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Abstract: With the enhancement of the Internet of Things (IoT), smart cities have developed the
idea of conventional urbanization. IoT networks permit distributed smart devices to collect and
process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges
like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability,
transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs
in an IoT environment is crucial to protect devices and the network from potential security threats.
Malicious URL detection is an essential element of cybersecurity. It is established that malicious
URL attacks mean large risks in smart cities, comprising financial damages, losses of personal
identifications, online banking, losing data, and loss of user confidentiality in online businesses,
namely e-commerce and employment of social media. Therefore, this paper concentrates on the
proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL
Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-
MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC
technique performs pre-processing to transform the data to a compatible format, and a Fast Text
word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning
(HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term
memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL
technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL
database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal
accuracy of 99.31%.

Keywords: cybersecurity; smart city; Internet of Things Deep Learning; malicious URL; political optimizer

1. Introduction

At present, there is a development of Internet of Things (IoT) mechanisms in sustain-
able smart environments [1]. The development of IoT devices has led to enhanced security
vulnerabilities, creating general consumers as victims of various kinds of safety attacks
by malicious Uniform Resource Locators (URLs), as any devices in a shared IoT system
are dependent upon URLs [2]. Hackers often use phishing and spam to trick consumers
by clicking malicious URLs, Trojans are embedded into computers, or the delicate data of
victims may be leaked [1]. This malicious URL identification technology could assist users
in finding malevolent URLs and stop users from malevolent URL attacks. Convention-
ally, studies on malicious URL recognition adopt blacklist-related techniques for detecting
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malicious URLs [2]. This technique has several exclusive benefits. It consists of a lower
false-positive rate, has a high speed, and is easy to realize. Yet, today, domain generation
algorithms (DGA) can produce thousands of diverse malicious field names on a daily basis,
which could be identified effectively by classical blacklist-related approaches [3]. To detect
malicious URLs, research scholars use an ML approach. However, such techniques should
derive the features manually, and hackers can devise such attributes to avoid being recog-
nized [4]. Confronted with the current complicated network, devising a more potentially
malevolent URL identification method is a focus of study.

Aggressors can use vulnerable sites to execute malicious intent [5]. For instance,
attackers inject cross-site scripting into susceptible sites to acquire the sensitive data of the
target or execute phishing. Many solutions have been devised to identify these websites
precisely. Such solutions are script-based, URL-related, and web content-related [6]. URL-
based identification and content-related detection are the most used methods, while some
research was performed on script-based identification. URL-related detection is a superior
choice, as it can be a safe and proactive method for distinguishing machines; it can find
malicious URLs before the user visits them [7]. Furthermore, identifying malicious URLs
has the potential for resource-limited and real-time detection applications such as mobile
and IoT devices. Different methods were recommended to find harmful content and
malicious websites by extracting attributes from their URLs [8]. Many approaches depend
on humans to derive features, whereas specific solutions make use of deep learning (DL)
approaches for feature automation. Various sets of features have been used and derived
for identifying host information features such as host sponsor and country name, domain
features, namely .tk and .com, and lexical features, such as counting of the dots in the
URL length and URL [9]. Hackers may utilize evasive approaches to bypass security
countermeasures [10]. Hence, any attributes derived from such URLs are misleading since
the aggressor could use them to conceal malevolent patterns and the malevolent intent of
websites.

This research concentrates on the proposal of a Political Optimization Algorithm
with a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for
Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique
identifies whether malicious URLs occur or not. To accomplish this, the POAHDL-MDC
technique follows pre-processing to transform it to a compatible format, and a Fast Text
word embedding process is involved. For malicious URL detection, Hybrid DL (HDL)
model integrates the features of SAE and Bi-LSTM. Finally, POA can be used for the optimal
hyperparameter tuning of the HDL technique. The simulation results of the POAHDL-
MDC methodology can be tested on a benchmark database. In short, the main contributions
are given below.

