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Abstract: Multi-task visual recognition plays a pivotal role in addressing the composite challenges en-
countered during the monitoring of crop health, pest infestations, and disease outbreaks in precision
agriculture. Machine learning approaches have been revolutionizing the diagnosis of plant disease in
recent years; however, they require a large amount of training data and suffer from limited general-
izability for unseen data. This work introduces a novel knowledgeable meta-learning framework
for the few-shot multi-task diagnosis of biotic stress in coffee leaves. A mixed vision transformer
(MVT) learner is presented to generate mixed contextual attention maps from discriminatory latent
representations between support and query images to give more emphasis to the biotic stress lesions
in coffee leaves. Then, a knowledge distillation strategy is introduced to avoid disastrous forgetting
phenomena during inner-loop training. An adaptive meta-training rule is designed to automatically
update the parameters of the meta-learner according to the current task. The competitive results
from exhaustive experimentations on public datasets demonstrate the superior performance of our
approach over the traditional methods. This is not only restricted to enhancing the accuracy and
efficiency of coffee leaf disease diagnosis but also contributes to reducing the environmental footprint
through optimizing resource utilization and minimizing the need for chemical treatments, hence
aligning with broader sustainability goals in agriculture.

Keywords: sustainable; coffee leaf diseases; leaf diagnosis; disease management; artificial intelligence;
meta-learning

1. Introduction

Multi-task visual recognition is a revolutionary computer vision paradigm that allows
training single artificial intelligence algorithms to perform many visual recognition tasks
instantaneously. Different from single-task learning, in which independent models are
trained for each separate task, resulting in redundant computation and enlarged complexity
of the recognition algorithm, the multi-task paradigm makes use of shared representations
across tasks, enabling the model to learn common designs and representations that are
valuable for multiple tasks [1]. This method encourages the model to learn from its
experiences with different tasks, thus enhancing its performance across the board. The
model’s efficiency and efficacy are both improved by the shared learning across tasks,
and more comprehensive comprehension of the visual input is provided, allowing for the
modeling of complex interdependencies and linkages. Better generalization is another
benefit of multi-task visual recognition since the model is trained to extract high-level
features that are robust and meaningful across different recognition tasks [2].

Deep learning (DL) has been revolutionizing the visual recognition tasks
(i.e., classification, detection, segmentation, colorization, etc.) in many application domains
owing to the powerful learning capabilities that enable the DL models to automatically
process and extract patterns of disease from plant images without the need for any hand-
crafted features or engineered features [3,4]. Among the DL methods, convolutional neural
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networks (CNNs) are the dominating family of deep networks that have achieved many
breakthroughs in different visual recognition tasks due to their capabilities for feature
extraction stacked convolutional kernels. Recently, the vision transformers (ViTs) have
evolved as state-of-the-art visual learning models that can model long-range dependencies,
which enables outperforming the performance of CNNs on different vision tasks. However,
their potential has still not been investigated for visual recognition tasks [5].

Knowledge distillation is a powerful technique in deep learning that enables model
compression and facilitates the transfer of knowledge from a larger, complex teacher
network to a smaller, more compact student network. The process involves training the
student network to mimic the soft probabilities (logits) produced by the teacher network
rather than learning from ground-truth hard labels [6]. By doing so, the student network
learns not only from the teacher’s final predictions but also from the rich intermediate
information that the teacher encodes during training [7]. This distilled knowledge acts as a
form of regularization, guiding the student network to focus on important patterns and
generalize better to unseen data. Knowledge distillation has shown remarkable success
in model compression, allowing the creation of more lightweight networks that retain the
performance of their larger counterparts. In the context of multi-task visual recognition
in agriculture, knowledge distillation can be particularly advantageous, as it allows the
creation of efficient and accurate models capable of handling diverse tasks with reduced
computational overhead [8].

