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Abstract: Wind-energy systems are strongly affected by uncertainty and variability. Therefore,
uncertainty sources should be considered during the economic evaluation of this type of system. In
the literature, a framework for the economic performance assessment of wind-power systems has
been proposed. Furthermore, in another contribution, the random discontinuities of political and
regulatory scenarios have been included by using scenario analysis. However, the implemented
models neglected the uncertainty related to disruptive events and the effect of climate change on the
wind resource. To fill this gap, in this paper, climate change and disruptive events are included in a
new model for evaluating the economic performance of wind turbine systems using scenario analysis.
Analysis of a numerical example has been carried out to show the framework’s capabilities and to
evaluate the effects of the added issues. The main results confirm previous findings on the necessity
of including regulatory and political risks to achieve a proper economic evaluation. Additionally,
they show that disruptive events increase the variability of the expected value of the Net Present
Value (NPV). Therefore, even though climate change is expected to increase wind producibility in the
numerical example location, the inclusion of disruptive events constrains the NPV growth.

Keywords: offshore wind-power system; economic evaluation; risk analysis; scenario analysis;
uncertainty propagation

1. Introduction

Renewable energy power systems (RESs) are crucial for the decarbonisation goal,
and energy transition policies represent one of the main tools against climate change and
for achieving energy independence. Engineering progresses in RESs have been reducing
the levelised cost of energy (LCOE) extracted by green resources, and it has become
comparable with the LCOE of fossil sources. However, RESs’ profitability is affected by
many aleatory and epistemic uncertainty sources, increasing the investment and financial
risks [1]. This work focuses on wind-power systems, which are representative green energy
systems. Onshore wind-power systems are widespread, and the effect of wind-speed
changes, electricity price variability, and random failures have been investigated in the
literature [2–4]. The variability of the wind speed establishes several problems in the wind
turbine control [5], and particular attention should be paid during the design phase of the
supporting structure to reduce their uncertainties under emergency conditions [6]. The
epistemic uncertainty of imprecise turbine design formulas and the effects on the onshore
systems’ performance of disruptive external events due to natural and man-made hazards
are also well-known. Tozzi and Jo (2017) [7] reviewed available software tools for evaluating
the performance of onshore wind-power systems [8–10]. Despite that, most existing tools
consider the uncertainty using sensitivity analysis while changing one element at a time.
Moreover, often, only a few sources of uncertainty are considered. However, the case of
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offshore wind-power plants differs from that of onshore ones, and the uncertainty and
variability effect in this type of system have not been fully investigated.

Recently, a model has been proposed to estimate the performance of offshore wind-
power systems, including simultaneously epistemic and random uncertainty, to assess the
probability density function of the NPV [11]. In another work, the uncertainty of changes
in the political and regulatory scenario during the system’s life was included [12]. The
authors considered several widely accepted scenarios related to energy price history, the
learning rate of offshore wind-power systems, and subsidies policy and combined them to
include these additional risks. However, the effect of disruptive events and climate change
on the NPV has been neglected. To fill this gap, in this paper, the previously available
model [11,12] is extended by including climate change’s impact on wind speed and ship
collisions to consider disruptive events. Furthermore, the scenarios’ construction and the
so-called scenario combination procedure are carefully described.

The paper is organised as follows. Firstly, the literature on the existing framework for
evaluating the economic performance of wind-energy systems, ship collisions with offshore
wind turbines, climate-change effects on wind-power systems, and scenario analysis is
analysed. After that, the technical and economic model and the uncertainty propagation
method are briefly described. Subsequently, the approaches for including disruptive events
and climate change effects are exposed. Next, the adopted scenarios and their combination
methodology are explained. Then, the relevance of considering scenarios, the impact of
ship collisions, and future wind-speed forecasts in the economic performance evaluation
of wind-power systems is shown by carrying out a numerical example. Finally, four
scenarios are combined to include random discontinuities of the subsidy policy, using their
associated probabilities and estimating a single NPV distribution. The combination results
are compared to the case of random discontinuity absence to understand if the efforts to
estimate the probability are justified by different economic performances.

2. Literature Review

The literature focused on the evaluation of offshore wind-power systems under un-
certainty has been reviewed elsewhere [11,12]. However, some relevant contributions are
summarised below.

The modelling of wind-energy systems focusing on technical and economic models
but neglecting uncertainty has been studied in recent years [13,14]. Nevertheless, the uncer-
tainty of wind speed strongly influences the economic performance of the wind turbines,
and the inclusion of that significantly improves the evaluation accuracy [15,16]. Although
the economic model suffers from the effects of wind speed, its technical performance is
influenced too. Therefore, when only the technical model is built, its inclusion impacts the
final evaluation [17,18]. The epistemic uncertainty of the technical model is another crucial
aspect of the evaluation problem. Indeed, wind-power forecasting [19], the non-perfect
knowledge of the power curve [20], manufacturing tolerances, and events like insect con-
tamination [21] may impact the results of the viability analysis. Furthermore, other critical
epistemic uncertainty sources have been considered in the literature, like the wake effect,
the internal wind farm collector system, and the unavailability of wind turbines [22].

Additionally, another uncertainty source that may radically change the feasibility of
the investment is represented by failures, which should be modelled [23–28].

When the economic model is involved, modelling the energy price variability is a rele-
vant issue. Recently, a framework that models the energy price and wind-speed variability,
while also accounting for power curve epistemic uncertainty, has been proposed [29].

Finally, a comprehensive framework has been developed by attempting to include
several sources of aleatory and epistemic uncertainty [11].

From commercial computer tools for evaluating renewable energy systems’ perspec-
tives, some interesting items are available [8–10,30]. However, these pieces of software
have certain limitations in considering some sources of uncertainty or in adopting some
techniques for their modelling.
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Since this work aims to include ship collision events and climate-change effects on
wind-power systems and to formalise the scenario analysis procedure, the literature on
these topics is provided below.

Some papers in the literature have focused on the ship collision analysis on offshore
wind turbines. The majority of works have considered fixed-bottom structures. Indeed,
monopile foundations for offshore wind turbines’ response to ship collision have been
tested both with a striking rigid-body ship and a deformable body [31]. The deformation
of the jacket foundation under a ship collision has been considered by including differ-
ent scenarios of the ship’s speed, collision direction, and angle [32]. The ship collision
may cause plastic deformation, leading to wind-turbine collapse [31,32]. The effects of
collision increase when the wind load is considered in the analysis, reducing the impact
energy needed for the turbine’s collapse [33]. The risk of collision is higher when consid-
ering service vessels during maintenance operations. Even if the vessel speed is low, the
wind-turbine structure can be affected by the impact, resulting in structural damage [34].
Considering the impact between vessels and wind turbines, 20% of the ship–turbine strikes
occur on approach, while 80% occur on drift [34]. Therefore, this means that 80% of colli-
sions happen at a speed of 0.3–2.8 m/s. Indeed, the most frequent speed is 1.2 m/s. The
relevance of offshore maintenance in fixed-bottom wind turbines has been extensively
reviewed [35]. Therefore, the risk of collision with a maintenance vessel increases due to
the high number of interventions. In the literature, the collision of a barge and a bulk ship
with different loads with a fixed-bottom offshore wind turbine has been investigated, and
the combination of the results allows researchers to provide two fragility curves, one for
each type of ship [36]. The driving factor of the fragility curves is the current speed of
the ship at the strike. When considering floating offshore wind turbines, the literature is
scarce. In recent years, intending to fill this gap, an initial step for analysing the effects
of ship collision on a spar-floating offshore wind turbine has been proposed [37]. As per
the findings, the mass and the initial velocity are lead factors in the deformation process.
Furthermore, there is an elastic response of the overall structure, which reduces the total
effect of the impact in comparison with a fixed-turbine type at the same speed. For the
floating spar, a strike at a speed of about 5 m/s may seriously damage the system. Indeed,
the failure analysis of a spar buoy structure shows that a crash with vessel is a relevant
event, with a probability of about 10−6 events per hour. The consequences of these events
have been considered severe. The dynamic and damage analyses carried out in a recent
paper allow us to understand how severe the consequences of the collision of a ship with
a spar buoy are [38]. Finally, the combination of collision load and wind wave-mooring
loads has been investigated [39]. The analysis of the literature suggests that:

• The ship collision impacts floating structures less than bottom-fixed ones.
• The wind and wave loads decrease the critical speed, leading to the wind turbine’s collapse.
• Most collisions happen between small service vessels with a load ranging from 125 to

850 tons. Collision with a bulk ship with a mass of 30,000 tons is rarer but may happen.
• Approximately 20% of the collisions happen on approach at high speed, while most

happen on drift at a low speed in the range of 0.3–2.8 m/s.
• Collision at speeds higher than 5–6 m/s may be critical and can damage the spar structure.
• Only fragility curves for ship collisions between barge and bulk ships and fixed-bottom

structures are available in the literature.

