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Abstract: In keeping with China’s dual carbon goals, optimal low-carbon power system dispatch has
become a necessary component of the greening of the power system. However, typically, research
considers only the economics of such efforts. Based on our power flow analysis of the power grid
and the correlation properties of carbon emission flow, an optimal power flow calculation model
targeting the total carbon emission rate of the power system’s power generation cost, active network
loss, and load and network loss was constructed. Next, the NSGA-III algorithm was used to solve
the model, and the decision was to coordinate and optimize the output schemes of various types of
power plants, such as wind, water, and thermal. The modified IEEE39 node simulation system was
built with Matlab software (MATLAB R2020b). The results of the calculation showed that, compared
to the traditional method of determining the optimal power flow, the proposed method reduced the
system carbon emissions by 20% while the power generation cost increased by less than 2%, which
proves the effectiveness and practicability of the proposed method.

Keywords: carbon emission flow; NSGA-III algorithm; optimal power flow; TOPSIS method

1. Introduction

Greenhouse gas emissions (GHG) have emerged as a global concern hindering societal
progress. Recognizing this challenge, the international community is unified in its drive
to foster the development of a low-carbon economy and enhance the optimization of the
energy composition. During the general debate of the 75th session of the United Nations
General Assembly on the 22 September 2020, President Xi Jinping of China declared that
China is committed to attaining the pinnacle of carbon emissions before 2030 and aims to
achieve carbon neutrality by 2060 [1]. As of the conclusion of 2021, China, being one of the
largest power consumers, boasted an installed power generation capacity of 2.38 billion
kW. Thermal power constituted 56.58% of this total capacity [2]. According to statistics,
the power industry’s share of national carbon emissions has reached 50% [3]. According to
the predictions in the literature [4], the Chinese power sector can achieve the goal of zero
carbon dioxide emissions by 2050, with the completion of technology for capturing and
storing carbon emissions [5], the transformation of thermal power units, and the utilization
of mass renewable energy power generation. The power industry holds immense potential
for reducing CO2 emissions. The transition to a low-carbon power system will greatly
promote the realization of China’s dual-carbon goals [6]. Therefore, a thorough analysis
of carbon emissions, coupled with generation costs, is essential in the operation of power
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systems. This will allow for the judicious use of renewable power resources [7], driving
power systems closer to their low-carbon and economic objectives.

For power systems to realize green and low-carbon electricity dispatch, it is crucial to
concurrently weigh the economic and reliability aspects of power dispatching [8] with the
system’s CO2 emissions characteristics. In Li and Han [9], second-order Taylor expansion
is used to correct the state variables once, and the corrected results are used to calculate
the control variables and the output of the distributed energy sources. Using the sparse
characteristics of the Hessian array, a distributed Gaussian elimination method is proposed
to achieve a distributed solution for the distribution network optimal power flow. Zhang
et al. [10], who endeavor to address active network loss, propose a method for optimal
power flow calculation with controllable phase shifters based on the improved interior
point method. Another relevant study is that of Zhu et al. [11], which establishes an
uncertain optimal power flow model for evaluating the absorptive capacity of renewable
distributed generation and a deterministic equivalent conversion method for an optimal
power flow model under different description forms. Study [12] proposes an optimal
power flow solution method for systems integrating solar photovoltaic and wind energy
with traditional generators based on the hybrid particle swarm gray wolf optimizer (HPS-
GWO). By analyzing the features of coal-fired power plants, Wang et al. [13] formulates
a mathematical model depicting the correlation between carbon emissions and generator
output, and proposes a dual-objective economical and low-carbon optimal scheduling
method employing an algorithm that evolves weights adaptively. However, this broad
approach to carbon emissions lacks the capability to analyze individual links within the
system. Zhang et al. [14] introduces the cost associated with CO2 over-emissions and
the generalized cost of wind power generation. To account for the influence of carbon
emission quotas and the integration of wind power on system power generation costs,
a day-ahead scheduling model is formulated, with the optimization objective being the
minimization of the overall system power generation cost. Mei et al. [3] uses an aggregate
allocation method to fairly allocate carbon emission rights, and then establishes a model
for low-carbon electricity dispatch, taking into account the constraints imposed by carbon
emission rights. But this allocation model is established on a macro level, and cannot
conduct an in-depth analysis of carbon emissions in the power system. Han et al. [15]
proposes a power system low-carbon scheduling strategy, taking into account flexible
demand response and energy storage by combining a carbon emission index with a flexible
resource scheduling model. In Li et al. [16], a dual-layer alternating optimal scheduling
model is formulated, encompassing day-ahead dispatch and load demand response [17].
Additionally, in light of carbon capture systems and the theory of carbon emission flow, a
low-carbon optimal learning and dispatching method for the power system is introduced.
In Zhong et al. [18], a bi-level optimization model is proposed to guide users to actively
choose green energy consumption. The higher level seeks to maximize the benefits of wind
power, photovoltaic, and coal-fired power plants, and the lower level aims at minimizing
the cost of electricity consumption, utilizing electricity prices and carbon responsibility
as motivating factors. The carbon emissions in Jiang et al. [19] and Fakih et al. [20] are
calculated based on fuel or typical energy carbon emission factors. This study exclusively
investigates carbon emissions from the energy supply side and does not conduct an internal
analysis of the system.