Meta-learning, popularly recognized as “learning to learn,” is a front-line learning
method in machines that empowers the models to be able to adapt rapidly and success-
fully to new tasks with minimum training data [6]. Different from conventional learning
methods, meta-learning algorithms can obtain more generalizable knowledge that could
be straightforwardly applied to new and unseen tasks as they learn from a distribution
of tasks rather than just one. This capacity is particularly useful in fields such as agricul-
ture, where fluctuating weather patterns and new pests and diseases always present fresh
recognition obstacles [7,8]. The integration of knowledge learned from several activities
can empower meta-learners to learn a representation that is autonomous of the specific
tasks being acted on. It can quickly adapt and learn from just a few samples or shots
from the new activity since this meta-learner efficiently encodes knowledge about how
to approach the assignment. Since the model becomes skilled at performing a variety
of jobs and effectively learning from little data, meta-learning can contribute greatly to
greater efficiency, speedier deployment, and better agility in the setting of multi-task visual
recognition in agriculture [9,10].

The complexity of coffee farming and the breadth of tasks involved in leaf analysis
make this an intriguing and challenging case study for multi-task visual recognition.
The widespread crop loss caused by coffee leaf diseases is a major threat to agricultural
production on multiple fronts, including yield and quality [11]. Pathogens, like fungi,
bacteria, and viruses, cause these agricultural diseases by invading and damaging coffee
plant tissues and organs. Hence, correct recognition of the types of these diseases, their
causes, and their severity is all-important to implement effective management strategies to
control the distribution of these diseases [12]. The four most important diseases that can
impact coffee leaves are Cercospora leaf spot, brown leaf spot, rust, and leaf miner. The use
of computer vision in precision agriculture has enabled the development of data-driven
approaches with a continued emphasis on the early identification of crop losses from
leaf diseases. Multi-task recognition of coffee leaf diseases in visual images is one of the
many promising directions to improve disease diagnosis on smart farms [13]. Combining
intelligent strategies for detecting coffee leaf disease can guarantee to safeguard long-term
viability losses due to production declines resulting from coffee health reduction, thus
ensuring continued superior quality satisfaction found in robust global demand for coffee
products [6–12]. Moreover, it is vital to decide the severity of the stress impacting the
coffee leaves, which is estimated by the proportion of the leaf surface that is wounded [8].
However, this multi-tasking activity is challenging, even for professionals, for many reasons,
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such as the absence of exact delineation of the lesion; the variability of attributes between
nodules of the same category (including color, outline, and magnitude); the occurrence of
numerous lesions within the same leaf; the intra- and inter-observer variability, and the
reality that various stresses could have similar effects [14]. Therefore, meta-learning and
knowledge distillation are particularly applicable in this setting due to the complexity of
coffee leaf analysis and the accompanying necessity for effective and adaptive learning
strategies. The availability or practicality of the requisite labeled data and computer
resources for training in traditional deep-learning approaches may be limited in agricultural
contexts. Knowledge distillation allows us to efficiently transfer know-how, reducing the
volume of data needed while simultaneously improving the model’s replicability. In
addition, meta-learning allows the model to learn from a variety of tasks and to adjust to
novel tasks in the domain of coffee leaf cultivation [10–15].

1.1. Research Gaps

Despite the prevailing use of DL in a broad range of precision agriculture, however,
these solutions usually require big datasets to be trained in an efficient manner, which
is difficult to collect and annotate in real-world settings [11,12]. This, in turn, highlights
the need for powerful hardware like graphical processing units (GPUs), which implies
extra costs and expenses. This convergence of the above factors signifies the misalignment
between the current DL solutions and the sustainability principles intrinsic to precision
agriculture. Thus, it is clear that these solutions may not completely fulfill the sustainability
requirements of precision agriculture, which is a great motive to further explore more
resource-efficient and reasonably feasible alternatives [13]. Humans, conversely, can pick
up new information and relocate fast based on a small number of examples, leading us to
question whether intelligence gained from processing large datasets is the goal. Because of
the low cost of a few samples of data, few-shot learning (FSL) has evolved as a paradigm
to enable DL to learn from a small amount of data, and hence it is an interesting and
potentially fruitful field of study for the detection of biotic stresses in coffee leaves [2].
Presently, transfer learning (TL), data augmentation, and meta-learning are the main three
approaches to FSL. The purpose of TL is to acquire and apply information from one
domain to another. Assuming there is adequate data in the source domain for learning,
the learning algorithm would be fine-tuned by a few examples in the target domain to
keep a satisfactory performance [3]. While TL solves the difficulties of model fragility and
slow convergence by fine-tuning parameters, it still has some basic issues to deal with,
such as the need for comparatively large datasets. For instance, the labeling and training
of the classification model must be reperformed if multiple additional classification tasks
are introduced. Intuitively, we can generate additional new instances or features with the
help of data augmentation by rotating and scaling images, mixing them, oversampling,
and other similar techniques. However, the performance improvement gained by data
augmentation is still limited [4].