• An automated POAHDL-MDC model comprising pre-processing, word embedding,
HDL recognition, and POA-based hyperparameter tuning is proposed for malicious
URL classification. To the best of our knowledge, the POAHDL-MDC methodology
has never existed in other studies.

• The HDL classification method combines the strengths of SAE and BiLSTM models to
improve the exactness of malicious URL classification.

• Hyperparameter optimization of the HDL model employing the POA model, utilizing
cross-validation, aids in enhancing the forecast results of the HDLPOA-MDC technique
for unseen data.

The rest of the paper is classified as follows. Section 2 produces related works, and
Section 3 offers the proposed model. Then, Section 4 offers the result analysis, and Section 5
concludes the paper.

2. Related Works

Patgiri et al. [11] developed a new malicious URL detection method named DL and
Bloom Filter (deepBF). DeepBF is obtainable twofold. The authors primarily devised a
learned Bloom Filter using a 2D Bloom Filter. The authors experimentally determined
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the optimal non-cryptography string hash function. Afterwards, the authors devised
a malicious URL recognition system utilizing DL. To find malicious URLs, the authors
implemented the evolutionary CNN. Wanda and Jie [12] devised a deep learning using a
new convolutional neural network (CNN) called URL Deep. Rather than utilizing classical
CNNs, the authors employed Dynamic CNNs. It could allow the same signal on a similar
CNN channel. URL Deep’s graph was dynamically upgraded after all layers of the network
were analyzed.

In [13], an enhanced DL-related phishing detection method was developed by incorpo-
rating the strengths of a deep neural network (DNN) and a variational autoencoder (VAE).
In the structure presented, the VAE model automatically extracted the basic features of the
raw URL by rebuilding the original input URL to enhance phishing URL detection. The
aim of Angadi and Shukla’s [14] study was to accumulate a list of significant attributes
exploited to classify and detect malicious URLs. This study suggests lexical aspects and
host-based URLs for increasing the efficacy of classifiers to detect malicious URLs. Uti-
lizing ML classifiers called RF and AdaBoost techniques, Benign and Malicious URLs
are categorized. In [15], the authors introduced a complete prototype of malicious URL
detection through ML techniques. Specifically, the authors designed a technique utilizing
the AdaBoost approach and tried a precise method of making Malicious URL exposure
from an ML perspective.

In [16], the authors assessed many existing DL-oriented character-level-embedding
approaches for malicious URL detection. The authors devised DeepURLDetect (DURLD),
where raw URLs were encrypted through character-level embedding for transforming and
using performance development. To capture different kinds of data in the URL, the authors
utilized hidden layers in the DL structure to derive features in character level embedded
and used a nonlinear activation function. Alsaedi et al. [17] targeted the enhancement of
the recognition exactness of malicious URL recognition by developing and devising a cyber-
threat intelligence-related malicious URL identification method through two-step ensemble
learning. This study introduced a two-step ensemble-learning approach that combined the
RF technique to pre-classify with multilayer perceptron (MLP) for decision-making.

While recent DL models have received significant attention in cybersecurity, the
application of metaheuristic algorithms for optimizing hyperparameters of DL methods
needs to be explored further. There is a great need to fine-tune hyperparameter values
of DL models in cybersecurity tasks, which are computationally intensive and require
substantial computational resources. The use of metaheuristics can optimize the DL models
to eliminate the human trial and error approach. Addressing these study gaps can lead to
the development of more effective and efficient DL-based cybersecurity solutions that are
fine-tuned using metaheuristic algorithms, ultimately enhancing overall security posture in
an increasingly digital and connected world. Some of the recently developed metaheuristic
algorithms are the number hummingbird algorithm (AHA), atom search optimization, sine
cosine algorithm (SCA), equilibrium optimizer (EO), the Giant Trevally Optimizer, and the
Remora Optimization technique.