However, the above studies either only consider the economy and reliability of the
power grid, or only analyze macro carbon emissions, and there is no micro study of every
unit of the electrical grid. To deal with these problems, this paper optimizes the dispatch of
the power system with the goals of economy and environmental protection. According to
the unique traits of carbon emission flow, this paper analyzes the virtual carbon emission
flow across different sections of the power grid. By establishing an optimal power flow
model that prioritizes power generation cost, active network loss, and the overall carbon
emission rate, the power generation strategy is devised by maximizing the utilization of
renewable resources and reducing their carbon emissions. Finally, this paper takes the
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modified IEEE-39 node system as a demonstration to validate the efficacy and viability of
the proposed approach.

2. Model Design and Calculation of Carbon Emission Flow in Power System
2.1. Carbon Emission Flow of Power System

The carbon emission flow of the power system refers to the flow process of the CO2
emissions generated during the production, transmission, and use of electricity. The carbon
emission features of the power system are that emissions are concentrated at the power
generation end and consumption is concentrated at the load end [21]. From the perspective
of the energy transfer chain, carbon emissions are collected from the power generation
side to the consumer end through the power flow. If the carbon emissions generated in
the power production process are regarded as flowable, they flow to the load along with
the power flow and are finally discharged into the atmosphere. The distribution of carbon
emissions moving through the power system is called the carbon emission flow of the
power system [22], which is also referred to as the carbon flow. The carbon flow of the
power system is a virtual network flow attached to the power flow. It is shown in Figure 1.
Carbon emission flow helps to analyze the carbon emissions of the power system and offers
a theoretical foundation for the low-carbon transition of the electricity grid.
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Figure 1. Chart of carbon emission flow in power system. The letter “G” represents the power
generation end.

2.2. Basic Definition of Carbon Emission Flow in Power System

The theory of carbon flow in power systems utilizes several new terms that form the
theoretical basis for its analysis; these are shown below.

2.2.1. Carbon Emission Flow

Also referred to as carbon flow, this refers to the total quantity of carbon emissions
associated with the carbon emission flow traversing a node or branch of the power flow
within a specific timeframe by the symbol F, as stated in tCO2.

2.2.2. Carbon Flow Rate

This indicates the carbon flow passing through a node or branch per unit time. It is
represented by the symbol R, as stated in tCO2/h, which is mathematically equivalent to
the derivative value of carbon flow with respect to time.

R =
F
t

(1)

where t is time, as stated in hour (h).
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2.2.3. Branch Carbon Flow Density

The carbon flow of the electricity grid relies on the power flow. The carbon emissions
generated by the generating plant side resulting from the transmission of unit electricity
on the branch of the grid are collectively called the carbon flow density of the branch. It
is alternatively defined as the proportion of the carbon flow rate to the active power of
a branch within the power system. It is denoted by the symbol ρ, measured in units of
tCO2/kWh.

ρ =
R
P

(2)

where P is the active power, as stated in kW.

2.2.4. Nodal Carbon Intensity

The carbon emission of the power plant side caused by the consumption of unit
electricity at the node side is the node carbon intensity, represented by e, measured in
tCO2/kWh. On the power plant side, the carbon intensity at the node is equivalent to the
carbon emission intensity of the power plant.

e =
∑

i∈N+
Piρi

∑
i∈N+

Pi
=

∑
i∈N+

Ri

∑
i∈N+

Pi
(3)

where N+ signifies the aggregation of all branches of the power flow directed into the node;
i denotes the branch index.

In accordance with the principles of proportional sharing and energy conservation,
any outflow power flow branch connected to the node contains all the components of the
inflow power flow branch, and the carbon flow rate of the outflow power flow branch is
equal to the sum of the carbon flow rates contributed by all the inflow power flow branches
to the branch [23]. It can be obtained from (4), where the carbon flow density of all the
branches flowing out of the from the node equals the carbon intensity of the node. In (4),
ρij represents the carbon flow density of the branch from node i to node j, then ρij = ei,
that is, the carbon flow density of the branch is equivalent to the carbon intensity of the
originating node flowing into the branch.