Climate change affects weather conditions, and the fact that renewable energy systems
suffer from this issue is well known. Wind-energy systems are one of the instruments used
to mitigate climate change and produce green energy. However, wind-energy systems
suffer from climate evolution, and climate change may negatively impact wind farm
production. Indeed, in the future, some regions of the world may experience a reduced
wind speed, whereas others may experience an increase. An in-depth review of climate
change’s impact on wind energy has been proposed in the literature [40]. The authors
focused on the variability of the wind resource in northern Europe, considering also the
effects of climate change on the maintenance of wind farms. Indeed, they considered
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extreme wind speed, icing, sea ice and permafrost, and also air density. The wind speed
will increase in some regions of north and central Europe, but undesirable weather-critical
events will also increase [40]. Considering changes in wind speed and direction at 10 m
worldwide due to the anthropogenic climate change, global warming impacts the future
of the wind resource. In the future, there will be a possible increase in the probability of
extreme wind speed due to tropical cyclones [41]. However, further studies are required.
A recent work studied the evolution of wind speed in Chile to evaluate its impact on
optimal power-system expansion plans [42]. They analysed scenarios of three different
concentrations of greenhouse gasses and concluded that even though the mean wind speed
will slightly increase in the next few years, its variability will increase too. Another work
analysed in depth the future wind-speed probability distribution [43]. The authors resorted
to several circulation models and simulated wind speed at 10 m under the representative
concentration pathway (RCP) 8.5 condition. The RCP 8.5 scenario supposes that emissions
will continue to increase during the 21st century. It is often taken as the worst-case climate-
change scenario. It hypothesises that the global mean temperature will increase by 5 ◦C
in 2100 compared with its value in the pre-industrial era. The sea level will also increase
by about 0.63 m [44,45]. The simulation of the near-surface wind speed showed that the
most significant wind-speed decrease will be in Eastern Russia and the USA. The authors’
analysis provided the fitting distribution, accuracy, mean value, and standard deviation of
the current wind speed and the simulated wind speed in the near, midterm, and far future.
Even though in some world regions wind-speed changes will be marginal, a slight change
strongly affects the extracted power from the wind. Since the wind turbine of the numerical
example is located in Italy, a study on the impacts of climate change on power generation
in Italy is considered [46]. The paper studied wind-resource availability in Italy for the
short (until 2050), medium (until 2080), and long (until 2100) term. Two scenarios were
analysed: the RCP 8.5 and the RCP 4.5. The RCP 4.5 supposes that the emissions peak in
2040 and then decline. It is often considered the most probable baseline scenario in which
the increases in temperature in 2100 will be about 2.5–3 ◦C, and the sea level increases by
about 0.47 m compared with the data from the pre-industrial baseline. They assessed wind
producibility as the ratio between the produced power per hour and the installed power.
The results showed that in both scenarios, the wind producibility will increase in the short
period in the plant region of the numerical study by about 3–4%. However, in other regions
of Italy, the producibility will decrease.

In the literature, scenario planning is a widely adopted approach to explore the possible
evolutions of macroscopic variables over medium and long time horizons. As a matter
of fact, several reviews are available on this topic [47–49]. This approach focuses on the
complexity and uncertainty of the environment. Indeed, its primary goal is not to forecast
variables’ values but to depict several different futures. The uses of scenario planning
rely on defining plausible and possible descriptions of the future. Even though various
methods exist, most of them imply a high level of subjective judgement. Therefore, the
scenario-making process often has low replicability. Indeed, all three of the most important
techniques of scenarios, that is, Intuitive logic methodology, La prospective methodology,
and Probabilistic modified trends methodology, are based on experts’ judgements [50].
Generally, scenarios are produced by analysing reality and identifying the most influential
variables on future developments. Then, it is crucial to determine the driving forces that
cause changes in the future influential variables. Basically, the scenario planning includes
the following steps:

1. Defining the objective of the study. The output of this step is the system selection, the
study’s time horizon, the geographic boundaries, and the stakeholders.

2. Collecting data. Resorting to the specifications obtained in step 1, the data collection
about all the relevant issues necessary to describe the events affecting the factors and
variables that lead to future developments are collected.

3. Understanding trends and uncertain elements. The identified factors and variables
are studied to understand their influence on the system under analysis, the range of
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their variability over time, and trends. Additionally, their number is streamlined by
conducting uncertainty analysis or similar approaches.

4. Understanding the interdependence between the events, factors, and variables value.
This step is crucial to understand whether and how one variable affects another. This
way, one can suppose a correlation matrix, which transparently defines the probability
of another event or a value once one has happened.

5. Building the scenarios. Combining different trends and uncertainty allows us to
describe several scenarios, which are then reduced in number using expert judgements
and available data, establishing a subjective procedure.

Analysts and decision makers often adopt strategies to cope with the consequences of
realising different scenarios. For the sake of completeness, more quantitative approaches
to scenario planning also exist. These are based mainly on the combination of analyti-
cal formulation, sampling methods, and the contribution of experts. For instance, the
Interactive Cross Impact Simulation uses Monte Carlo simulation, combining data and
experts’ opinions [51]. On the other hand, Trend impact analysis resorts to historical trend
interpolation and opinions to set the probabilities and impacts of future events [52].

Steps 2 and 3 are often carried out using cause–effect analysis [53,54]. This approach
often gives a cause–effect matrix, in which the rows are the variables, whereas the columns
are the outputs. In the intersections, there is a qualitative or quantitative measure of the
effect that a variable has on the output.

Step 4 often uses the cross-impact analysis, a widely adopted tool for understanding
the interdependence between events [55,56]. It is used to analyse if and how much the oc-
currence of an event influences the probability of the occurrence of another event. Typically,
the output of the procedure is a cross-impact matrix. The cross-impact matrix is a matrix in
which each row and each column represent a variable. In the intersections is a qualitative
or quantitative value describing the interdependence level. The qualitative value can be,
for instance, a plus, neutral, or minus symbol. In contrast, the quantitative measure can be
the value of the reduction in the probability of occurrence of the event in the column once
the event in the row has occurred. This approach allows futurists to build consistent and
plausible scenarios.

3. Framework for Uncertainty Propagation and Risk Assessment

The framework for uncertainty propagation and risk assessment (Figure 1) comprises
modular blocks, which can be added and removed to represent several sources of uncertainty.
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Figure 1. Framework for an economic performance evaluation of a renewable energy system.

In this paper, the wind-power system suffers from the uncertainty sources summarised
in Table 1. The variability types are classified as follows (see Figure 2): (I) the variables
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change their value randomly over time; (II) the variables show a constant but unknown
value that can be described by a predefined probability density function; (III) variability is
represented by random point events of either known or unknown intensity; (IV) a random
discontinuity occurs where one or more variables experience a random step change in
value at a random time.

Table 1. Sources of uncertainties.

Variable Uncertainty Nature/
Variability Type Modelling Approach

Bank interest rate E/II 1
Investment cost E/II 1

Plant nominal life E/II 1
Self-interest rate E/II 1
Power coefficient E/II 1

Gearbox efficiency E/II 1
Generator efficiency curve E/II 2

Power electronic efficiency curve E/II 2
Number of required maintenance

personnel E/II 2

Repair costs E/II 2
Disruptive external events A/I 3

Component failures A/III 4
Wind speed A/I 5

Electricity price A/I 6
E = Epistemic. A = Aleatory. 1 = Monte Carlo sampling from predefined pdf. 2 = Monte Carlo sampling from
predefined pdf centred on the nominal performance curve. 3 = Monte Carlo sampling from the hazard curve and
random generation of the failure severity level from the fragility curve. 4 = Monte Carlo sampling of time-to-failure
pdf and Monte Carlo sampling of time-to-repair pdf. 5 = Markov chain. 6 = ARIMA time series. I, II, III, IV—see
Figure 2.
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Figure 2. Classification of variables affected by uncertainty.

