8120 0.8313 1.8059 

 Mean Median Standard Deviation Minimum Maximum 
Local R2 0.8175 0.8219 0.0607 0.6686 0.9268 
Residual 0.1286 −0.0097 2.0344 −8.1336 7.1685 

† Number of positive significant (t-value ≥ 2.00) coefficient estimates/number of neighborhoods. †† 
Number of negative significant (t-value ≤ −2.00) coefficient estimates/number of neighborhoods. 
AIC: Akaike information criterion; sample size: n = 152. 
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Table 7. Summary of GWR model 4. 

Variables 

GWR Model 4 
Response Variable: T2DM Prevalence Rate (Age 65 and above) 

(R2 = 0.9012; Adjusted R2 = 0.8813; AIC = 784.66; Distance Band = 14.55 km) 

Positive 
Coefficient 
Estimates 

(%) 

Significant 
Positive 

Coefficient 
Estimates 

(%) † 

Negative 
Coefficient 
Estimates 

(%) 

Significant 
Negative 

Coefficient 
Estimates 

(%) †† 

Minimum 
Coefficient 

Estimate 

Median 
Coefficient 

Estimate 

Mean 
Coefficient 

Estimate 

Maximum 
Coefficient 

Estimate 

Green Space 
Density (β1) 

81 18 19 0 −9.8495 5.6945 5.6301 26.1653 

Unhealthy 
Food Outlet 

Density  
(β2) 

62 3 38 17 −2.0939 0.0264 −0.1292 0.1017 

Immigration 
Rate (β3) 

67 30 33 11 −43.7693 5.5009 2.9680 57.6589 

Low-
Education 
Rate (β4) 

94 92 6 3 −82.5982 48.9387 44.3856 72.6199 

Medium 
Annual 

Income (β5) 
0 0 100 99 −0.00125 −0.000373 −0.000419 −0.000261 

Unemploym
ent Rate (β6) 

57 14 43 10 −1.1561 0.1496 0.1120 1.2070 

 Mean Median Standard Deviation Minimum Maximum 
Local R2 0.8759 0.8782 0.0428 0.7576 0.9514 
Residual 0.1220 0.0991 2.4626 −7.5515 7.2896 

† Number of positive significant (t-value ≥ 2.00) coefficient estimates/number of neighborhoods. †† 
Number of negative significant (t-value ≤ −2.00) coefficient estimates/number of neighborhoods. 
AIC: Akaike information criterion; sample size: n = 158. 

Environmental effects on the T2DM prevalence rates existed after controlling for 
socioeconomic factors, since most coefficients differed from zero. However, some 
regression coefficients were not statistically significant (|t-values| ≤ 2.0). This may have 
been due to the small sample size or high degree of random variation in the regression 
variables. It is not recommended to interpret the non-significant t-values because we 
cannot be sure that the values of the associated parameters in the regression model have 
an effect. Therefore, the regression results were interpreted cautiously by only reporting 
the geographical areas with significant coefficients. 
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Figure 5. GWR model residuals (a–d) and R2 values (e–h) by neighborhood. 

According to the results of the GWR model 1 shown in Table 4, 18% of the 
neighborhoods in east and west Toronto showed significant positive associations between 
the green space density (β1) and the T2DM prevalence rate among those aged 20 and 
above. In contrast, 3% of the neighborhoods, such as those in the central north, had 
significant negative associations between the green space density (β1) and T2DM 
prevalence. A total of 87% of neighborhoods had significant negative associations 
between the unhealthy food outlet density (β2) and T2DM prevalence. Additionally, the 
immigration rate (β3), low-education rate (β4), and unemployment rate (β6) had 
statistically significant positive associations (70%, 92%, and 50%, respectively) with T2DM 
prevalence in neighborhoods in central Toronto. A total of 20% of the neighborhoods in 
the northwest or northeast of Toronto had negative relationships between the medium 
annual income (β5) and T2DM prevalence rates. Figure 6 shows the spatial variation in 
the local coefficients and t-values for GWR model 1. These results revealed that 
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inconsistent associations existed between the green spaces and T2DM prevalence rates 
among those aged 20 and above across neighborhoods in Toronto. 