ρj,j∈N− =

∑
i∈N+

Pj
Pi

∑
s∈N+

Ps ρi

Pj

=
∑

i∈N+
Piρi

∑
s∈N+

Ps
=

∑
s∈N+

Rs

∑
s∈N+

Ps

= e

(4)

2.3. Calculation Method for Carbon Emission Flow in Power System

In the power flow analysis, one can compute the power flow distribution across all
nodes and branches. Once the carbon potential of each node is known, the carbon emission
flow rate for each branch can be determined based on the characteristics of the power
system’s carbon emission flow and the results of the power flow calculations. Subsequently,
solving for the entire system’s carbon emission flow becomes feasible [23,24]. Therefore,
the primary objective in carbon emission flow calculation is the determination of the carbon
potential for each node in the power system.

According to the definition of node carbon potential, the carbon potential of node n is:

en =

∑
i∈N+

PBiρi + PGneGn

∑
i∈N+

PBi + PGn
(5)
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where PBi conveys the real power from branch i directed into node n, measured in kW;
PGn denotes the real power injected by the power plant to node n, measured in kW; eGn
represents the carbon emission intensity of generators at node n, with units of CO2/kWh;
and ρi denotes the branch carbon flow density of branch i, measured in tCO2/kWh.

2.4. Correlation Analysis between Power Plant and Node Carbon Flow, Load Carbon Flow

As was established by [25], the carbon flow output distribution factor is equal to the
power flow output distribution factor. The two are collectively referred to as the node
output distribution factor.

Hij = HF
ij = HP

ij =
Rij

∑ Ri
=

Pij

∑ Pi
(6)

where Hij, HF
ij , and HP

ij are node output distribution factors, carbon flow output distribution
factors, and power flow output distribution factors from node i to node j, respectively; Rij
is the carbon flow rate from node i to node j; ∑ Ri represents the total carbon flow inflow
from node i; Pij denotes the active power flow flowing from node i to node j; and ∑ Pi is the
total active power flow flowing into node i.

The path output distribution factor is determined by the proportion of the network
flow departing from the source node compared to the total network flows entering the
destination node [24]. Specifically, the path transmission distribution factor Dij signifies the
flow distribution from node i to node j.

Dij = ∑
L∈γ

( ∏
(m,n)∈BL

Hm,n) (7)

where (m, n) is a branch from node m to node n on the path L; BL is a path from node i to
node j; and γ is a set of paths from node i to node j.

RGk,i represents the contribution of power plant k to the carbon flow rate at node i.

RGk,i = PGkeGkDki (8)

where PGk denotes the real power produced by power plant k; and eGk is the carbon
emission intensity of power plant k.

RGk,Li represents the contribution of power plant k to the carbon flow rate at load i.

RGk,Li = RGk,i
PLi

∑ Pi
(9)

where PLi is the real power consumption of load i; and ∑ Pi is the cumulative real power
flow directed into node i.

In essence, following the principles of carbon emission flow theory, the carbon emis-
sion flow and carbon flow rate align with electricity and active power within the power
flow context, respectively, bearing distinct physical interpretations. By formulating the
theoretical framework of carbon emission flow, it becomes possible to compute the carbon
emissions attributable to both load consumption and branch transmission within the sys-
tem. This calculation relies on the power generation output and the power flow within the
grid. Consequently, the original carbon emissions attributed solely to power generation are
effectively distributed across various segments of the power system, adhering to a specific
mechanism. This allocation provides a foundational framework for scrutinizing carbon
emissions across the different segments of the power grid.

3. Optimal Power Flow Considering Carbon Emission Rate

As depicted in (10), the optimal power flow problem is a constrained optimization
problem [26] which can be described as: under the condition that the network structure and
parameters and the system load are given, various equality and inequality constraints [27,
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28] are satisfied, and one or several given objective functions describing the operating
efficiency of the system are maximized, by determining the controllable variables of the
system. s.t.

min( f (u, x))
g(u, x) = 0
h(u, x) ≤ 0

(10)

where min f (u, x) is the objective function; g(u, x) = 0 is the equality constraint; h(u, x) ≤ 0
is the inequality constraint; u is the controllable variable, which usually includes the real
power output and reactive power output (or terminal voltage) of each power plant, the tap
position of the phase shifter, and the tap position of the voltage regulator; and x represents
the state variable and the dependent variable of the controllable variable, which usually
includes the node voltage and the power of each branch.

3.1. Objective Function

This paper studies the multi-objective optimal power flow in the power grid consider-
ing carbon emission intensity. The objectives include the lowest system power generation
cost, the smallest real network loss, and the lowest total carbon flow rate. The mathematical
model for each objective function is expressed as follows:

1. Lowest cost of power generation:

min
Ngen

∑
i=1

(ai1PGi + ai0) (11)

where Ngen denotes the total number of power plants; PGi denotes the real power produced
by power plant i; and ai1 and ai0 refer to the cost characteristic coefficients of power plant i.

2. The lowest active network loss:

min ∑
(i,j)∈nb

Pij + Pji (12)

where nb is the collection of all branches.