1.2. Novelty and Contribution

In response to the above-mentioned challenges, this study presents a new meta-
learning framework for the sustainable diagnosis of coffee leaves through a few-shot
estimation of biotic stresses and severity, with a powerful ability to generalize on unseen
coffee data. The main contributions of this framework can be pointed out as follows:

• Motivated by the ability of ViTs to learn long-term dependencies, a mixed vision
transformer (MVT) is introduced to simultaneously extract rich contextual representa-
tions from both support and query images rather than extracting visual leaf features
independently from the query and support inputs. In the MVT layer, we introduced
contextual attention to capturing the significant information regarding the biotic stress
and its severity degree in a way that enables perfect alignment of visual representations
from both the query and support set.
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• A new meta-training strategy is presented to empower the meta-learner to adapt its
learnable according to the underlying task in a way that improves the generalizability
of unseen data.

• A novel knowledge distillation is introduced in our framework to keep a balance
between learning new knowledge and preservation of previously acquired knowledge
in a way that removes the appalling forgetting problem.

• Exhaustive proof-of-concept experiments are conducted to evaluate and compare the
performance of the proposed framework against the state-of-the-art methods on a case
study of coffee leaf datasets. The findings demonstrate the proposed is qualified to be
adopted as an efficient tool for delivering insightful diagnoses for coffee diseases in
smart farming environments.

1.3. Outline

The overall structure of this work is composed of six primary sections. Section 2
reviews the related literature. Section 3 debates the methodology of the proposed frame-
work. The experimental settings of this work are given in Section 4. Section 5 presents the
experimental results and the corresponding discussion. Finally, the concluding remarks of
this work are provided in Section 6.

2. Literature Review

This section provides an in-depth analysis of the related literature with a primary empha-
sis on visual recognition studies for the detection of leaf diseases in coffee plants. Two branches
of studies are discovered in this spectrum, as described in the following subsections.

2.1. DL-Based Visual Recognition

Research on multi-task visual recognition has been gaining increasing interest in
recent years. However, it is still in its infancy stage. For example, Esgario et al. [5] explored
the potential of CNNs for multi-task diagnosis of biotic stress from images of coffee
leaves by classifying biotic stress and estimating their severity. Similarly, Putra et al. [6]
applied a CNN and compared its performance against common models, such as LeNet,
AlexNet, ResNet-50, and GoogleNet, for classifying between Arabica and Robusta coffee
plants. In [7], a segmentation of the symptomatology was carried out using a threshold-
based method to create a system that can classify the individual symptoms of coffee
leaves. Manual features were used to categorize the symptoms into leaf miner and rust
groups. The severity of the symptoms could be measured, and specific symptoms could be
identified, thanks to the lesion segmentation findings. Despite the impressive outcomes,
this method of segmentation is highly susceptible to environmental factors, like lighting
changes and specular reflection, because it ignores the positional relation between the
pixels. Novtahaning et al. [8] introduced an ensemble DL system that exploits the notion
of TL to integrate multiple pre-trained CNNs to extract the disease patterns from the in-
field images of coffee leaves. Then, the most powerful feature extractor is nominated to
dominate the ensemble architecture, and its features are passed to the final classification
head. Additionally, Esgario et al. [9] introduced a multi-step approach that includes a
semantic segmentation step followed by a severity estimating step for detecting diseases
and pests of coffee leaves. U-net architecture is used in the earlier step, while a CNN was
used to implement the later step. These two steps were evaluated disjointedly to shed
light on the optimistic and undesirable arguments of each one. To aid professionals and
farmers in identifying and quantifying biotic stresses utilizing pictures of coffee leaves
captured by mobile phones, a custom app was developed and deployed on the Android
platform, including segmentation, severity computation, and symptom categorization.
Similarly, Tassis et al. [10] introduced a three-stage DL system that combined different CNNs
to systematize the detection of lesions presented in mobile-captured in-field imageries
encompassing fragments of the coffee tree. The first stage applied Mask R-CNN to perform
instance segmentation for coffee leaves. Then, the UNet and PSPNet models were applied
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to perform semantic segmentation at the second stage, and lastly, residual convolution
networks were adopted to perform classification. In addition, Yamashita and Leite [11]
emphasized developing a lightweight CNN, based on the MobileNet model, to detect
coffee leaf disease on edge computing devices namely low-cost microcontroller board.
It demonstrated the practicability of using CNNs for detection of diseases in coffee leaf
images in resource-constrained devices with no internet connection.