The simulation model uses Monte Carlo sampling methods to propagate the uncer-
tainty through the system model for the system life over a predefined number of iterations.
First, the user selects the wind-turbine location and type. These two last pieces of informa-
tion lead the program dataset’s filling process, using the turbine’s technical features and
environmental data.

Before launching the simulation, the user must declare the constant input data, e.g., the
run number and the expected system-life years. At the beginning of each run, Monte Carlo
sampling is used to derive the value of variables subject to epistemic uncertainty by the
relevant probability distributions. Then, the hourly time series of failures, wind speed, and
electricity prices are produced by simulating the corresponding stochastic processes. This
procedure allows us to compute the annual net produced energy by excluding downtime
periods. Subsequently, the net present value (NPV) frequency distribution histogram is
assessed by resorting to the economic model that permits the calculation of the investment
cost, the annual cash flows, and the net present value. In the following, each framework’s
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block is briefly described, and Figure 3 summarises the main steps of the NPV distribution
computational sequence.
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The external parameters’ random uncertainty in the technical model mainly pertains
to the wind speed and direction variability.

Despite the available papers in the literature often resorting to historical data to build
a Weibull probability distribution and its sampling to represent the wind behaviour over
time [57–59], this approach may lead to abrupt changes in the speed and direction values.
In this work, to cope with this issue, the Markov Chain Monte Carlo method according
to [60] is adopted to generate an hourly wind-speed time series over the system’s life.

External disruptive random events modelling is explained in depth in Section 3.1 and
is based on the theoretical approach proposed in [61]. Some authors have proposed fragility
curves for plausible events [62–66], and a plausible use of these curves has been presented
in [11].

Given the instantaneous wind velocity value, the technical and reliability model allows
us to compute the power extracted by a horizontal-axis wind turbine [67]. The efficiency
of the components and model simplifications suffer from epistemic uncertainty and lie
in the internal parameters’ epistemic uncertainty block. These uncertain parameters are
sampled from a probability distribution centred on their central value and bounded by
their maximum and minimum.

The wind turbine is decomposed into components and subassemblies, according
to [68]. These elements are supposed to be in series, so when a single item fails, the
production stops until it is returned to service. An event calendar of failures throughout the
system’s life is constructed using Monte Carlo sampling of the probability density function
of the mean time between failures, mean time to repair, the mean number of technicians,
and the expected restoration cost of each component and subassemblies. The faults’ repair
cost is obtained by multiplying the hourly cost of technicians by the sampled recovery time
and the sampled required number of technicians. Then, the cost of materials taken from [2]
is added. Table 2 shows the Cost Items (CI) included in the economic model.
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Table 2. Model cost items.

CI Sub-Items References

Investment cost Wind turbine and
floating-platform purchase [69–71]

Wind turbine and
floating-platform installation

and rent of the shipyard
[69,71]

Operating cost Grid access fees, insurance
costs, and seabed rental [71,72]

Maintenance cost (preventive) [70,71]
Maintenance cost (corrective) See text

Since the knowledge of relationships and parameters used to perform the investment
cost assessment is imperfect, the estimation suffers from epistemic uncertainty. Therefore, in
each run, its value is sampled with the same procedure used for internal parameter epistemic
uncertainty, but the probability distribution is centred on the computed expected value.

Multiplying the net energy produced each hour and the hourly energy price gen-
erates the revenue. However, random uncertainty affects the hourly energy price, and
historical time series are used to perform the regression and obtain the coefficients of an
ARIMA model. The ARIMA model is integrated with Monte Carlo sampling and simulates
1000 paths for each run. These paths represent 1000 hypothetical hourly time series. Finally,
the middle time series is taken from the set and used for revenue computation of the current
run. This way, the market risk is included.

Financial risk is modelled using the abovementioned approach for epistemic uncertainty
on the nominal plant life and bank investment cost. The original model did not include
any tax, social, political, or regulatory risks [11]. To include these types of risks, scenario
analysis was performed on an extension of the model proposed in [12], as described in the
next section. Risk assessment consists of the NPV probability-density function computation
and the assessment of its expected value, standard deviation, and coefficient of variation.

3.1. Disruptive Events Effects

A disruptive external event is an event that may impact the functioning of the plant.
The selection of this type of event relies on the sensitivity and experience of the analyst.
Although different approaches can be adopted, they can define a list of disruptive events
by adopting thresholds of the maximum expected damage or the maximum expected
economic loss. The list definition is not straightforward because it involves the support
structure, the hub height, and, generally, the system’s characteristics. For instance, in this
work, earthquakes and extreme weather events have been neglected because of the location
of the system and the type of floating structure selected. On the contrary, ship collisions
should not be overlooked because of the need for the vessels to conduct maintenance
operations and the presence of sea routes. Generally, the list definitions in a comprehensive
study should involve all the relevant and credible events.

As mentioned before, the inclusion of disruptive external events is made considering
ship collisions. The ship collision-event simulation and the relative damage assessment
are developed following a procedure based on the disruptive events simulation procedure
proposed elsewhere [11]. Based on the literature review, the whole ship collision probability,
that is, 10−6 events per hour, is divided into low-speed, medium-speed, and high-speed
collisions. Low-speed collisions represent 50% of the events; medium-speed collisions, 30%
of the events; and high-speed collisions, 20% of the events. The speeds are 1 m/s, 2.8 m/s,
and 6 m/s, respectively.

The size of the ship that strikes the wind-turbine structure is divided into three classes.
Approximately 10% of the events are caused by a heavy bulk ship and cause disruptive
events that lead to the collapse of the structure. Around 40% of the events are caused by a
medium-sized ship that causes medium damage to the turbine. Approximately 50% of the
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collisions are caused by a light service vessel that leads to little damage to the turbine. The
three sizes are associated with three supposedly different estimated fragility curves with a
mean of log(1.48) m/s, log(3.88) m/s, and log(4) m/s and a standard deviation of 0.23 m/s,
0.55 m/s, and 0.55 m/s, respectively. Figure 4 shows the fragility curves of the wind turbine.
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Figure 4. Fragility curves of the wind turbine for different ship sizes.

The fragility curves have been supposed by comparing the data about the expected
deformation of the fixed-bottom wind turbine under different wind-speed impacts, for
which the fragility curves are available in the literature, and the data on the expected
deformation of the spar buoy platform under the same wind-speed impact. The impact of
a heavy bulk ship leads to the disruption of the structure and the end of the simulation,
whereas with a medium-bulk ship, this leads to a restoring cost and a production loss of
30% of the investment cost. Finally, the impact of a light service vessel is associated with an
economic loss of 10% of the investment cost. The procedure follows the subsequent steps:

1. For each impact speed, the event date is sampled from an exponential distribution
build with the events/year rate associated with each impact speed. Therefore, three
event types are possible: low, medium, and high impact speed.

2. The event date is summed with the current time, the event speed that identifies the
event type and the date is added to the event list, and the simulation clock jumps to
the event date.

3. Step 2 is repeated until the simulation clock reaches the plant-life years. If the time
now exceeds the plant’s life, the event is neglected, and the event list is concluded.

4. Starting from the event with the nearest date and arriving at the farthest, a random
number between 0 and 1 is sampled and compared with the lower probability value
associated with the ship size. If the random number is lower than the probability,
the event is associated with that type of ship; if not, the next lesser probability is
considered, and the procedure is repeated. Finally, if the random number is higher
than all the probabilities associated with the ship type, the smallest ship is selected.

5. Starting from the event with the nearest date and arriving at the farthest, a random
number between 0 and 1 is sampled and compared with the ship-size cumulative
distribution function value associated with the impact speed. Suppose that the
random number is lower than the probability value. In that case, damage occurs,
and the economic loss associated with the event type is added to the list of economic
losses due to ship collision. If the event is an impact with a heavy bulk ship, the wind
turbine collapses, and the simulation is stopped. The event does not lead to a fault if
the random number is greater than all the cumulative distribution function values.
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At the end of the procedure, an event list with the event date, impact speed, ship size,
and economic loss is obtained. This list enters the technical model to stop the simulation if
an impact with a bulk ship occurs, and always the economic model to concur in the Net
Present Value assessment.