3. The lowest total carbon flow rate:

min(∑
i∈nl

RLi + ∑
i∈nb

RBiloss) (13)

where nl is the collection of all loads; RLi represents the carbon flow rate consumed by the load
i; and RBiloss indicates the carbon flow rate consumed by the real power loss on branch i.

3.2. Constraints
3.2.1. Equality Constraints

As depicted in (14) and (15), the optimal power flow denotes an optimized distribution
of power flow, where adherence to the equality constraints of the fundamental power flow
equations is necessary [29]. Additionally, considering the direction of the carbon flow from
the power generation side to the consumer end for consumption, it is essential to maintain
equilibrium between the injection and consumption of carbon emission flow.

PGi − PLi −Ui

n

∑
j=1

Uj(Gij cos θij + Bij sin θij) = 0 (14)

QGi −QLi −Ui

n

∑
j=1

Uj(Gij sin θij − Bij cos θij) = 0 (15)
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RGi − RLi −
n

∑
j = 1
j 6= i

Rij,loss = 0 (16)

where n denotes the total number of nodes in the power grid; PGi and QGi are the real power
and reactive power generated by the power plant i, respectively; PLi and QLi are the real
load and reactive load at the bus i, respectively; Gij and Bij are the real part and imaginary
part of the element in row i and column j of the node admittance matrix, respectively; θij
is the phase difference between node i and node j, θij = θi − θj; Ui and Uj are amplitudes
of voltage at node i and node j, respectively; RGi is the carbon flow rate injected into the
system by power plant i; RLi is the carbon flow rate consumed by the load of bus i; and
Rij,loss denotes the carbon flow rate of the network loss from node i to node j.

3.2.2. Inequality Constraints

To ensure the secure and reliable operation of the power system, the power plant is
mandated to adhere to its operational upper and lower limits [30]. In addition, the voltage
amplitudes and line capacities need to meet some requirements.

PGi,min ≤ PGi ≤ PGi,max (17)

QGi,min ≤ QGi ≤ QGi,max (18)

Ui,min ≤ Ui ≤ Ui,max (19)

Sij ≤ Sij,max (20)

where PGi,min and PGi,max are the upper and lower limits of the active power generated by
the i-th generator; QGi,min and QGi,max are the upper and lower limits of the reactive power
generated by the i-th generator; Ui,min and Ui,max are the upper limit and lower limit of the
voltage amplitude of node i, respectively; and Sij,max denotes the upper limit of the line
capacity of the branch from node i to node j.

3.3. Optimal Model Solution
3.3.1. NSGA-III Algorithm

NSGA-III (Non-dominated Sorting Genetic Algorithm III) is a multi-objective op-
timization algorithm, which is an improvement and extension of the classic NSGA-II
algorithm [31]. The structure of NSGA-III closely mirrors that of NSGA-II, incorporating
swift non-dominated sorting to categorize individuals within the population into distinct,
non-dominated fronts. The divergence lies in the environmental selection within the critical
layer, where NSGA-II preserves diversity through crowding comparison. The most signifi-
cant alteration in NSGA-III involves the utilization of the minimum habitat mechanism to
select optimal individuals through evenly distributed reference points to preserve popu-
lation diversity [32]. The flowchart of the NSGA-III algorithm is illustrated in Figure A1
included in Appendix A. The implementation of NSGA-III is as follows:

1. Initialization. Set the basic variables of the NSGA-III algorithm, including the pop-
ulation size, mutation probability, number of iterations, and crossover probability,
etc. Read the node, branch, and power plant data of the power grid. The initial
population is obtained according to the constraints of the decision variables and the
fitness function. Create a population archive set S.

2. Genetic manipulation. Perform selection, crossover, and mutation operations on the
parental population to generate the offspring population Q.
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3. Non-dominated sorting stratification. Merge the parental and offspring populations
and execute fast non-dominated sorting, stratify according to the dominance level of
the individual, and then put the individual into the archive set S layer by layer until
the amount of individuals in set S is not less than the population size.

4. Selection of individuals in the critical layer based on reference point. In the NSGA-
III algorithm, diversity within the population is preserved by incorporating evenly
spread reference points. These reference points are utilized to choose individuals
situated in the crucial layer, preventing the optimization process from being trapped
in local optima. The pivotal layer within the archive set “S” is referred to as the
“critical layer.” Assuming this layer is denoted as the “L-th” layer, the objective is to
select “K” individuals from this critical layer (where “K” equals the population size
minus the count of individuals present in the preceding “L − 1” layers within set “S”).
These chosen individuals from the critical layer, along with individuals from the “L −
1” layer, together constitute a fresh population set.