 
Figure 6. Spatial variation of local coefficients and t-values of GWR model 1 with T2DM prevalence 
rates in those aged 20 and above. (a–f) Local coefficients of the green space density (% km2), 
unhealthy food outlet density (count per km2), immigration rate (% population), low-education rate 
(% population), medium annual income ($), unemployment rate (% population), and (g–l) 
corresponding local t-values of all predictors. 
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The results also showed that spatial non-stationarity effects existed for 
environmental and socioeconomic factors on the prevalence of T2DM among those aged 
from 20 to 44 across Toronto neighborhoods. The results are reported in Table 5. A total 
of 29% of Toronto neighborhoods across the central–west area showed significant positive 
associations between the green space density (β1) and T2DM prevalence rate. However, 
3% of the neighborhoods in the east of Toronto showed significant negative associations 
between the green space density (β1) and T2DM prevalence rate. Furthermore, an 
unhealthy food outlet density (β2) showed significant negative associations with T2DM 
prevalence in 26% of the neighborhoods, primarily in eastern Toronto. The immigration 
rate (β3), low-education rate (β4), and unemployment rate (β6) showed statistically 
significant positive associations (45%, 45%, and 55%, respectively) with T2DM prevalence 
rates in most of the Toronto neighborhoods. However, inconsistent associations also 
existed with the immigration rate (β3) and low-education rate (β4), where 10% and 5% of 
Toronto neighborhoods had significant negative associations with T2DM prevalence 
rates, respectively. The spatial non-stationarity effects can also be seen in Figure 7, where 
local coefficients change from blue (negative) to red (positive) across Toronto 
neighborhoods. 

Similar to model 2, the green space density (β1) had a significant positive association 
with the prevalence of T2DM in 24% of the neighborhoods across Toronto for the age 
group from 45 to 64 years. An unhealthy food outlet density (β2) negatively correlated 
with T2DM prevalence in 28% of neighborhoods in this age group. Immigration (β3), low 
education (β4), and unemployment (β6) rates were positively correlated with T2DM 
prevalence rates in 49%, 55%, and 63% of neighborhoods, respectively, for the age group 
from 45 to 64 years. In contrast, the prevalence of T2DM negatively correlated with the 
immigration rate (β3), low-education rate (β4), and median annual income (β5) in 11%, 
3%, and 85% of neighborhoods, respectively. The results for model 3 are shown in Table 
6 and Figure 8. 

Spatial non-stationarity effects were also discovered for both contextual and control 
variables on the T2DM prevalence rate with the fourth GWR model. The T2DM 
prevalence rate among those aged 65 and above was included as the dependent variable 
in GWR model 4. The spatial variations in the local coefficients and t-values of the fourth 
GWR model can be found in Table 7 and Figure 9. The green space density (β1) yielded 
significant positive associations with the T2DM prevalence rates among those aged 65 and 
above in 18% of the neighborhoods across Toronto. These neighborhoods were mainly 
located in the east and southwest of Toronto. However, unhealthy food outlet locations 
(β2) had positive associations with T2DM prevalence rates in 3% of neighborhoods 
(located southwest of Toronto), but negative associations in 17% of neighborhoods (in the 
east of Toronto). Among the socioeconomic factors, the medium annual income (β5) was 
negatively correlated with the T2DM prevalence rate among those aged 65 and above in 
99% of the neighborhoods. The immigration rate (β3), low-education rate (β4), and 
unemployment rate (β6) had positive correlations with the T2DM prevalence rates among 
those aged 65 and above in 30%, 92%, and 14% of the neighborhoods, respectively. 
Nevertheless, the immigration rate (β3), low-education rate (β4), and unemployment rate 
(β6) had negative correlations with the T2DM prevalence rates among those aged 65 and 
above in 11%, 3%, and 10% of the neighborhoods, respectively. 
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Figure 7. Spatial variation of local coefficients and t-values of GWR model 2 with T2DM prevalence 
rates in those aged 20 to 44. (a–f) Local coefficients of the green space density (% km2), unhealthy 
food outlet density (count per km2), immigration rate (% population), low-education rate (% 
population), medium annual income ($), unemployment rate (% population), and (g–l) 
corresponding local t-values of all predictors. 
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Figure 8. Spatial variation of local coefficients and t-values of GWR model 3 with T2DM prevalence 
rates in those aged 45 to 64. (a–f) Local coefficients of the green space density (% km2), unhealthy 
food outlet density (count per km2), immigration rate (% population), low-education rate (% 
population), medium annual income ($), unemployment rate (% population), and (g–l) 
corresponding local t-values of all predictors. 
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Figure 9. Spatial variation of local coefficients and t-values of GWR model 4 with T2DM prevalence 
rates in those aged 65 and above. (a–f) Local coefficients of the green space density (% km2), 
unhealthy food outlet density (count per km2), immigration rate (% population), low-education rate 
(% population), medium annual income ($), unemployment rate (% population), and (g–l) 
corresponding local t-values of all predictors. 