3.2. Climate-Change Effects

In this work, climate change is considered an almost surely event that affects the
environment and the weather year after year. According to the literature, the inclusion of
climate change is performed considering the expected percentual changes in wind-speed
producibility in the region of the location of the wind turbine. The wind producibility is
expressed as the produced power per hour divided by the rated power of the wind turbine.
For instance, in the numerical example, an increase of 4% in wind producibility at the end
of the plant’s life is considered for the location of the wind turbine. The percentual increase
has been assumed to be linear. Therefore, starting from 0% and arriving at 4% each year
of the plant life presents a percentual increase of 0.2%. The expected percentual changes
increase or decrease the hourly produced power of the plant. Therefore, the adjusted
produced power enters the economic model and the simulation proceeds.

4. Scenario Description

Based on the studies mentioned in the literature review, scenario analysis seems to be
a suitable tool to capture the effects of type IV uncertainty. Indeed, it is used to represent
the long-term electricity prices, the investment cost reductions, and the subsidy policy
changes on the economic performance of offshore wind-power systems.

The adopted method follows the subsequent steps:

• Selecting the scenario variables.
• Identifying the driving forces.
• Defining the possible events.
• Defining the variables’ values.
• Conducting a cause–effect analysis.
• Conducting a cross-impact analysis.
• Combining the variables’ values to obtain the scenarios.

This paper used and analysed scenarios to model the social, political, and regulatory
risks and to understand their effect on the NPV distribution. It is assumed that the plant,
including a single wind generator (as described in Section 5), will start its production in
2030 to evaluate the cost-reduction effects over the years.

The first step concerns the scenario’s variables selection. Three scenario variables were
selected: the long-term energy price, the investment-cost reduction, and the subsidy policy.
Then, in step 2, the driving forces must be identified. These variables have three different
driving forces: geopolitical relationships, European energy policy, and Italian energy policy,
respectively. Each driving factor affects the relative variable in function of the event that
will happen in the future. Each variable can assume three different values according to the
event which will happen.

Steps 3 and 4 were carried out to identify the possible events and the relative variables’
values, as described below.

Starting from the World Energy Outlook report [73], long-term energy price values
were defined according to [74]. Three events could happen, namely “relief” (R), with
a mean variable value of 60 EUR/MWh; “central” (C), with a mean variable value of
79 EUR/MWh; and “tension” (T), with a mean variable value of 100 EUR/MWh. “Relief”
refers to the case in which relationships between Eastern and Western countries become as
they were before the Ukrainian war; “central”, if they remain as they were after the start of
the war; and “tension”, if an escalation occurs.

Investment-cost reduction is modelled by the offshore wind-power learning rate [75,76],
which is considered fixed and equal to 9%. This data was combined with scenarios about the
offshore wind-power installed capacity in Europe in 2030 [77], which may be 40.5, 70.2, and
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98.93 GW. The higher the installed capacity in 2030, the higher the percentage of investment-
cost reduction. This combination leads to three variable values, namely High Investment
Cost Reduction (H), with a reduction of 23%; Medium Investment Cost Reduction (M), with a
reduction of 17%; and Low Investment Cost Reduction (L), with a reduction of 12%.

Although there are no subsidies for offshore wind-power plants at the time of this
study, the Italian government is considering introducing subsidies. Three events were
thus considered, namely feed-in tariff (F), with a fixed sold price for produced energy of
187 EUR/MWh, set according to the historical levelised cost of energy of offshore wind-
power systems [78]; feed-in premium tariff (P), with an increment in the hourly energy
price of 31 EUR/MWh; and no subsidies (-).

Step 5 concerns performing the cross-impact analysis. In this work, since the driving
forces are assumed to be independent, the events are considered independent. Thus, it was
assumed that the variables did not impact each other.

Table 3 provides a summary of the considered scenario’s variables, the driving forces,
the events, and the variables’ values.

Table 3. Values of scenario variables.

Scenario Variable Driving Force Events Variable Value

Long-term energy
price

Geopolitical
relationships

Tension 100 EUR/MWh
Central 79 EUR/MWh
Relief 60 EUR/MWh

Investment-cost
reduction

European energy
policy

High 23%
Medium 17%

Low 12%

Subsidy policy Italian energy policy
Feed-in 187 EUR/MWh

Feed-in premium 31 EUR/MWh
No subsidy -

It is important to note that if the feed-in tariff subsidy is selected, the NPV prob-
ability density function is not influenced by the energy price but is still influenced by
the investment-cost reduction. Therefore, the consistent and possible scenarios obtained
by combining all the scenario variables’ values are 21, as listed in the Results section.
Each scenario is represented by two or three letters corresponding to the evolution story
of the associated variables. More details about the selected scenarios can be found in
reference [12].

Even if assessing the probability of scenarios is challenging, to help decision-makers
select the more plausible scenario, the authors have tried to contribute critically by using
the plausibility cone concept [79,80]. Scenarios were clustered into four groups: preferable,
possible, plausible, and probable. Subsidy policies around the world are heading towards
a feed-in premium tariff. Therefore, despite scenarios HF, MF, and LF being preferable
from the wind-power investor perspective, they are not in the probable group. Daily
news about the relationships between Western and Eastern countries yield only possible
scenarios with relief assumptions (R). Other scenarios with no subsidies (-) are plausible,
but Italian politicians want to pursue a subsidy policy, especially for wind and solar energy.
Thus, scenarios with feed-in premium subsidies are in the probable group. Ultimately, the
continuous investment in wind-power systems worldwide, especially in Europe, makes
the high investment-cost reduction the most probable hypothesis. Therefore, the authors
believe that HTP and HCP are the most probable futures.

Finally, a simplified procedure for scenario combination has been developed. This
procedure was used to include the effect of possible changes in a scenario variable over
time and follows the subsequent steps:

1. Defining a set of probable scenarios.
2. Associating a probability to each scenario by resorting to experts’ judgements.
3. Assessing the performance of the system in each scenario.
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4. Combining the results, resorting to the supposed scenarios’ probabilities.

One possible approach to Step 4 is using a weighted sum, which weighs the scenarios’
probabilities. In Section 5, more details on the application of the procedure will be provided.

5. Numerical Example

A Matlab environment was used to implement the model. The wind-power system
consists of a single wind generator. The wind turbine (WT) is a horizontal axis NREL
5-MW reference wind turbine [81] located 5 kilometres off the port of Brindisi, Italy, at
latitude 40.68 and longitude 18.06 degrees. The water depth is about 400 m, so the WT,
equipped with a geared drive train and pitch-regulated, is installed on a spar platform.
The hub height is 90 m, and the rotor diameter is 126 m. All the technical model data
to estimate the technical performance were taken from [81]. Reference [72] was used to
retrieve the floating platform’s structural and construction data to assess costs. The cost
values have been adjusted to the present value using the current EU producer price index.
The resulting expected investment cost has been reduced according to the above-exposed
scenarios. The hourly time series of wind speed at 10 m from 2015 to 2019 were taken
from the ERA5 database. The time series were used to set the transition rate of the Markov
chain that is used to generate the values of wind speed. The wind speed was adjusted to
the hub height, resorting to a log law. The ARIMA parameters estimation process, used
for generating the hourly electricity price time series, was performed using data from the
Italian Power Exchange database, which refers to 2021. This way, the behaviour of the
hourly energy price is captured, and then it is adjusted according to the abovementioned
electricity price scenarios and reduced or increased by the yearly corrective trend coefficient
of each scenario. The failure events list was built using the data available in [2]. The data
about costs refer to 2–4 MW wind turbines, so their values have been increased by 10%
to account for the bigger size of the WT and adjusted using the European producer price
index. Epistemic uncertainty was modelled with Monte Carlo sampling from a triangular
distribution centred on the nominal value of the considered variable and with the minimum
and maximum values calculated by subtracting and adding a given percentage PD of the
nominal value. Table 4 shows the nominal values and percentage PD of the variables
affected by epistemic uncertainty, according to [70,82]. Bank interest and self-interest rates
are 6 ± 4% and 4 ± 2%, respectively. The number of years of financial loans is 10, the
percentage of the financed investment cost is 50%, the tax rate is 35%, the technicians’
hourly cost is 50 EUR/h, and the yearly amortisation percentage is 7%.

Table 4. Parameters for variables affected by epistemic uncertainty.