5. Continue Steps 2 to 4 until the prescribed number of iterations is reached. Finally,
output the Pareto front [33].

3.3.2. Pareto Optimal Set Decision Making

In this paper, the importance of each index is highlighted by assigning specific weights
to individual objectives. Subsequently, the TOPSIS method is used to evaluate and sort each
solution within the Pareto optimal solution set for the selection of the optimal solution [34,35].
The detailed procedure is outlined as follows:

1. Obtain a collection of optimal Pareto solution sets through the NSGA-III algorithm,
that is, the indicator matrix P(m,n) (suggesting that there are a total of m solutions, with
each solution comprising n indicators), and subsequently allocate a weight αn to each
indicator within the solution set n (indicates that the weight of the nth index is αn).

2. Standardize the indicator matrix and assign weights to each element to derive the
weighting matrix K.

The standardized index matrix is:

P∗(m, n) =
P(m, n)

max(P(:, n))
(21)

The weighting matrix is:

K(m, n) = P∗(m, n)× αn (22)

3. Consider the minimum element in each column of the weighting matrix as the optimal
solution for index n, denoted as P+

n , and the maximum element as the worst solution
for index n, denoted as P−n . Compute the distance of each solution in the weighting
matrix to the optimal and worst solutions, denoted as, Z+

m and Z−m , respectively.


Z+

m =

√
n
∑

i=1

(
K(m, n)− P+

n
)2

Z−m =

√
n
∑

i=1

(
K(m, n)− P−n

)2
(23)

4. Compute the proximity index R for each solution within the Pareto solution set with
respect to the optimal level. Select the solution corresponding to the maximum R
value as the objective function value to achieve optimal power flow.

Rm =
Z−m

Z+
m + Z−m

(24)
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4. Case Studies
4.1. Basic Data

As depicted in Figure 2, this paper validates the proposed method based on a modified
IEEE-39 bus system using the Matpower toolbox in MATLAB (MATLAB R2020b). See
Tables A2 and A3 included in Appendix A for the bus and branch data of the system. The
modified parameters of each power plant are shown in Table A1 included in Appendix A.
The benchmark capacity for power flow calculation is 100 MVA. References [36–40] analyze
the power generation types, the expense of power generation is justified, and the carbon
intensity of each power plant is given. After the modification, the system contains a total of
10 power plants. Among them, G1 and G9 are hydroelectric power generations, G2 and G4
are coal-fired power generations, G3, G6, and G10 are gas-fired power generations, G5 is
wind power generations, and G7 and G8 are photovoltaic power generations. The case of
this study is pure fiction.
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Figure 2. Modified IEEE-39 Bus System.

4.2. Example Setting and Analysis

This paper establishes two scenarios to compare and analyze the electricity generation
cost, active network loss, and total carbon flow rate of the system. Scenario 1 is employed
for calculating the optimal power flow of the traditional power system. Subsequently, the
carbon flow distribution of the system is determined by utilizing the optimal power flow
distribution and the characteristics of carbon emission flow. Scenario 2 is used to calculate
the Pareto optimal frontier of the three objectives (the power generation cost, the active
network loss, and the total carbon flow rate of the grid) through the NSGA-III algorithm
and determine the optimal solution using the TOPSIS method.

Scenario 1:
Table 1 depicts the optimal power generation from power plant in the IEEE 39-bus

system. Under this power plant output scheme, the power generation cost of the grid is
2.3936 million CNY, the active network loss is 37.698 MW, and the total carbon flow rate is
2.25 × 109 tCO2/h.
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Table 1. The output of power plant under Scenario 1.

Bus Generation Type Active Output (MW) Reactive Output
(MVAr)

30 Hydroelectric power generation 534.00 180.64
31 Coal-fired power generation 624.75 251.54
32 Gas-fired power generation 636.91 245.05
33 Coal-fired power generation 603.75 176.16
34 Wind power generation 477.88 126.62
35 Gas-fired power generation 615.99 135.94
36 Photovoltaic power generation 537.97 97.68
37 Photovoltaic power generation 451.70 31.07
38 Hydroelectric power generation 766.98 −6.43
39 Gas-fired power generation 1041.99 44.51

Scenario 2:
Table 2 depicts the basic parameters of the NSGA-III algorithm in Scenario 2, based on

which, the Pareto optimal front is obtained in Figure A6 in Appendix A. The weighting
coefficients for the power generation cost, active power loss, and total carbon flow rate
are assigned as 0.3, 0.2, and 0.5, respectively, based on which TOPSIS decision method is
applied. The first five solutions of the evaluation index are shown in Table 3. The solution
with the largest evaluation index is selected as the optimal solution, and the corresponding
generator output is shown in Table 4.

Table 2. Basic parameter setting of NSGA-III Algorithm.

Population Size
Maximum
Number

of Iterations
Cross Ratio Mutation Ratio Mutation

Probability

200 100 0.8 0.2 0.02

Table 3. The top five individuals in the TOPSIS evaluation index.