4. Discussion 
This study investigated the relationship between both unhealthy food and green 

space environments with the prevalence of T2DM at the neighborhood level in Toronto. 
The study used geographically weighted regression (GWR) models to analyze the 
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associations between contextual factors and T2DM prevalence rates in four different age 
groups: 20 and above, from 20 to 44, from 45 to 64, and 65 and above. The results of all 
four models indicated that spatial non-stationarity effects existed between environmental 
characteristics and T2DM prevalence rates. The use of the GWR model successfully 
addressed the issue of spatial autocorrelations in the T2DM prevalence rate (Moran’s I 
statistics of 0.7995) across Toronto and produced uncorrelated residuals. Previous studies 
have often ignored spatial non-stationarity and spatial autocorrelation, which can lead to 
biased results in environmental health research. Additionally, the inconsistent spatial 
relationships found between the prevalence rates of T2DM and environmental and 
socioeconomic factors create uncertainties in environmental health research, in addition 
to the modifiable areal unit problem (MAUP) and the uncertain geographic context 
problem (UGCoP). The conflicting findings from previous studies on the relationship 
between diabetes and the environment may be due to the spatial non-stationarity effects 
at different geographical locations. Hence, understanding these spatial non-stationarity 
associations can help inform the development of targeted education, prevention, and 
intervention policies for specific geographic areas. 

The relationships between environmental factors and the prevalence rates of T2DM 
from four GWR models showed spatial non-stationarity across Toronto neighborhoods. 
The inconsistent coefficient of the estimates in the GWR models (shown in Tables 4–7) 
indicated spatial variation in the effects of the environment on the T2DM prevalence rates. 
Statistical tests were conducted on the estimates’ coefficients to identify statistically 
significant ones with | t-values| ≥ 2.00. These significant coefficients of the estimates, 
representing the results of local regression models, can help us understand the impacts of 
contextual variables on the T2DM prevalence rates at various geographic locations. For 
example, the green space density (β1) was significantly positively associated with the 
prevalence rate of T2DM for 27% of the neighborhoods among young people aged from 
20 to 44, but was negatively associated in 3% of the neighborhoods. Figure 6a shows that 
the associations between the green space density and T2DM prevalence rates varied from 
negative (blue polygons) to positive (red polygons) across neighborhoods in Toronto. The 
figure further illustrates that the significant positive coefficients were clustered around 
the central–west area of Toronto, but the significant negative coefficients were located in 
the east of Toronto. This showed that when the green space density increased in the 
central–west area of Toronto, the prevalence rates of T2DM also increased among citizens 
aged between 20 and 44; in contrast, when the green space density decreased around the 
east of Toronto, the prevalence rates of T2DM decreased among citizens aged between 20 
and 44. On the other hand, when the green space density increased in the east and 
southwest of Toronto (green polygons in Figure 9g), the prevalence rates of T2DM also 
increased among the elder generation aged 65 and above. The positive correlation 
between green spaces and T2DM prevalence rates contradicts the previous research, 
which found that green spaces promote physical activity and reduce the risks of diabetes 
[7,8]. It is possible that the quality of green spaces and the presence of noise and unsafe 
environments in the central–west area of Toronto may have contributed to this 
contradiction. Poorly designed environments and unsafe neighborhoods may discourage 
physical activity and increase social isolation due to fear [71]. Elder generations could also 
have less access to green spaces as activity sites due to their limited mobility in the 
community compared to the youth. 

Unhealthy food outlets (β2) were found to have inconsistent effects on the prevalence 
rates of T2DM between younger and elder generations. The unhealthy food outlet density 
was negatively associated with T2DM prevalence among people aged from 20 to 64 in 
around 25% of the neighborhoods, primarily in eastern Toronto (shown in blue in Figures 
7b and 8b). This meant that on average, as the number of unhealthy food outlets 
decreased, the T2DM prevalence rate for ages between 20 and 64 tended to increase. 
However, the unhealthy food outlet densities were found to have significant positive 
relationships with T2DM prevalence in four neighborhoods in southwest Toronto (labeled 
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in green in Figure 9h) among the elder generation aged 65 and above. At the same time, 
some were negatively associated with T2DM prevalence in eastern Toronto for this age 
group. These results showed that unhealthy food outlets were associated with low 
diabetes prevalence rates in some neighborhoods when controlling for socioeconomic 
status. The results again contradict previous research showing that unhealthy food 
environments increase the risk of diabetes in neighborhoods [12,22,23,72]. This 
discrepancy may have been due to the complex interactions between T2DM and 
socioeconomic factors. For instance, the communities across Toronto were well-educated, 
where only 13% of the population held no diploma or certificate, as indicated in Table 3. 
The citizens recognized the adverse health outcomes of consuming unhealthy food and 
chose healthy food choices, such as cooking at home. On the other hand, the unhealthy 
fast food restaurants were mainly clustered around central–downtown Toronto due to the 
agglomeration effects around commercial districts, but were sparsely located around 
neighborhoods in which negative associations were discovered, as illustrated in Figure 
3a. However, the citizens living around communities in downtown Toronto were usually 
wealthy and well-educated, with greater accessibility and more choices of various food 
sources. As a result, the socioeconomic and demographic characteristic variations among 
the neighborhoods may explain the inconsistent and contradictory results. 