Variable Nominal Value PD

Power coefficient [81] ±1%
Generator efficiency [81] ±1%

Power electronic efficiency [81] ±1%
Gearbox efficiency 98% ±1%

Restoration cost [2] ±10%

Investment cost EUR 10,500,500 (computed by
the model) ±30%

Plant life (years) 20 (nominal) ±10%

Two studies were conducted: one (A) similar to the one made in [12] and another
(B) that included climate change and disruptive events, i.e., ship collisions. This allows
us to compare the results to assess the effect of these two sources of variability. Two
different analyses were carried out. The scenario analysis case studies the scenarios one at
a time, whereas the scenario combination considers a reference scenario and combines four
evolutions of subsidies over time to estimate a single Net Present Value distribution.
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For each scenario, 1000 runs were performed, and the expected value of the NPV and
its minimum and maximum, its standard deviations (σ), and its coefficients of variation
(CV) were assessed in each scenario.

As previously stated, the authors believe that HTP and HCP are the most probable
futures. The decision-making problem under deep uncertainty arising from the lack of
probability assigned to scenarios is a significant weakness in scenario analysis. Although
assessing the probability of a scenario occurrence is difficult, there are some variables for
which this probability could be defined. For instance, politicians’ and experts’ judgements
on RESs provide helpful information to estimate the evolution of subsidy policies. Four
stories on subsidy policy development were adopted based on the claims of European and
Italian governments. Then, the simulation results were combined using their associated
probability to obtain a single NPV probability density function (HTPS scenario). Firstly, each
scenario’s NPV probability density function was assessed, multiplied by their associated
probability, and, finally, summed together. The plant’s life was divided into six timespans,
and for each, a percentage of the change in the feed-in premium tariff value was assigned,
as listed in Table 5.

Table 5. Percentage of feed-in premium tariff value change for each scenario and their associated
probability.

Probability
Timespan

1 2 3 4 5 6

35% 0% 0% 0% 0% 0% 0%
5% 5% 10% 15% 20% 25% 25%
20% −5% −30% −50% −60% −70% −70%
40% 0% 0% −70% −70% −70% −70%

As already stated, 1000 runs were performed for each scenario, and the results were
compared with the case in which no change in subsidy policy was experienced during the
system’s life. The consistent basis for comparison was the HTP scenario.

Finally, the results were compared to the analysis in which no disruptive events or
climate change were included.

5.1. Results
5.1.1. Scenario Analysis

In this subsection, the simulation results when climate-change impact and disruptive
events are not considered (case A) are compared with the results of the simulations when
both are included (case B). Whereas the former has already been presented similarly in
another work [12], the latter is shown for the first time. The minimum and maximum
values of NPV are assessed using the two-sigma confidence interval since the data are
well fitted by a normal distribution. Therefore, a confidence level of 95.45% was obtained.
In order to show an example of the output of the simulations, Figure 5 presents the Net
Present Value distribution obtained in cases A and B for scenario HF. Figure 6 compares the
expected value of the NPV and its minimum and maximum in different scenarios between
the values obtained without climate change and disruptive events (black lines) and those
obtained considering them (red lines).
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Figure 6. Expected value of the NPV in different scenarios. The red marks consider climate change
and disruptive events, while the black ones do not.

For clarity, the legend of the codes representing the values of the scenario variables is
presented in Table 6.

Table 6. Legend of codes of scenario variables’ values.

Scenario Variable Events Variable Code

Long-term energy price
Tension T
Central C
Relief R

Investment-cost reduction
High H

Medium M
Low L

Subsidy policy
Feed-in F

Feed-in premium P
No subsidy -

Exception made for the scenarios with feed-in tariff subsidies, the expected values of
the NPV are less than 0. The presence of disruptive events and climate change increases
the NPV variability.
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Additionally, Table 7 shows the expected values of the NPV (E), its standard deviation
(σ), and its coefficients of variation in different scenarios. The A columns represent the
results in scenarios in which climate change and disruptive events were not included,
whereas the B columns show the results in which they were both included.

Table 7. Expected value, standard deviation, and coefficient of variation of the NPV across different scenarios.

Code E [million EUR] σ [million EUR] CV

A B A B A B
HF 4.21 4.12 1.44 2.06 0.34 0.50
MF 3.31 3.14 1.55 1.82 0.47 0.55
LF 2.6 2.56 1.59 1.88 0.61 0.73
HR −6.43 −6.42 1.39 1.88 0.22 0.29
MR −7.68 −7.53 1.32 1.72 0.17 0.23
LR −8.05 −7.87 1.52 1.65 0.19 0.21
HC −5.06 −5.00 1.4 1.73 0.28 0.35
MC −6.06 −5.94 1.56 1.70 0.26 0.29
LC −6.58 −6.53 1.54 2.09 0.23 0.32
HT −2.78 −2.83 1.35 1.60 0.48 0.56
MT −3.67 −3.79 1.48 2.05 0.40 0.54
LT −4.69 −4.62 1.62 1.71 0.34 0.37

HRP −4.02 −3.96 1.31 1.37 0.32 0.35
MRP −5.09 −5.02 1.49 1.63 0.29 0.33
LRP −5.3 −5.17 1.56 1.63 0.29 0.31
HCP −2.16 −2.19 1.43 1.69 0.66 0.77
MCP −3.58 −3.59 1.42 1.79 0.40 0.49
LCP −3.83 −3.86 1.64 1.88 0.43 0.49
HTP −0.46 −0.64 1.41 1.96 3.09 3.04
MTP −1.37 −1.86 1.53 1.82 1.11 0.99
LTP −1.86 −2.14 1.52 2.23 0.82 1.04

The difference between the NPV’s expected values assessed in A and B conditions is
minimal. However, the B cases results show more considerable variability.

5.1.2. Scenario Combination

The following presents the results obtained by including scenario variability in cases A
and B and comparing them with the reference scenario, HTP. Figure 7 shows the comparison
between the expected values of the NPV.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

LT −4.69 −4.62 1.62 1.71 0.34 0.37 

HRP −4.02 −3.96 1.31 1.37 0.32 0.35 

MRP −5.09 −5.02 1.49 1.63 0.29 0.33 

LRP −5.3 −5.17 1.56 1.63 0.29 0.31 

HCP −2.16 −2.19 1.43 1.69 0.66 0.77 

MCP −3.58 −3.59 1.42 1.79 0.40 0.49 

LCP −3.83 −3.86 1.64 1.88 0.43 0.49 

HTP −0.46 −0.64 1.41 1.96 3.09 3.04 

MTP −1.37 −1.86 1.53 1.82 1.11 0.99 

LTP −1.86 −2.14 1.52 2.23 0.82 1.04 

The difference between the NPV’s expected values assessed in A and B conditions is 

minimal. However, the B cases results show more considerable variability. 

5.1.2. Scenario Combination 

The following presents the results obtained by including scenario variability in cases 

A and B and comparing them with the reference scenario, HTP. Figure 7 shows the com-

parison between the expected values of the NPV. 

 

Figure 7. Expected value of the NPV in HTPS and HTP scenarios. 

The same result of the scenario analysis occurs in scenario combinations. The differ-

ences between the A and B expected values of the NPV are slight, whereas the variability 

is higher in the B case than in the A case. In both cases, the scenario combination has a 

lower variability than the reference HTP scenario and a lower NPV expected value. 

6. Discussion 

Looking at case A’s scenario analysis results, only the feed-in tariff guarantees an 

expected NPV higher than 0, mainly for two reasons. Firstly, energy price scenarios de-

termine a significant decrease in the mean energy price in future years compared with the 

mean value at the end of 2021 and 2022. Moreover, the feed-in premium tariff value is 

insufficient to obtain enough revenue to cover the investment and operating costs. Sec-

ondly, the considered wind-power system is assumed to have only one wind generator, 

thus losing the economies-of-scale effect associated with wind farms. However, the single 

generator avoids the wake effect and isolates the uncertainty propagation effects. In 

  
   
  
 
  
 
 
 

Figure 7. Expected value of the NPV in HTPS and HTP scenarios.



Sustainability 2023, 15, 16912 16 of 21

The same result of the scenario analysis occurs in scenario combinations. The differ-
ences between the A and B expected values of the NPV are slight, whereas the variability is
higher in the B case than in the A case. In both cases, the scenario combination has a lower
variability than the reference HTP scenario and a lower NPV expected value.