Order

Power
Generation

Cost (Million
CNY)

Active Network
Loss (MW)

Total Carbon
Flow Rate

(×109 tCO2/h)

Proximity
Index

1 2.440 39.878 1.8007 0.737
2 2.453 43.561 1.7191 0.7262
3 2.443 42.970 1.7490 0.722
4 2.439 43.301 1.7424 0.728
5 2.444 42.580 1.7614 0.725

Figure 3 depicts the power output from each power plant in Scenario 1 and Scenario
2. Figures 4 and 5, respectively, analyze and compare the node carbon potential and the
carbon flow rate of each load in and the two scenarios. It is evident that the carbon potential
of each node in Scenario 2 is less than or equal to Scenario 1; the carbon flow rate of each
load in Scenario 2 is generally lower compared to Scenario 1. However, the green power
cannot meet the demand of some of the loads because some of the green power has been
used. Therefore, the carbon flow rate in Scenario 2 surpasses that in Scenario 1.
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Table 4. The output of power plant under Scenario 2.

Bus Generation Type Active Output (MW) Reactive Output
(MVAr)

30 Hydroelectric power generation 1011.07 254.01
31 Coal-fired power generation 316.35 164.31
32 Gas-fired power generation 688.86 206.66
33 Coal-fired power generation 382.40 87.54
34 Wind power generation 495.57 158.96
35 Gas-fired power generation 561.94 192.43
36 Photovoltaic power generation 546.92 92.45
37 Photovoltaic power generation 494.49 39.83
38 Hydroelectric power generation 744.35 16.54
39 Gas-fired power generation 1052.16 85.70Sustainability 2023, 15, x FOR PEER REVIEW 12 of 22 
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From Tables 1 and 4, one can conclude that, compared to Scenario 1, the output of
power plants with a high carbon emission intensity in Scenario 2 is significantly reduced.
Analyzing the carbon flow rate for each node and load is based on the distribution mecha-
nism and characteristics of carbon emission flow. Considering that the G1, G5, G7, G8, and
G9 power plants generate electricity from green energy and have zero carbon emissions,
only the carbon flow rate contribution of the G2, G3, G4, G6, and G10 power plants to
each node and load is analyzed. The contribution of the power plant to the carbon flow
rate of each node and load of the two scenarios are shown in Figures A2–A5 included in
Appendix A. It can be seen that there are more nodes with a distribution of carbon emission
flow generated by green power in Scenario 2, which indicates that the renewable resources
in Scenario 2 are more fully utilized. In addition, the nodes and final flow load of the
carbon emission flow from coal-fired power plants in Scenario 2 are less than in Scenario
1, which indicates a reduction in the output ratio of high-carbon-emitting power plants.
From Figures A4 and A5 included in Appendix A, to optimize the carbon emissions of load
areas 3, 4, and 5, it is necessary to improve the G2 and G3 power plants; to optimize the
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load areas of 8, 9, 10, 11, and 12, it is necessary to improve the G4 and G6 power plants;
and the load 21 area needs to improve the G10 power plant.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

Figure 4. Comparison of node carbon potential in Scenario 1 and Scenario 2. Note: Power injection 
bus: 30~39; Power consumption bus: 1,3,4,7~9,12,15,16,18,20,21,23~29,31,39. 

 

Figure 5. Comparison of load carbon flow rate between Scenario 1 and Scenario 2. 

Table 5 compares the power generation cost, real network loss, and total carbon 
flow rate under the two scenarios. As per the data presented in Table 5, the power gen-

Figure 4. Comparison of node carbon potential in Scenario 1 and Scenario 2. Note: Power injection
bus: 30~39; Power consumption bus: 1,3,4,7~9,12,15,16,18,20,21,23~29,31,39.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 
Figure 4. Comparison of node carbon potential in Scenario 1 and Scenario 2. Note: Power injection 
bus: 30~39; Power consumption bus: 1,3,4,7~9,12,15,16,18,20,21,23~29,31,39. 

 
Figure 5. Comparison of load carbon flow rate between Scenario 1 and Scenario 2. 

Table 5 compares the power generation cost, real network loss, and total carbon 
flow rate under the two scenarios. As per the data presented in Table 5, the power gen-
eration cost of the system increases by 1.94%, the active network loss increases by 5.78%, 
and the total carbon flow rate decreases by 20.00%. Compared to Scenario 1, Scenario 2 

Figure 5. Comparison of load carbon flow rate between Scenario 1 and Scenario 2.



Sustainability 2023, 15, 16953 13 of 20

Table 5 compares the power generation cost, real network loss, and total carbon flow
rate under the two scenarios. As per the data presented in Table 5, the power generation
cost of the system increases by 1.94%, the active network loss increases by 5.78%, and the
total carbon flow rate decreases by 20.00%. Compared to Scenario 1, Scenario 2 makes full
use of the green power resources in the system and greatly reduces the carbon emissions of
the system with a slight increase in power generation costs and active network losses.