A prominent and common downside for the above methods is the data-hungry nature
that makes them unable to learn well from small-size data, which is a common case for
coffee biotic stress. This, in turn, implies the weak generalizability of these methods for an
unseen dataset.

2.2. Meta-Learning in Visual Recognition

In response to the challenges of learning from small-size data, the research community
moved toward meta-learning approaches. For instance, Li and Yang [12] introduced a
few-shot learning framework to identify cotton pests using only a few images, in which two
datasets were used to validate the efficiency and viability of the model. This framework
trained the parameters of CNN as a feature extractor according to a triplet loss function to
help differentiate various pest species to guarantee the system toughness. Not only that,
but the compiled CNN circuit in the FPGA and the control program in the ARM were
both successfully used to obtain the model functioning in an embedded gate. In addition,
Hu et al. [13], introduced a low-shot learning approach to disorder recognition in tea leaves
to facilitate timely prevention and control measures. Disease regions on tea leaf images were
segmented utilizing the support vector machine (SVM) technique, with color and texture
features extracted. By feeding segmented disease spot images into an enhanced conditional
deep convolutional generative adversarial network (C-DCGAN) for data augmentation, a
VGG16 model is taught to recognize diseases in tea leaves. In [15], Li and Chao proposed a
semi-supervised few-shot learning strategy for identifying plant leaf diseases, in which a
subset of the publicly available PlantVillage dataset is used, and it is further subdivided
into a source domain and an end-user domain. The experiments were conducted taking
into account the domain separation and few-shot parameters (N-way, k-shot) to verify the
rightness and generalization of developed semi-supervised few-shot methodologies. To
flexibly choose the amount of unlabeled data for pseudo-labeling in the semi-supervised
process, a confidence interval was used in this work. Moreover, Tseng et al. [14] looked into
how model-agnostic meta-learning (MAML) can be used to gain insight from a wide variety
of global datasets and boost results in areas with limited available information. The findings
of this work stated that MAML outperforms pre-trained and random initial weights in a
wide range of tasks and countries (including Togo, Kenya, and Brazil). It also investigated
MAML’s potential benefits across a variety of target data size commands. Across a broad
range of training set sizes and positive-to-negative label ratios, the findings supported that
MAML performs better than alternative meta-learners, suggesting its general applicability
for territory usage multiple crop mapping.

Despite the research efforts devoted to the few-shot computer vision applications, this
family of solutions is still in its infancy and has not been deeply investigated in visual
recognition tasks. This implies the promise of this research direction for the detection of
biotic stresses in coffee leaves. Thus, in this work, we seek to fill this gap by studying
meta-learning for improving the multi-task diagnosis of coffee leaf disease under a data
scarcity scenario. To this end, this work presents a multi-task meta-learning framework
as an important step towards flexible and efficient solutions to problems in precision
agriculture that require a wide range of resources. The design principles of the proposed
model validate remarkable flexibility in handling emerging tasks and obstacles, radically
cutting down on the time and effort spent retraining and freeing up precious computational
resources in the process. With the adaptability and multitasking abilities of our model, the
process of coffee disease management may be directed with more efficiency, which makes
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it an asset in the context of changing agricultural dynamics, where a quick response to new
issues is of utmost importance.