It is worth noting that the immigration rates (β3) were also found to have spatial non-
stationarity effects on the T2DM prevalence rates across Toronto’s neighborhoods. When 
the immigrant population increased in central–downtown Toronto, the T2DM prevalence 
rate also increased among all age groups. In contrast, the T2DM prevalence rate decreased 
when the immigrant population increased north of Toronto. The positive correlation 
between the immigrant population and T2DM may have been caused by the presence of 
unhealthy food outlets located around downtown Toronto, which could lead to changes 
in dietary structures and habits for immigrants, increasing their risk of being diagnosed 
with T2DM. Additionally, the low-education rate (β4), medium annual income (β5), and 
unemployment rate (β6) were found to increase, decrease, and increase the T2DM 
prevalence rates, respectively, across Toronto’s neighborhoods. 

This study’s findings indicate the presence of spatial non-stationarity in 
environmental health studies of T2DM. This is consistent with the expectations but differs 
from the majority of the previous studies. As a result, it is possible and not surprising that 
research on the effects of environmental factors on T2DM conducted in different 
geographic locations would find inverse associations. This is a possible reason why the 
research findings on the impacts of environmental factors on diabetes health behaviors 
and outcomes are frequently inconsistent. Recognizing the spatial non-stationarity effects 
of the environment on T2DM across various geographical locations could help us to better 
understand the ignored spatial phenomenon of T2DM. 

The findings of this study will help to inform the development of customized 
diabetes intervention and prevention policies. For instance, communities around central 
Toronto may consider improving the design and attractiveness of green spaces to promote 
physical activities. Intervention policies and education programs targeting specific social 
groups and communities with a higher risk of T2DM (such as immigrants and low-income 
populations) should be developed, as the negative impact of diabetes on health continue 
to increase. Other potential intervention policies that could be implemented include 
promoting active transportation (such as walking), providing diabetes education, and 
establishing clinics in areas with high rates of T2DM prevalence. 

This study has several limitations that should be addressed in future research. Firstly, 
while six contextual variables were selected for the regression analyses, other factors may 
also influence T2DM. Hence, it would be useful to examine and investigate additional 
environmental characteristics in future studies, such as the density of sidewalks and the 
length of cycling trails. Furthermore, the quality of green spaces and neighborhood safety, 
which can impact physical activity, should also be considered as proxies for contextual 
variables. A safe neighborhood with attractive landscapes can promote physical activity 
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and lower the risk of diabetes [9]. Secondly, this study did not consider environmental 
exposures outside the neighborhood, such as workplaces. Although residents spend most 
of their time in their communities (the most relevant areas that affect health behaviors and 
outcomes), people’s exposure to social and physical environments is determined by the 
locations they visit and the time spent moving around for daily activities [73]. As a result, 
it would be useful to consider people’s movement in space and time when estimating 
environmental exposures and their effects on health behaviors and outcomes. Thirdly, this 
cross-sectional study investigated the environmental associations with T2DM in 2019. 
Longitudinal data analyses using multiple years of data may provide additional insights 
into how the environment affects the T2DM prevalence rate. Lastly, this study explored 
the spatial non-stationarity associations between T2DM and environmental factors in 
various geographical locations at the city level, which has not been well-studied in 
previous research. However, further research is needed to investigate the causality, 
particularly the non-stationarity impacts of environmental factors on T2DM. 

5. Conclusions 
This study found that the relationship between T2DM and environmental factors 

varied depending on geography and age in Toronto. The results indicated that spatial 
non-stationarity effects of unhealthy food and green space environments on T2DM exist 
in Toronto neighborhoods. Future research should consider regional differences to 
accurately understand the relationships between T2DM and environmental factors and to 
fully understand the causes of spatial non-stationarity. 
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