Table 5. Comparison of the optimization results of Scenario 1 and Scenario 2.

Scenario Power Generation Cost
(Million CNY)

Active Network
Loss (MW)

Total Carbon Flow
Rate (×109 tCO2/h)

1 2.3936 37.698 2.25 × 109
2 2.4400 39.878 1.80 × 109

5. Conclusions

In pursuit of both economic and environmental considerations within the power system,
this paper introduces an optimal power flow model for the power system, factoring in carbon
emission intensity and grounded in the principles of carbon emission flow theory. The model
optimizes the cost of power generation, active power loss, and total carbon emission rate,
and fully mobilizes low-carbon resources to reduce the carbon emissions of the system with
consideration for the economy. In addition, the optimal Pareto front is calculated using the
NSGA-III multi-objective optimization algorithm, and the optimal output scheme is acquired
via the TOPSIS method. This study yields the subsequent conclusions:

1. The numerical simulation results of the IEEE39 bus system show that, with an increase
in the economy cost by only 1.94%, the method proposed can reduce carbon emissions
by 20.00%.

2. The optimal Pareto front can provide multiple sets of output schemes, which can be
more comprehensive and flexible for each scheduling of various resources.

3. The analysis of the carbon flow rate correlation between power plants, nodes, and
loads in the power system can also perform small-scale low-carbon optimization on
the loads mounted on a node.

The current research does not consider the intermittency and uncertainty of new
energy power generation. Next, it is necessary to predict solar and wind energy resources
and study the low-carbon optimal scheduling strategy in different periods of the day. At the
same time, it can also increase the energy storage equipment for new energy consumption
to improve the utilization rate of renewable resources.
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Table A1. Modified IEEE-39 Node System Data for Each Power Plant.

Bus Generation Type
Active Output (MW) Reactive Output (MVAr) Power Generation

Cost
(Yuan/MWh)

Carbon Intensity
(tCO2/KWh)Max Min Max Min

30 Hydroelectric power generation 1040 0 400 140 335.1 0
31 Coal-fired power generation 646 0 300 −100 260.1 856
32 Gas-fired power generation 725 0 300 150 452.0 522
33 Coal-fired power generation 652 0 250 0 260.1 856
34 Wind power generation 508 0 167 0 460.1 0
35 Gas-fired power generation 687 0 300 −100 452.0 522
36 Photovoltaic power generation 580 0 240 0 387.7 0
37 Photovoltaic power generation 564 0 250 0 387.7 0
38 Hydroelectric power generation 865 0 300 −150 331.5 0
39 Gas-fired power generation 1100 0 300 −100 452.0 522

Table A2. IEEE-39 System Node Data.

Bus Bus Type Active Load
(MW)

Reactive Load
(MVAr)

Voltage Amplitude

Umax(p.u.) Umin

1 PQ BUS 97.60 44.20 1.06 0.94
2 PQ BUS 0.00 0.00 1.06 0.94
3 PQ BUS 322.00 2.40 1.06 0.94
4 PQ BUS 500.00 184.00 1.06 0.94
5 PQ BUS 0.00 0.00 1.06 0.94
6 PQ BUS 0.00 0.00 1.06 0.94
7 PQ BUS 233.80 84.00 1.06 0.94
8 PQ BUS 522.00 176.60 1.06 0.94
9 PQ BUS 6.50 −66.60 1.06 0.94

10 PQ BUS 0.00 0.00 1.06 0.94
11 PQ BUS 0.00 0.00 1.06 0.94
12 PQ BUS 8.53 88.00 1.06 0.94
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Table A2. Cont.

Bus Bus Type Active Load
(MW)

Reactive Load
(MVAr)

Voltage Amplitude

Umax(p.u.) Umin

13 PQ BUS 0.00 0.00 1.06 0.94
14 PQ BUS 0.00 0.00 1.06 0.94
15 PQ BUS 320.00 153.00 1.06 0.94
16 PQ BUS 329.00 32.30 1.06 0.94
17 PQ BUS 0.00 0.00 1.06 0.94
18 PQ BUS 158.00 30.00 1.06 0.94
19 PQ BUS 0.00 0.00 1.06 0.94
20 PQ BUS 680.00 103.00 1.06 0.94
21 PQ BUS 274.00 115.00 1.06 0.94
22 PQ BUS 0.00 0.00 1.06 0.94
23 PQ BUS 247.50 84.60 1.06 0.94
24 PQ BUS 308.60 −92.20 1.06 0.94
25 PQ BUS 224.00 47.20 1.06 0.94
26 PQ BUS 139.00 17.00 1.06 0.94
27 PQ BUS 281.00 75.50 1.06 0.94
28 PQ BUS 206.00 27.60 1.06 0.94
29 PQ BUS 283.50 26.90 1.06 0.94
30 PV BUS 0.00 0.00 1.06 0.94
31 Balance BUS 9.20 4.60 1.06 0.94
32 PV BUS 0.00 0.00 1.06 0.94
33 PV BUS 0.00 0.00 1.06 0.94
34 PV BUS 0.00 0.00 1.06 0.94
35 PV BUS 0.00 0.00 1.06 0.94
36 PV BUS 0.00 0.00 1.06 0.94
37 PV BUS 0.00 0.00 1.06 0.94
38 PV BUS 0.00 0.00 1.06 0.94
39 PV BUS 1104.00 250.00 1.06 0.94

Table A3. IEEE-39 System Branch Data.