3. Methodological Framework
3.1. Problem Formulation

The multi-task classification of coffee leaves is designated as a few-shot learning
dilemma, whereby a set of labeled coffee leaf images is given as a training set, and a set
of labeled coffee leaf images is given as a testing set. Both sets share non-overlapping
label space. Therefore, given a few samples from the labeled set; our objective is to learn a
model that could generalize unseen coffee leaf images from the unlabeled set. To achieve
this objective, meta-learning with episodic training could be applied to fine-tune the
generalizability by imitating the limited data scenario met during the inference through
generating stable episodes. An episode is shaped with two subsets: one contains a few
labeled coffee leaf images for learning, and the other one contains labeled images, in which
the labels are utilized to compute the error rate of the model’s prediction in each episode.
In addition, the “N-way, k-shot” task is defined by every training episode, with N pointing
to the number of biotic/severity classes in each episode, while k denotes the number of
images in each class. The problem of multi-task diagnosis of coffee leaves is formulated as
a generic meta-setup known as N-way, k-shot classification.

This formulation is built up with three phases described below:

1. Meta-training phase: the multi-task learner is initiated to learn from a set of meta-
training data.

2. Meta-validation phase: the meta-learner leverages meta-validation data to assess its
classification performance on unobserved tasks that are not encountered during
the meta-training phase. This assessment estimates the meta-generalizability of the
trained learner and provides feedback to update and fine-tune the parameters of the
meta-learner.

3. Meta-testing phase: different from the previous phase, the meta-testing data are ex-
ploited here to evaluate the final performance of the meta-learner for both biotic stress
classification and severity estimation.

In the first phase, a big enough coffee dataset is used to train the multi-task learner,
A, over a finite number of episodes. For each episode, the data Tj =

(
Dtr
Tj

,Dval
Tj

)
are

attained through sampling coffee leaf images (xxi, yi) from the complete dataset D. The
tuple

(
Dtr
Tj

,Dval
Tj

)
describes a training and a validation set of an episode, in which each set

comprises a small number of coffee leaf images. According to the N-way, k-shot definition,
the process of the data sampling process poses that the training setDtr

Tj
comprise precisely N

classes with k images belonging to each class, suggesting that
∣∣∣Dtr
Tj

∣∣∣= N × k . Additionally,

the factual labels of images in the validation set Dval
Tj

need to exist in the train set Dtr
Tj

of

a certain episode Tj. The training set Dtr
Tj

=
{
(xs, ys)}S

s=1 is also a support set, because it

figuratively supports the learner’s decisions on the validation set Dval
Tj

=
{(

xq, yq
)
}Q

q=1

known as query set. The multi-task learner, A, can be defined as y∗ = fθ(x∗), with ∗
signifying s or q, and is prone to high variance because of the large dimensions of x∗.
Thus, coffee leaf images in both support and query sets are encoded into latent space via
an embedding function Φ∗ = f φ(x∗). Supposing that the embedding function is static
throughout the training of A on each episode, then the multi-task learner seeks to optimize
the following objective:

θ = A
(
Dtr
Tj

; φ
)
= argmin

θ

Lbase
(
Dtr
Tj

; θ, φ
)
+R(θ), (1)



Sustainability 2023, 15, 16791 7 of 24

The terms Lbase and R denote cost function and regularization factor, respectively.
Here, φ stipulates expectations regarding ‘how to learn’, e.g., the optimizer. The goal of our
meta-learning coffee leaf classifier is to train a decent embedding function, with the aim of
reducing the average loss of the multi-task learner on the query set. Officially,

φ = argmin
φ

ET
[
Lmeta

(
Dval; θ, φ

)]
(2)

By the completion of meta-training, the learner’s performance is evaluated on a meta-
testing set S =