3. The Proposed Model

In this study, we present a unique POAHDL-MDC method for programmed recogni-
tion and classification of malicious URLs. The POAHDL-MDC approach has several stages
of operations, namely pre-processing, Fast Text word embedding, HDL-based malicious
URL detection, and POA-based hyperparameter tuning. Figure 1 signifies the workflow of
the POAHDL-MDC methodology.
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Figure 1. Workflow of the POAHDL-MDC approach.

3.1. Pre-Processing

In this stage, with the help of the natural language processing (NLP) text pre-processing
method, the URL is pre-processed by eradicating symbols. As URLs are crawled from
websites, unnecessary texts such as punctuation, HTML codes, and symbols are eliminated
to enhance classifier performance and minimize feature complexity. The gathered text data
are transformed to lowercase and normalized. The normalization procedure is twofold.
Initially, the text in the unstructured dataset is transformed into a structured word vector.
Then, the feature vector scarcity is diminished by eliminating unwanted words and words
decreased by rooting words to their original form. The normalization begins with tokeniza-
tion, after the elimination of stemming, stop words, and lemmatization. Lastly, the words
are transformed to their corresponding numerical formats. Stemming is a transforming
procedure that converts the words into their roots, for instance, eradicating “ing” from the
word and “s” from the plural words. Lemmatization converts the words using a lexical
knowledge base into the base form by rooting verbs, for example, ‘took’ to ‘take’.
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3.2. Word Embedding Using Fast Text

In this work, the Fast Text technique is employed for the word embedding process.
‘Word embedded’ refers to a distributional representation of words, but all the words
are mapped to a shared lower dimension space, and all the words are connected to a
d-dimension vector [18]. In various word embedding, fastText does not ignore the word
morphology. This approach is dependent upon continuous skip grams. Currently, every
word can be determined as a character n-gram. Yet n = 3, the word rapid is as follows:

< qu, qui, uic, ick, ck >

This technique maintains subword data and evaluates valid words embedded in
out-of-vocabulary words. Therefore, it offers a vector to hidden words in the trained
word embedding.

For learning word representation, fastText, followed by continuous skip grams es-
tablished by the author, can be easier and work well with a smaller training data count.
However, this model disregards the internal world infrastructure. The fastText presents
various scoring functions for preserving the subword data.

To provide the word w, the group of n grams performing in w is Nw ⊂ {1, N}, whereas
N denotes the dictionary size of n-grams. The vector representation Zg is allocated to every
n-gram n. Therefore, the drive scoring function develops:

s(w, c) = ∑
n∈Nw

ZT
g Vc (1)

where c denotes the context word, and Vc signifies the context vector.

3.3. Malicious URL Detection Using HDL

The HDL model is employed for automated malicious URL detection. The auto-
encoder (AE) refers to an unsupervised neural network mechanism that learns the hidden
features of an inputted dataset, names the encoding (coding) function, while applying
the learned newest feature to recreate the original input dataset, and names the decoding
function [19]. AE has one hidden layer (HL). Significantly, the input and output layers of
the AE are equivalent.

The sigmoid function is applied as s f 1 and s f 2, where 1 = [x11, x12, . . . , x1dl ]
T ∈

Rld1, b1 ∈ Rld1, x2 = [x21, x22, . . . , x2dl ]
T ∈ R2dr, b2 ∈ R2drh =

[
h1, h2, · · · , hdh]

T ∈ Rdh ,
where h denotes the connection vector between x1 and x2; b1 and b2 represent the devia-
tion vector.

h = f1(x1) = s f 1(W1X1 + b1) (2)

x2 = f2(h) = sf2(W2h + b2) (3)

J(W, b) = J(w1, w2, b1, b2) =
N

∑
i=1
‖x2 − x1‖/2N =

N

∑
i=1
‖gθ(x2)− x1‖/2N (4)

SAE represents the superposition of more than one AEs. Once the initial AE is
implemented, successive AEs are implemented in order until the N-th, and the resultant
output is the SAE superimposition outcome. Equation (7) signifies the variable that all AE
disseminates to the following layer.