Branch From To Resistance (p.u.) Reactance (p.u.) Susceptance (p.u.) Ratio Max MVA

1 1 2 3.50 × 10−3 4.11 × 10−2 0.6987 0 600
2 1 39 1.00 × 10−3 2.50 × 10−2 0.75 0 1000
3 2 3 1.30 × 10−3 1.51 × 10−2 0.2572 0 500
4 2 25 7.00 × 10−3 8.60 × 10−3 0.146 0 500
5 2 30 0.00 1.81 × 10−2 0 1.025 900
6 3 4 1.30 × 10−3 2.13 × 10−2 0.2214 0 500
7 3 18 1.10 × 10−3 1.33 × 10−2 0.2138 0 500
8 4 5 8.00 × 10−4 1.28 × 10−2 0.1342 0 600
9 4 14 8.00 × 10−4 1.29 × 10−2 0.1382 0 500
10 5 6 2.00 × 10−4 2.60 × 10−3 0.0434 0 1200
11 5 8 8.00 × 10−4 1.12 × 10−2 0.1476 0 900
12 6 7 6.00 × 10−4 9.20 × 10−3 0.113 0 900
13 6 11 7.00 × 10−4 8.20 × 10−3 0.1389 0 480
14 6 31 0.00 2.50 × 10−2 0 1.07 1800
15 7 8 4.00 × 10−4 4.60 × 10−3 0.078 0 900
16 8 9 2.30 × 10−3 3.63 × 10−2 0.3804 0 900
17 9 39 1.00 × 10−3 2.50 × 10−2 1.2 0 900
18 10 11 4.00 × 10−4 4.30 × 10−3 0.0729 0 600
19 10 13 4.00 × 10−4 4.30 × 10−3 0.0729 0 600
20 10 32 0.00 2.00 × 10−2 0 1.07 900
21 12 11 1.60 × 10−3 4.35 × 10−2 0 1.006 500
22 12 13 1.60 × 10−3 4.35 × 10−2 0 1.006 500
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Table A3. Cont.

Branch From To Resistance (p.u.) Reactance (p.u.) Susceptance (p.u.) Ratio Max MVA

23 13 14 9.00 × 10−4 1.01 × 10−2 0.1723 0 600
24 14 15 1.80 × 10−3 2.17 × 10−2 0.366 0 600
25 15 16 9.00 × 10−4 9.40 × 10−3 0.171 0 600
26 16 17 7.00 × 10−4 8.90 × 10−3 0.1342 0 600
27 16 19 1.60 × 10−3 1.95 × 10−2 0.304 0 600
28 16 21 8.00 × 10−4 1.35 × 10−2 0.2548 0 600
29 16 24 3.00 × 10−4 5.90 × 10−3 0.068 0 600
30 17 18 7.00 × 10−4 8.20 × 10−3 0.1319 0 600
31 17 27 1.30 × 10−3 1.73 × 10−2 0.3216 0 600
32 19 20 7.00 × 10−4 1.38 × 10−2 0 1.06 900
33 19 33 7.00 × 10−4 1.42 × 10−2 0 1.07 900
34 20 34 9.00 × 10−4 1.80 × 10−2 0 1.009 900
35 21 22 8.00 × 10−4 1.40 × 10−2 0.2565 0 900
36 22 23 6.00 × 10−4 9.60 × 10−3 0.1846 0 600
37 22 35 0.00 1.43 × 10−2 0 1.025 900
38 23 24 2.20 × 10−3 3.50 × 10−2 0.361 0 600
39 23 36 5.00 × 10−4 2.72 × 10−2 0 1 900
40 25 26 3.20 × 10−3 3.23 × 10−2 0.531 0 600
41 25 37 6.00 × 10−4 2.32 × 10−2 0 1.025 900
42 26 27 1.40 × 10−3 1.47 × 10−2 0.2396 0 600
43 26 28 4.30 × 10−3 4.74 × 10−2 0.7802 0 600
44 26 29 5.70 × 10−3 6.25 × 10−2 1.029 0 600
45 28 29 1.40 × 10−3 1.51 × 10−2 0.249 0 600
46 29 38 8.00 × 10−4 1.56 × 10−2 0 1.025 1200
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