{(
Dtr

j ,Dts
j

)
}J

j=1 . The assessment is performed using the distribution of the
test coffee leaf images, as follows:

ES
[
Lmeta(Dts; θ, φ

)
, withθ = A

(
Dtr; φ

)]
. (3)

3.2. Mixed Vision Transformer (MVT)

This section argues for the design of our multi-task learner backbone that seeks to han-
dle the challenge of generalizability on unseen types of biotic stresses from the interactive
standpoint. Figure 1 displays the construction of our multi-task learner, comprising three
chief learnable modules and dual classification heads. The design of our MVT extractor
consists of a stack of three MVT blocks for multiparty contextual representation learning
of the support and query images. At the early block of the backbone, there is a batch of
support images, Xs ∈ RBs×Hxs×wxs×3, and one query image, Xq ∈ RBq×Hxq×wxq×3. Inspired
by ViT [16], the proposed MVT block is composed of the contextual multi-head contextual
attention, two fully connected layers (FCLs) with residual connectivity, LayerNorm (LN), as
well as Gaussian error linear unit (GELU) activation. Also, the design of the backbone fea-
ture extractor follows the non-hierarchical design, in which the MVT block shares the same
learnable parameters, embedding and manipulating feature maps with shared dimensions.
In this case, our model handles the adjustable extent of the token sequence.
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The next MVT blocks share a comparable structure and calculate representational maps
through the gradual reduction in sequence lengths and expansion of the number of channels.
In standard ViT, a patching operation was applied to split the raw images into a group of
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non-overlapping patches. Next, a linear embedding layer is applied to flatten the generated
patches into C1 dimensions. Then, positional embedding is generated for those patches
before being passed into the ViT layer. However, traditional patch embedding suffers from
discontinuity that limits the ability to model local features. To overcome this limitation, an
interactive patch embedding (IPE) block is built up by stacking multiple strided convolution
layers of k = 3× 3 convolution, switch normalization (SN) [17], and GELU. The patch size
is computed as P = 2k. This design enables conserving significant low-level features and
local spatial information in coffee leaf images because of the injection of inductive biases
by convolutions. Moreover, the IPE block empowers the MVT to have more elasticity over
original ViTs, by alleviating the constraints such that the input dimensions (whether in
query or support set) are firmly dividable by the predefined patch size. The IPE uses two
affine transformations, ℵ, prior to and following the stacked convolutions for rescaling
and shifting the image feature, hence making the learning performance steadier on small
datasets, which is common for the coffee leaf dataset. The pipeline of IPE can be expressed
as follows (Algorithm 1):

Algorithm 1: Interactive Patch Embedding (IPE)

1 IPE(x):
2 ℵ(x) = Diag(α)x + β

3 For i = 1, . . . , k do:
4 Fi(x) = GELU(SN(Conv3×3(x)))
5 x′ = ℵ(Fk(. . . (F2(F1(ℵ(x))))))
6 x′′ = Reshape

(
x’)

7 Return x′′

In our MVT block, the IPE is applied to generate embedding for both support and
query images as follows.

X′s = IPE(Xs)
X′q = IPE

(
Xq
) (4)

For each attention head, (h = 1, · · · , H), the embedding of support X′s and X′q are
mapped to Qi

s, Ki
s, Vi

s and Qi
q, Ki

q, Vi
q, respectively. To maintain lightweight computation

for our attention, a strided depth-wise separable convolution (dwconv) is introduced to
promote the subsampling of visual representation maps for matrices K and V.

Qi
q = X′qWi

Q, &Qi
s = X′sW

i
Q (5)

Ki
q = dwconvstr=2

(
X′q
)

Wi
K, &Ki

s = dwconvstr=2
(
X′s
)
Wi

K (6)

Vi
q = dwconvstr=2

(
X′q
)

Wi
V , &Vi

s = dwconvstr=2
(
X′s
)
Wi

V (7)

In the above formula, Wi
Q ∈ RC1×dh , Wi

K ∈ RC1×dh , andWi
V ∈ RC1×dh denote the

trainable parameters shared for the projection layer for both input sets. dh = C1
H denotes

the dimension of the projected features.
In our case, the size of the support batch varies from the size of the query batch.