LSTM is a common kind of recurrent neural network (RNN) and is better suited for
modeling time-series data, namely humidity, day-to-day air temperature, seawater salinity,
air pressure, and other data attained by text buoys due to their design characteristics. In
recent times, a new NN, named LSTM, has been implemented. The three major arithmetical
structures in LSTM define that it achieves LSTM based on RNN.
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The forgetting door is a way of selecting forget, and is given as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(5)

where ft denotes outcome attained by forgetting gates, and W f shows the vector that
defines the input weight; b f represents the bias vector; ht−1 indicates the HL at the final
moment; the present input xi; σ denotes the activation function:

W f · [ht−1, xi] = [W f ] ·
[

ht−1
xt

]
=
[
W f hW f x

][ht−1
xt

]
= W f hht−1 + W f xxt

(6)

The input gate chooses the data that must be memorized, and it can be represented
as follows: {

it = σ(Wi · [ht−1, xt] + bi)
ct = ft · ct−1 + it · tanh(Wc · [ht−1, xt] + bc)

(7)

where ht−1 denotes resultant output at the final moment. It denotes the value of the input
gate, ct and ct−1 show the activation and cell state at the final moment, Wi represents weight
in the input gate; and Wc denotes the forget gate’s weight. bi shows the input gate’s bias
vector; bc represents the forget gate’s bias vector.

The output gate can be represented as:{
ot = σ(W0 · [ht−1, xt] + bo)
ht = 0t · tanh(ct)

(8)

In Equation (8), ht represents the outcome of the output gate, Ot denotes the vector,
and bo shows the offset vector. Wo indicates the weights.

LSTM predicts the outcome at a later time, depending on the timing data of the
previous time. For certain issues, the present production is relevant to the prior and future
states. The principles of LSTM linking two networks remain unchanged. The forward
LSTM obtains the previous dataset of input series, and the backward LSTM obtains the
future dataset of input: 

→
hr f =

→
LSTM(W1ht−1, W2xt, ct−1)

→
htb =

→
LSTM(W3ht+1, W4xt, ct+1)

Ht

[ →
hr f ,

→
htb

] (9)

The hidden layer Ht of BLSTM at t time involves forward hr f and backward htb; W1,
W2, W3 and W4 are correspondingly the represent weight coefficients; xt shows the input at
t time; ht denotes the hidden state at time t.

The data transmission process accomplishes the fusion of two approaches in the HDL
model: a partially supervised fine-tuning network, presenting the evaluation index, Eo, and
fine-tuning the weight over the backpropagation technique, especially SAE-implemented
unsupervised learning and supervised fine-tuning. In the trained method, the input dataset
is mapped towards the HL over the first layer AE using Equations (2)–(4). Then, the AE is
superimposed, and the whole network is well-trained until the final AE. The fine-tuning of
the whole model by Equation (10) is implemented by applying backpropagation (BP) to
attain a better weight.

Eo =
1
2

Ni

∑
i=1

(Ai − Fi)/N (10)

where N characterizes the number of samples, Ai shows the actual value, and Fi indicates
the forecasted value. Based on the SAE output, training the BLSTM network makes
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predictions for the prediction, training, and testing groups. The outcome can be attained
afterwards by passing the comparison of the assessment conditions.

3.4. Hyperparameter Tuning

At the final stage, a POA is employed for optimum hyperparameter tuning of the HDL
technique. The POA is a novel meta-heuristic system motivated by political processes like
constituency allocation, party formation, party switching, inter-party elections, election
campaigns, and government development [20]. POA includes five stages, given below.
The party formation and constituency allotment stages take place when the population is
initialized, and the residual stages are initialized to run in the loop.