6. Discussion

Looking at case A’s scenario analysis results, only the feed-in tariff guarantees an
expected NPV higher than 0, mainly for two reasons. Firstly, energy price scenarios
determine a significant decrease in the mean energy price in future years compared with
the mean value at the end of 2021 and 2022. Moreover, the feed-in premium tariff value is
insufficient to obtain enough revenue to cover the investment and operating costs. Secondly,
the considered wind-power system is assumed to have only one wind generator, thus losing
the economies-of-scale effect associated with wind farms. However, the single generator
avoids the wake effect and isolates the uncertainty propagation effects. In addition, even
though the first attempt to install offshore wind-power systems was made in Italy, available
commercial offshore wind turbines are designed to operate with a rated wind speed of
about 11–15 m/s, whereas typical Mediterranean sea conditions present a mean wind
speed of about 5–6 m/s. This significantly impairs the turbine generation capability when
considering its actual power coefficient curve. In any case, this work aims not to determine
the cost-effectiveness of this type of system in a specific application but to assess the
relevance of considering social, political, and regulatory risks with scenario analysis. From
the best-case, that is, HF, to the worst-case scenario, i.e., LR, there is a difference in the
mean value of the NPV of about 291%, passing from EUR 4.21 million to –EUR 8.05 million.

Analysing case B’s scenario analysis results, the inclusion of climate change positively
affects wind producibility because wind speed is expected to increase in the chosen site
in the next few years. However, the inclusion of ship collisions constrains the increase of
the expected NPV. Indeed, the additional cost that may arise from possible damage offsets
or more than offsets the additional revenue. The main effect of this newly considered
source of uncertainty, i.e., ship collisions, is related to the dispersion of the NPV probability
density function. Indeed, the variability of the economic performance increases significantly
compared with case A’s results. Observing the coefficients of variation of the NPVs, it can
be seen that when passing from the A to the B case, they increase by up to 47%. However, in
two scenarios, i.e., HTP and MTP, the coefficient of variation slightly decreases. Moreover,
the NPV’s expected values decrease by about 35–40% in the same scenarios. This is possible
due to the sampling nature of the event list generation approach.

Including ship collision events still results in symmetric distributions of the NPV and
only barely widens the distributions because they cause disruption of the system with a
very low probability, whereas, in the majority of cases, they have an impact by introducing
a downtime period and an additional restoration cost. Additionally, when the vessel is of
a small size and its speed is low, it may not cause damage at all. Therefore, the number
of runs where the wind turbine collapses is small. Furthermore, the event date influences
the effect on the NPV probability density function. Indeed, the closer the collapse is to the
end of the plant’s life cycle, the lower its impact on the profitability of the investment. The
aforementioned considerations justify why the normal distribution still fits the obtained
results well. Therefore, the minimum and maximum values are estimated to obtain a
confidence level of 95.45%. However, not considering the two-sigma confidence interval
but only the raw data, the minimum value of the NPV is farther than the maximum from
the expected value.

Considering the scenario combination case, additional deductions can be derived.
Results show that considering a constant value of subsidies, instead of combining differ-
ent plausible evolutions over time, leads to an overestimation of the expected value of
the NPV of about 158%, changing from EUR −1.18 million to EUR −0.46 million. Fur-
thermore, the variability of the expected value of the NPV is reduced, leading to a more
accurate assessment of the economic performance. Finally, comparing the results of the
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scenario combination of cases A and B confirms the considerations made for the scenario
analysis case.

Although the framework is modular and one can select the preferred uncertainty
propagation method, this work considers Monte Carlo methods. A limitation of the analysis
is based on this. Indeed, it is well known that Monte Carlo sampling may underestimate
tail risk, and it is strongly related to the assumptions on the distribution and range of
uncertain parameters [83,84]. In order to avoid underestimating the maximum expected
loss, the analyst may use a worst-case scenario analysis. However, in this type of problem,
the definition of the worst-case scenario is not straightforward, and the same error might
be made. Additionally, an overestimation of the maximum expected loss may cause the
rejection of a profitable investment. Moreover, the assumption-making problem is an actual
problem because the assumptions drive the analysis. However, the necessity of including
heterogeneous sources of uncertainty seems to suggest that Monte Carlo is the preferred
method for this specific application. In future works, Monte Carlo methods for simulating
rare events will be explored [85].

Since the method relies heavily on data and assumptions, another limitation of the
conducted analysis relies on the availability and reliability of the data. Although this study
has been carried out using and comparing the available literature sources, the literature
about the effects of ship collision on offshore wind farms is relatively scarce. Therefore,
further studies on the probability of collisions and the expected damage should be carried
out. Moreover, when talking about climate change, researchers are rapidly changing their
predictions; therefore, the simulations should be repeated over time by changing the data
used when new pieces of information become available.

However, the numerical example is used to show the capabilities of the proposed
framework. The framework aims to provide a practical tool for supporting decision-makers
in assessing wind-energy projects’ economic feasibility and risks. Due to the modularity of
the proposed approach, the decision-makers may use the pieces of data they should have
to set the uncertainty modelling blocks and to obtain accurate results. As mentioned before,
the framework’s output is the probability density function of the Net Present Value. Given
the risk adversity of the investor, the maximum expected loss and gain, the expected value
of the Net Present Value and other risk indicators, like Value at Risk, can be used to achieve
a more informed decision.

Since disruptive events may seriously impact the economic viability of the investment,
active or passive countermeasures should be considered to mitigate their effects. Firstly,
new studies are required to determine the fragility curves of offshore wind-power plants
and different types of disruptive events. To the best of our knowledge, in the literature,
there is poor available data about the effects of weather or collision events on the floating
structures of wind turbines. This gap needs to be investigated in the future. Once these
pieces of data become available, some strategies for improving structures’ resilience and
robustness may be selected.

Additionally, since scenarios about future weather conditions change rapidly, new
types of subsidies should be developed. For instance, weather derivatives for mitigating the
risk of low wind speed exist, but they are financial products that may represent a serious
and risky cost for the investor. Subsidies that work similarly but without representing a
cost from the plant’s perspective may represent an interesting and viable solution.

Although the proposed framework includes previously neglected uncertainty sources
and, for that reason, represents an advance in the field of economic assessment of offshore
wind-power plants, there are certain limitations that may represent interesting aspects for
future studies. The growing interest in new sustainable materials may lead to changes in
the regulatory field of allowed materials for building this type of plant. Scenarios about
new technologies and involved materials should be investigated.

Additionally, emerging new forecasts for climate change suggest the importance of
including different possible climate evolutions and the weather-related disruptive events
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that may occur. The modular structure of the framework could allow researchers to include
these new scenarios in a straightforward manner.

Even though the framework models the energy price variability, which is strictly
related to the electricity demand, the overproduction scenarios can represent an interesting
future work. Indeed, it is well known that renewable energy systems produce energy
when the renewable source is available. However, there will be certain periods of time in
which the plant produces energy, but the market does not require them. This fact is already
included in time periods in which the electricity price is equal to zero, but investigating
the associated economic loss or the possibility of including energy storage systems, e.g.,
compressed air energy storage, may deserve attention.

7. Conclusions

The case of offshore wind-power plants differs from that of onshore ones, and, in the
literature, the uncertainty and variability effects on offshore systems have not been fully
investigated. To fill this gap, this work extends a previously existing modular framework
for the economic evaluation of wind-power systems under uncertainty by including the
social, political, and regulatory risks. In addition, to the best of our knowledge, disruptive
events, i.e., ship collisions, and the effects of climate change on wind speed and direction
have been considered for the first time.

Results show that:

• Commercial wind turbines’ power curves are not suited for Mediterranean sea condi-
tions of wind speed.

• From the best- to the worst-case scenario, a difference of about 290% in the expected
NPV was observed.

• Considering scenario combinations allows us to determine a more accurate risk estimation.
• Including disruptive events and climate change increases the NPV variability by up to 50%.

The approach proposed in this work may allow practitioners, decision-makers, and
other researchers to evaluate the economic performance of RESs more accurately and with
a more proper risk assessment. Finally, the relevance of scenario analysis in evaluating
offshore wind-power plants under uncertainty to avoid underestimation of the economic
risk has been demonstrated.

The present study does not allow us to determine the profitability of the wind-power
system investment because only a single wind turbine is considered. In future works, the
crucial extension of the analysis to a wind farm will be performed. Furthermore, including
extreme weather events may allow future research to investigate the trade-off between the
economy of scale and the expected loss related to a plant disruption.
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22. Ali, M.; Matevosyan, J.; Milanović, J. Probabilistic assessment of wind farm annual energy production. Electr. Power Syst. Res.
2012, 89, 70–79. [CrossRef]

23. Li, Y.-F.; Valla, S.; Zio, E. Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation.
Renew. Energy 2015, 83, 222–233. [CrossRef]

24. Sørensen, J.D. Reliability Assessment of Wind Turbines. In Proceedings of the ICASP12: 12th International Conference on
Applications of Statistics and Probability in Civil Engineering, Vancouver, BC, Canada, 12–15 July 2015; p. 636.