The search agent in the POA includes n political parties as shown in Equation (11),
where all the parties (pri) have n members, as shown in Equation (12). prj

i refers to
the j-th members of i-th party, which can be treated as a candidate solution where prj

i
denotes a vector of length d as shown in Equation (13), where d represents the number
of decision variables belonging to the optimizer problems. Consequently, the size of
populations is the square of n, as shown in Equation (14). Also, n constituencies exist, as
shown in Equation (15). The j-th members in each party contest the election from the j-th
constituencies Cj, as modeled by Equation (16).

pr = {pr1, pr2, pr3, . . . , prn} (11)

pri =
{

pr1
i , pr2

i , pr3
i , . . . , prn

i

}
(12)

prj
i =

[
prj

i,1, ·prj
i,2, prj

i,3, prj
i,d

]T
(13)

population Size = n2 (14)

Co = {Co1, Co2, Co3, . . . , Con} (15)

Coj =
{

prj
1, prj

2., prj
3, prj

n

}
(16)

Election demonstrates how the election procedure is simulated. The best member in
every party is named leader, i-th parties are represented as pr∗i and the set having the party
leader is signified as pr∗, demonstrated in Equation (17). After the election, the constituency
winner becomes a parliamentarian. The best member from all the constituencies is regarded
as the constituency winner. Co∗ shows the constituency winners or parliamentarians’
group, whereas Co∗j signifies the parliamentarian or winner of the j-th constituencies, as
shown below.

pr∗ = {pr∗1 , pr∗2 , pr∗3 , . . . , pr∗n} (17)

Co∗ = {Co∗1 , Co∗2 , Co∗3 , . . . , Co∗n} (18)

In an election campaign, every candidate solution location is upgraded based on the
constituency winner

(
Co∗j

)
and the party leader

(
pr∗i
)

is allocated by applying
Equations (19) and (20) according to the best candidate in the prior iteration. Once the
candidate’s fitness increases, Equation (19) is exploited. Otherwise, Equation (20) is used.
In all scenarios, every candidate’s location is firstly upgraded based on the parliamentarian
Co∗j and the party leader pr∗i . t shows the iteration index, r denotes the random variable



Sustainability 2023, 15, 16811 8 of 17

within [0, 1], and m∗ first possesses the value of k-th dimensions of the leader of i-th parties
pr∗i,k, then parliamentarian co∗j,k.

prj
i,k(t + 1) =



m∗ + r
(

m∗ − prj
i,k(t)

)
i f prj

i,k(t− 1)

≤ prj
i,k(t) ≤ m∗ or prj

i,k(t− 1) ≥ prj
i,k(t) ≥ m∗

m∗ + (2r− 1)
∣∣∣m∗ − prj

i,k(t)
∣∣∣ i f prj

i,k(t− 1)

≤ m∗ ≤ prj
i,k(t)or prj

i,k(t− 1) ≥ m∗ ≥ prj
i,k(t)

m∗ + (2r− 1)
∣∣∣m∗ − prj

i,k(t− 1)
∣∣∣ i f m∗

≤ prj
i,k(t− 1) ≤ prj

i,k(t) or m∗ ≥ prj
i,k(t− 1) ≥ prj

i,k(t)

(19)

prj
i,k(t + 1) =



m∗ + (2r− 1)
∣∣∣m∗ − prj

i,k(t)
∣∣∣ i f prj

i,k(t− 1) ≤ prj
i,k(t)

≤ m∗ or prj
i,k(t− 1) ≥ prj

i,k(t) ≥ m∗

prj
i,k + r

(
prj

i,k(t)− prj
i,k(t− 1) i f prj

i,k(t− 1) ≤ m∗

≤ p fk(J ) or p ‖k (r− 1) ≥ m∗ ≥ prj
i,k(t)

m∗ + (2r− 1)
∣∣∣m∗ − prj

i,k(t− 1)
∣∣∣i f m∗

≤ prj
i,k(t− 1) ≤ prj

i,k(t) or m∗ ≥ prj
i,k(t− 1) ≥ prj

i,k(t)

(20)

In politics, the party-switching phase takes place concurrently with the election cam-
paign stage, but in PO, this phase takes place after the election campaign stage. A parameter
called party switching rate λ may be determined, that starts with the maximal value, λmax,
then declines linearly to 0, where the user tunes λmax. All the party members pdι are
selected with a certain probability, λ, to be switched with an arbitrary party per, where it
substitutes the minimum fit member in that party. This phase is implemented to balance
exploration and exploitation.

The constituency winners, along with the party leaders, are determined after the
government formation. The entire parliamentarian Co∗j upgrades its location based on the
randomly selected constituency winner Co∗r based on Equation (21), and if this location
update results in some improvement in the fitness of Co∗j , the location and fitness of Co∗j
are upgraded. Now, a in Equation (21) is a random integer within [0, 1]. Remember, Co∗j is
upgraded to Co∗jnew

only if the fitness of Co∗jnew
is superior to the fitness of Co∗j .

Co∗jnew
= Co∗r + (2a− 1)

∣∣∣Co∗r − Co∗j
∣∣∣ (21)

Fitness selection is a considerable factor influencing the behavior of the POA method.
The hyperparameter selection procedure contains a solution-encoding model to measure
the effectiveness of candidate solutions. In this study, POA refers to exactness as the main
criterion to plan the fitness function, expressed below:

Fitness = max (P)

P =
TP

TP + FP
(22)

where TP and FP signify true positive and false positive values, respectively.

4. Results and Discussion

The developed technique is simulated by employing the Python 3.6.5 tool. The presented
method is tested on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB
HDD. The experimental outcome of the POAHDL-MDC methodology can be assessed by
employing a Malicious URL database [21–23] comprising 651,191 URLs with four class labels,
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as represented in Table 1. A set of measures is utilized in order to test the classification
outcomes accuracy (accuy), sensitivity (sensy), specificity (specy), and F-score (Fscore).

Table 1. Details on the dataset.

Classes Number of URLs

Benign 428,103

Defacement 96,457

Phishing 94,111

Malware Link 32,520

Total No. of URLs 651,191

Sensitivity: estimates the proportion of positive samples accurately categorized.

Sensitivity =
TP

TP + FN
(23)

Specificity: scales the proportion of negative samples exactly classified.

Specificity =
TN

TN + FP
(24)

Accuracy scales the proportion of correctly classified samples (positives and negatives)
against total samples (number of samples classified).

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

F-score: extends the number of true positives separated by the number of true positives
plus the number of false positives.

F-score =
2TP

2TP + FP + FN
(26)

The confusion matrices of the POAHDL-MDC methodology on malicious URL recog-
nition are shown in Figure 2. The outcome highlights that the POAHDL-MDC method
identifies four types of malicious URLs.

In Table 2 and Figure 3, the results of the POAHDL-MDC method, with an 80:20 ratio
of TR/TS sets, are displayed. The table values signify an enhanced solution of the POAHDL-
MDC system. For example, with 80% of the TR set, the POAHDL-MDC techniques attain
an average accuy of 98.96%, precn of 95.75%, sensy of 95.36%, specy of 99.12%, and an Fscore
of 95.55%. Also, with 20% of the TS set, the POAHDL-MDC algorithm gains an average
accuy of 98.94%, precn of 95.78%, sensy of 95.24%, specy of 99.12%, and an Fscore of 95.50%.

In Table 3 and Figure 4, the classifier results of the POAHDL-MDC method with 70:30
of TR/TS sets are displayed. The result signifies a greater result for the POAHDL-MDC
technique. For example, with 70% of the TR set, the POAHDL-MDC algorithm gains an
average accuy of 99.28%, precn of 97.04%, sensy of 97.76%, specy of 99.43%, and an Fscore
of 97.40%. Additionally, with 30% of the TS set, the POAHDL-MDC technique gains an
average accuy of 99.31%, precn of 97.21%, sensy of 97.82%, specy of 99.45%, and an Fscore of
97.51%.
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Table 2. Classifier outcome of the POAHDL-MDC method on 80% of TR set and 20% of TS set.