25. Tazi, N.; Châtelet, E.; Bouzidi, Y. Using a hybrid cost-FMEA analysis for wind turbine reliability analysis. Energies 2017, 10, 276.
[CrossRef]

26. Barberis Negra, N.; Holmstrøm, O.; Bak-Jensen, B.; Sørensen, P. Comparison of different techniques for offshore wind farm
reliability assessment. In Proceedings of the Sixth International Workshop on Large-Scale Integration of Wind Power and
Transmission Networks for Offshore Wind farms, Delft, The Netherlands, 26–28 October 2006.

27. Wang, X.; Zhang, J.; Jiang, C.; Yu, L.; Liu, D.; Weng, Y. Reliability assessment of wind farm active power based on sequential
monte-carlo method. Int. J. Energy Eng. 2013, 3, 122.

28. Mensah, A.F.; Dueñas-Osorio, L. A closed-form technique for the reliability and risk assessment of wind turbine systems. Energies
2012, 5, 1734–1750. [CrossRef]

https://doi.org/10.1016/j.sbspro.2011.09.013
https://doi.org/10.1002/we.421
https://doi.org/10.1016/j.ress.2017.10.025
https://doi.org/10.1080/15567036.2022.2132321
https://doi.org/10.1016/j.oceaneng.2022.112010
https://doi.org/10.1016/j.rser.2017.05.153
https://www.homerenergy.com/
https://www.retscreen.net/
https://sam.nrel.gov/
https://doi.org/10.1016/j.apenergy.2023.121585
https://doi.org/10.1007/s11367-022-02055-8
https://doi.org/10.1016/j.energy.2016.06.135
https://doi.org/10.1016/j.oceaneng.2020.107393
https://doi.org/10.1016/j.energy.2016.11.103
https://doi.org/10.1080/15325008.2012.742942
https://doi.org/10.1109/TSTE.2013.2256807
https://doi.org/10.1155/2016/8519785
https://doi.org/10.1016/j.epsr.2012.01.019
https://doi.org/10.1016/j.renene.2015.04.035
https://doi.org/10.3390/en10030276
https://doi.org/10.3390/en5061734


Sustainability 2023, 15, 16912 20 of 21

29. Sakki, G.K.; Tsoukalas, I.; Kossieris, P.; Makropoulos, C.; Efstratiadis, A. Stochastic simulation-optimization framework for the
design and assessment of renewable energy systems under uncertainty. Renew. Sustain. Energy Rev. 2022, 168, 112886. [CrossRef]

30. energyPro. EMD International A/S. Available online: https://www.emd-international.com/energypro/ (accessed on 24 October 2023).
31. Bela, A.; Le Sourne, H.; Buldgen, L.; Rigo, P. Ship collision analysis on offshore wind turbine monopile foundations. Mar. Struct.

2017, 51, 220–241. [CrossRef]
32. Moulas, D.; Shafiee, M.; Mehmanparast, A. Damage analysis of ship collisions with offshore wind turbine foundations. Ocean

Eng. 2017, 143, 149–162. [CrossRef]
33. Jia, H.; Qin, S.; Wang, R.; Xue, Y.; Fu, D.; Wang, A. Ship collision impact on the structural load of an offshore wind turbine. Glob.

Energy Interconnect. 2020, 3, 43–50. [CrossRef]
34. Dai, L.; Ehlers, S.; Rausand, M.; Utne, I.B. Risk of collision between service vessels and offshore wind turbines. Reliab. Eng. Syst.

Saf. 2013, 109, 18–31. [CrossRef]
35. McMorland, J.; Collu, M.; McMillan, D.; Carroll, J. Operation and maintenance for floating wind turbines: A review. Renew.

Sustain. Energy Rev. 2022, 163, 112499. [CrossRef]
36. Cho, B.; Kim, D. Fragility Assessment of Offshore Wind Turbine by Ship Collision. J. Korean Soc. Coast. Ocean Eng. 2013, 25,

236–243. [CrossRef]
37. Jaramillo, S.E.; Márquez, L.; Rigo, P.; Sourne, H.L. Numerical crashworthiness analysis of a spar floating offshore wind turbine impacted

by a ship. In Developments in the Collision and Grounding of Ships and Offshore Structures; CRC Press: Boca Raton, FL, USA, 2019.
38. Ren, Y.; Meng, Q.; Chen, C.; Hua, X.; Zhang, Z.; Chen, Z. Dynamic behavior and damage analysis of a spar-type floating offshore

wind turbine under ship collision. Eng. Struct. 2022, 272, 114815. [CrossRef]
39. Zong, S.; Liu, K.; Zhang, Y.; Yan, X.; Wang, Y. The Dynamic Response of a Floating Wind Turbine under Collision Load Considering

the Coupling of Wind-Wave-Mooring Loads. J. Mar. Sci. Eng. 2023, 11, 1741. [CrossRef]
40. Pryor, S.C.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437.

[CrossRef]
41. McInnes, K.; Erwin, T.; Bathols, J. Global Climate Model projected changes in 10 m wind speed and direction due to anthropogenic

climate change. Atmos. Sci. Lett. 2011, 12, 325–333. [CrossRef]
42. Rosende, C.; Sauma, E.; Harrison, G.P. Effect of Climate Change on wind speed and its impact on optimal power system expansion

planning: The case of Chile. Energy Econ. 2019, 80, 434–451. [CrossRef]
43. Jung, C.; Schindler, D. Changing wind speed distributions under future global climate. Energy Convers. Manag. 2019, 198, 111841.

[CrossRef]
44. Jevrejeva, S.; Jackson, L.P.; Riva, R.E.M.; Grinsted, A.; Moore, J.C. Coastal sea level rise with warming above 2 ◦C. Proc. Natl. Acad.

Sci. USA 2016, 113, 13342–13347. [CrossRef] [PubMed]
45. van Vuuren, D.P.; Edmonds, J.A.; Kainuma, M.; Riahi, K.; Weyant, J. A special issue on the RCPs. Clim. Change 2011, 109, 1.

[CrossRef]
46. Bonanno, R.; Viterbo, F.; Maurizio, R.G. Climate change impacts on wind power generation for the Italian peninsula. Reg. Environ.

Change 2022, 23, 15. [CrossRef]
47. Amer, M.; Daim, T.U.; Jetter, A. A review of scenario planning. Futures 2013, 46, 23–40. [CrossRef]
48. Dean, M. Scenario Planning: A Literature Review; UCL: London, UK, 2019.
49. Cordova-Pozo, K.; Rouwette, E.A.J.A. Types of scenario planning and their effectiveness: A review of reviews. Futures 2023, 149, 103153.

[CrossRef]
50. Bradfield, R.; Wright, G.; Burt, G.; Cairns, G.; Van Der Heijden, K. The origins and evolution of scenario techniques in long range

business planning. Futures 2005, 37, 795–812. [CrossRef]
51. Enzer, S. Exploring long-term business climates and strategies with interax. Futures 1981, 13, 468–482. [CrossRef]
52. Gordon, T.J.; Becker, H.S.; Gerjuoy, H. Trend Impact Analysis: A New Forecasting Tool; Futures Group: Glastonbury, CT, USA, 1974.
53. Ishikawa, K.; Loftus, J.H. Introduction to Quality Control; Springer: Berlin/Heidelberg, Germany, 1990; Volume 98.
54. Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: New York, NY, USA, 2019.
55. Gordon, T.J. Cross-Impact Method; American Council for the United Nations University: London, UK, 1994.
56. Weimer-Jehle, W. Introduction to CIB. In Cross-Impact Balances (CIB) for Scenario Analysis: Fundamentals and Implementation;

Weimer-Jehle, W., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 1–9.
57. Ajayi, O.O.; Fagbenle, R.O.; Katende, J.; Ndambuki, J.M.; Omole, D.O.; Badejo, A.A. Wind energy study and energy cost of wind

electricity generation in Nigeria: Past and recent results and a case study for South West Nigeria. Energies 2014, 7, 8508–8534.
[CrossRef]

58. Kwon, S.-D. Uncertainty analysis of wind energy potential assessment. Appl. Energy 2010, 87, 856–865. [CrossRef]
59. Ulgen, K.; Hepbasli, A. Determination of Weibull parameters for wind energy analysis of Izmir, Turkey. Int. J. Energy Res. 2002,

26, 495–506. [CrossRef]
60. Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.; Sørensen, P. Model of a synthetic wind speed time series generator. Wind Energy Int.