Class Accuy Precn Sensy Specy Fscore

Training Phase (80%)

Benign 98.71 99.01 99.03 98.09 99.02

Defacement 98.91 96.28 96.36 99.35 96.32

Phishing 99.25 97.07 97.75 99.50 97.41

Malware Link 98.97 90.63 88.31 99.52 89.45

Average 98.96 95.75 95.36 99.12 95.55

Testing Phase (20%)

Benign 98.73 99.03 99.03 98.16 99.03

Defacement 98.89 96.17 96.41 99.33 96.29

Phishing 99.21 96.73 97.81 99.44 97.26

Malware Link 98.93 91.20 87.73 99.54 89.43

Average 98.94 95.78 95.24 99.12 95.50

Figure 5 inspects the accuy of the POAHDL-MDC algorithm on the traing and vald
procedures on the test database. The result implies that the POAHDL-MDC technique
gains superior accuy values above maximal epochs. Additionally, the enhanced vald accuy
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over traing accuy demonstrates that the POAHDL-MDC algorithm obtains better results on
the test database.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

In Table 2 and Figure 3, the results of the POAHDL-MDC method, with an 80:20 ratio 

of TR/TS sets, are displayed. The table values signify an enhanced solution of the 

POAHDL-MDC system. For example, with 80% of the TR set, the POAHDL-MDC tech-

niques attain an average 𝑎𝑐𝑐𝑢𝑦 of 98.96%, 𝑝𝑟𝑒𝑐𝑛 of 95.75%, 𝑠𝑒𝑛𝑠𝑦  of 95.36%, 𝑠𝑝𝑒𝑐𝑦 of 

99.12%, and an 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.55%. Also, with 20% of the TS set, the POAHDL-MDC algo-

rithm gains an average 𝑎𝑐𝑐𝑢𝑦  of 98.94%, 𝑝𝑟𝑒𝑐𝑛  of 95.78%, 𝑠𝑒𝑛𝑠𝑦   of 95.24%, 𝑠𝑝𝑒𝑐𝑦  of 

99.12%, and an 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.50%. 

Table 2. Classifier outcome of the POAHDL-MDC method on 80% of TR set and 20% of TS set. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

Training Phase (80%) 

Benign 98.71 99.01 99.03 98.09 99.02 

Defacement 98.91 96.28 96.36 99.35 96.32 

Phishing 99.25 97.07 97.75 99.50 97.41 

Malware Link 98.97 90.63 88.31 99.52 89.45 

Average 98.96 95.75 95.36 99.12 95.55 

Testing Phase (20%) 

Benign 98.73 99.03 99.03 98.16 99.03 

Defacement 98.89 96.17 96.41 99.33 96.29 

Phishing 99.21 96.73 97.81 99.44 97.26 

Malware Link 98.93 91.20 87.73 99.54 89.43 

Average 98.94 95.78 95.24 99.12 95.50 

 

Figure 3. Classifier outcome of the POAHDL-MDC technique on 80% of the TR set and 20% of the 

TS set. 

Figure 3. Classifier outcome of the POAHDL-MDC technique on 80% of the TR set and 20% of the TS set.

Table 3. Classifier result of the POAHDL-MDC model on 70% of the TR set and 30% of the TS set.

Class Accuy Precn Sensy Specy Fscore

Training Phase (70%)

Benign 99.02 99.45 99.06 98.94 99.25

Defacement 99.33 98.04 97.42 99.66 97.73

Phishing 99.27 96.76 98.26 99.44 97.50

Malware Link 99.51 93.93 96.30 99.67 95.10

Average 99.28 97.04 97.76 99.43 97.40

Testing Phase (30%)

Benign 99.04 99.46 99.08 98.97 99.27

Defacement 99.34 98.07 97.51 99.66 97.79

Phishing 99.32 96.84 98.48 99.46 97.65

Malware Link 99.53 94.49 96.20 99.70 95.34

Average 99.31 97.21 97.82 99.45 97.51

The loss curve of the POAHDL-MDC model at the time of traing and vald is shown
on the test database in Figure 6. The result represents the POAHDL-MDC approach gains
nearby values of traing and vald loss. It could be detected that the POAHDL-MDC system
obtains results efficiently on the test database.
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A comprehensive PR analysis of the POAHDL-MDC model applied to the test dataset is
illustrated in Figure 7. The figure infers that the POAHDL-MDC system outcomes have greater
values of PR. Also, the POAHDL-MDC algorithm has superior PR values in four classes.
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In Figure 8, an ROC curve for the POAHDL-MDC model is revealed for the test
database. The result reveals that the approach improves ROC values. Further, the POAHDL-
MDC approach exhibits greater ROC values in all four classes.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 8. ROC curve of the POAHDL-MDC approach. 

In Table 4 and Figure 9, a clear comparison of the POAHDL-MDC system with exist-

ing approaches is made [17]. The results highlight that the LR and RF approaches accom-

plish the lowest outcome. 

Table 4. Comparative outcome of the POAHDL-MDC methodology with other systems [17]. 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

POAHDL-MDC 99.31 97.82 99.45 97.51 

Sequential DL 98.58 97.32 98.80 96.96 

Naïve Bayes 98.33 94.71 97.75 94.54 

Logistic Reg. 95.22 96.66 98.08 95.75 

Decision Tree 98.40 95.06 95.24 94.13 

Random Forest 95.33 97.31 95.23 96.56 

Conv. NN 98.92 96.98 97.53 94.66 
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In Table 4 and Figure 9, a clear comparison of the POAHDL-MDC system with existing
approaches is made [17]. The results highlight that the LR and RF approaches accomplish
the lowest outcome.

Table 4. Comparative outcome of the POAHDL-MDC methodology with other systems [17].

Methods Accuy Sensy Specy Fscore

POAHDL-MDC 99.31 97.82 99.45 97.51

Sequential DL 98.58 97.32 98.80 96.96

Naïve Bayes 98.33 94.71 97.75 94.54

Logistic Reg. 95.22 96.66 98.08 95.75

Decision Tree 98.40 95.06 95.24 94.13

Random Forest 95.33 97.31 95.23 96.56

Conv. NN 98.92 96.98 97.53 94.66

At the same time, sequential DL, NB, DT, and CNN techniques achieve closer out-
comes. But the POAHDL-MDC technique gains outperforming results with a maximum
accuy of 99.31%, sensy of 97.82%, specy of 99.45%, and Fscore of 97.51%. These outcomes
confirm the superior solution of the POAHDL-MDC model over other current approaches.
The improved URL detection results of the POAHDL-MDC technique are based on the
inclusion of POA-based hyperparameter tuning. An application of POA selects optimum
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hyperparameter values of the HDL technique. Hyperparameters are not learned at the
time of training but set earlier to training. They have an essential effect on the performance
of the technique, as picking optimal values leads to improved exactness. By use of POA-
based hyperparameter tuning, the POAHDL-MDC technique gains superior outcomes
by concentrating on the most appropriate features and choosing optimal settings for the
algorithm. These results guaranteed enhanced behavior of the POAHDL-MDC method
when compared to existing models.
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5. Conclusions

In this study, we proposed a new POAHDL-MDC methodology for the automated
recognition and classification of malicious URLs. To accomplish this, the POAHDL-MDC
approach initially performed data pre-processing to change the data to a compatible format,
and a Fast Text word embedding process was involved. For malicious URL detection, the
HDL model integrating the features of SAE and Bi-LSTM models was utilized. Lastly,
POA was employed for optimum hyperparameter tuning of the HDL methodology. The
simulation value of the POAHDL-MDC technology was verified on a benchmark database,
and the outcome revealed better results for the POAHDL-MDC methodology for various
measures. In future, a hybrid metaheuristic-based feature selection process could be
designed to reduce the high dimensionality problem and thereby enhance the detection
rate. In addition, future work could examine a combination of many data modalities, such
as text, network traffic, and user behavior, into DL models. In addition, new approaches
such as attention-based models, graph neural networks, or transformer-based models could
be used for capturing complex patterns in URLs and their associated features.
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