J. Prog. Appl. Wind Power Convers. Technol. 2008, 11, 193–209. [CrossRef]
61. Huang, Y.-N.; Whittaker, A.S.; Luco, N. A probabilistic seismic risk assessment procedure for nuclear power plants:(I) Methodol-

ogy. Nucl. Eng. Des. 2011, 241, 3996–4003. [CrossRef]

https://doi.org/10.1016/j.rser.2022.112886
https://www.emd-international.com/energypro/
https://doi.org/10.1016/j.marstruc.2016.10.009
https://doi.org/10.1016/j.oceaneng.2017.04.050
https://doi.org/10.1016/j.gloei.2020.03.009
https://doi.org/10.1016/j.ress.2012.07.008
https://doi.org/10.1016/j.rser.2022.112499
https://doi.org/10.9765/KSCOE.2013.25.4.236
https://doi.org/10.1016/j.engstruct.2022.114815
https://doi.org/10.3390/jmse11091741
https://doi.org/10.1016/j.rser.2009.07.028
https://doi.org/10.1002/asl.341
https://doi.org/10.1016/j.eneco.2019.01.012
https://doi.org/10.1016/j.enconman.2019.111841
https://doi.org/10.1073/pnas.1605312113
https://www.ncbi.nlm.nih.gov/pubmed/27821743
https://doi.org/10.1007/s10584-011-0157-y
https://doi.org/10.1007/s10113-022-02007-w
https://doi.org/10.1016/j.futures.2012.10.003
https://doi.org/10.1016/j.futures.2023.103153
https://doi.org/10.1016/j.futures.2005.01.003
https://doi.org/10.1016/0016-3287(81)90102-6
https://doi.org/10.3390/en7128508
https://doi.org/10.1016/j.apenergy.2009.08.038
https://doi.org/10.1002/er.798
https://doi.org/10.1002/we.244
https://doi.org/10.1016/j.nucengdes.2011.06.051


Sustainability 2023, 15, 16912 21 of 21

62. Chaudhari, V.; Somala, S.N. Fragility of offshore wind turbines variation with pulse-period and amplitude: Directivity and Fling
step. In Structures; Elsevier: Amsterdam, The Netherlands, 2022; pp. 66–76.

63. Lee, S.-G.; Kim, D.-H.; Yoon, G.-L. Seismic Fragility for 5 MW Offshore Wind Turbine Using Pushover Analysis. J. Ocean Eng.
Technol. 2013, 27, 98–106. [CrossRef]

64. Mo, R.; Kang, H.; Li, M.; Zhao, X. Seismic fragility analysis of monopile offshore wind turbines under different operational
conditions. Energies 2017, 10, 1037. [CrossRef]

65. Wei, K.; Arwade, S.; Myers, A.; Hallowell, S.; Hajjar, J.; Hines, E. Performance levels and fragility for offshore wind turbine
support structures during extreme events. In Proceedings of the Structures Congress, Portland, OR, USA, 23–25 April 2015;
pp. 1891–1902.

66. Martin del Campo, J.O.; Pozos-Estrada, A.; Pozos-Estrada, O. Development of fragility curves of land-based wind turbines with
tuned mass dampers under cyclone and seismic loading. Wind Energy 2021, 24, 737–753. [CrossRef]

67. Mathew, S. Wind Energy: Fundamentals, Resource Analysis and Economics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1.
68. Tavner, P. Offshore Wind Turbines: Reliability, Availability and Maintenance; IET: London, UK, 2012; Volume 13.
69. Castro-Santos, L.; Filgueira-Vizoso, A.; Lamas-Galdo, I.; Carral-Couce, L. Methodology to calculate the installation costs of

offshore wind farms located in deep waters. J. Clean. Prod. 2018, 170, 1124–1135. [CrossRef]
70. Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Model; National Renewable Energy Lab.(NREL): Golden,

CO, USA, 2006.
71. Maienza, C.; Avossa, A.; Ricciardelli, F.; Coiro, D.; Troise, G.; Georgakis, C.T. A life cycle cost model for floating offshore wind

farms. Appl. Energy 2020, 266, 114716. [CrossRef]
72. Castro-Santos, L. Methodology Related to the Development of the Economic Evaluation of Floating Offshore Wind Farms in Terms of the

Analysis of the Cost of Their Life-Cycle Phases; Universidade da Coruña: La Coruña, Spain, 2013.
73. IEA. World Energy Outlook 2022; IEA: Paris, France, 2022.
74. Schmitt, A.; Zhou, H. “EU Energy Outlook 2060”, Energy Brainpool. 2022. Available online: https://energypost.eu/eu-energy-outlook-

to-2060-how-will-power-prices-and-revenues-develop-for-wind-solar-gas-hydrogen-more/ (accessed on 24 October 2023).
75. Fortes, P.; Alvarenga, A.; Seixas, J.; Rodrigues, S. Long-term energy scenarios: Bridging the gap between socio-economic storylines

and energy modeling. Technol. Forecast. Soc. Change 2015, 91, 161–178. [CrossRef]
76. Shields, M.; Beiter, P.; Nunemaker, J. A Systematic Framework for Projecting the Future Cost of Offshore Wind Energy; National

Renewable Energy Lab.(NREL): Golden, CO, USA, 2022.
77. Nghiem, A.; Pineda, I. Wind Energy in Europe: Scenarios for 2030; WindEurope: Brussels, Belgium, 2017. Available online: https:

//windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf (accessed
on 24 October 2023).

78. Lecca, P.; McGregor, P.G.; Swales, K.J.; Tamba, M. The importance of learning for achieving the UK’s targets for offshore wind.
Ecol. Econ. 2017, 135, 259–268. [CrossRef]

79. Taylor, C.W. Creating Strategic Visions; Army War Coll Strategic Studies Inst: Carlisle Barracks, PA, USA, 1990.
80. Hancock, T.; Bezold, C. Possible futures, preferable futures. Healthc. Forum J. 1994, 37, 23–29. [PubMed]
81. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development;

National Renewable Energy Lab.(NREL): Golden, CO, USA, 2009.
82. Poore, R.; Lettenmaier, T. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study, November 1,

2000–February 28, 2002; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2003.
83. Ferson, S. What Monte Carlo methods cannot do. Hum. Ecol. Risk Assess. Int. J. 1996, 2, 990–1007. [CrossRef]
84. Ferson, S.; Ginzburg, L.R. Different methods are needed to propagate ignorance and variability. Reliab. Eng. Syst. Saf. 1996, 54,

133–144. [CrossRef]
85. Beck, J.L.; Zuev, K.M. Rare-Event Simulation. In Handbook of Uncertainty Quantification; Ghanem, R., Higdon, D., Owhadi, H., Eds.;

Springer International Publishing: Cham, Switzerland, 2017; pp. 1075–1100.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5574/KSOE.2013.27.4.098
https://doi.org/10.3390/en10071037
https://doi.org/10.1002/we.2600
https://doi.org/10.1016/j.jclepro.2017.09.219
https://doi.org/10.1016/j.apenergy.2020.114716
https://energypost.eu/eu-energy-outlook-to-2060-how-will-power-prices-and-revenues-develop-for-wind-solar-gas-hydrogen-more/
https://energypost.eu/eu-energy-outlook-to-2060-how-will-power-prices-and-revenues-develop-for-wind-solar-gas-hydrogen-more/
https://doi.org/10.1016/j.techfore.2014.02.006
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
https://doi.org/10.1016/j.ecolecon.2017.01.021
https://www.ncbi.nlm.nih.gov/pubmed/10132155
https://doi.org/10.1080/10807039609383659
https://doi.org/10.1016/S0951-8320(96)00071-3

	Introduction 
	Literature Review 
	Framework for Uncertainty Propagation and Risk Assessment 
	Disruptive Events Effects 
	Climate-Change Effects 

	Scenario Description 
	Numerical Example 
	Results 
	Scenario Analysis 
	Scenario Combination 


	Discussion 
	Conclusions 
	References