Also, biotic detection or/and severity assessment is performed for each query instance
disjointedly, since query imageries are unrelated, and thereby the recognition of each is
independent of others. The simple way to address the variation in sizes is to direct a
pair of images (one from query and one from support) at each time; however, replicating
this procedure for each image in the support set leads to high time complexity. Thus, we
propose enabling contextual attention to consider the attention between the query image
and all images belonging to the same class in the support set. The contextual attention
mechanism is introduced into the MVT layer to fuse the key-value information related to
query and support input attention. To fuse the key-value information from the support-
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related feature maps to the query-related feature maps and fuse the key-value information
from the query-related feature maps to the support-related feature maps, a pointwise
convolution is applied to update the channel dimensions of maps to be matched and then
the key-value information of both inputs is concatenated.

Q̃i
q =

∥∥∥∥∥Ki
q,

1
Bs

∑
Bs

Qi
s , Ṽi

q =

∥∥∥∥∥Vi
q ,

1
Bs

∑
Bs

Vi
s (8)

Q̃i
s =

∥∥∥∥∥∥Ki
s,

1
Bq

∑
Bq

Qi
q , Ṽi

s =

∥∥∥∥∥∥Vi
s ,

1
Bq

∑
Bq

Vi
q (9)

The term ‖· represents the concatenation layer. To sum up, the computation of multi-
head contextual attention can be summarized as follows:

X′′q = Concat
(

h1
q, . . . , hH

q

)
WO (10)

hi
q = Attention

(
Q̃i

q, Ki
q , Ṽi

q

)
(11)

X′′s = Concat
(

h1
s , . . . , hh

s

)
WO (12)

hi
s = Attention

(
Q̃i

q, Ki
q , Ṽi

q

)
(13)

Next, the linear layers are applied to each patch with robust feature representations,
while the residual connection is used to improve the gradient flow.

X′′′q = Linear
(

LN
(

X′′q
)
+ X′′q

)
X′′′s = Linear

(
LN
(
X′′s
)
+ X′′s

) (14)

3.3. Adaptive Meta-Training

The primary objective of meta-training is to allow the multi-task learner to perfectly
train an embedding function, fφ, to be able to generalize well on new, unseen coffee data.
Instead of rebuilding and/or retraining new learners to learn the embedding function, our
framework suggests that the pre-training of vision learners on single- or multi-task data is
favorable for empowering the embeddings of the underlying multi-task learner. Thus, the
meta-training data were combined from all episodes according to the following formula:

Dcombine =
{
(xi, yi)}K

k=1 = ∪
{
Dtr

1 , . . . ,Dtr
i , . . . ,Dtr

I
}

, (15)

Next, the embedding function can be defined as follows:

φ = argmin
φ

ET
[
Lcf
(
Dcombine; θ, φ

)]
(16)

where the Lcf represent the categorical focal loss [18] between the learner’s predictions and
coffee leaves labels.

Different from early meta-learning mechanisms, the proposed framework seeks to
optimize an adaptive cost function to enforce the inner-loop optimization process to achieve
high generalizability for new episodes during the training. To this end, an adaptive cost
function Lφ(·) is presented and updated with a small learner with trainable parameters, φ.
This way, the inner-loop update can be formulated as follows:

θi,j+1 = θi,j − α∇θi,jLφ
(
τi,j
)

(17)
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The term τi,j represents the state of the episode Ti at time-step j, which is always
defined by the training set in the conventional meta-learning paradigm. Various episodes
might require including some regularization factors or secondary cost functions throughout
training to generalize well. Unlike gradient descent adaptation, which exhibits high
computing complexity, we proposed to take advantage of deformable transformation for
the creation of adaptive feature interactions, thereby making the updates of the inner loop
more adaptive. This can be expressed as follows:

φ′ = γφ + π (18)

where φ symbolizes the parameters of the multi-task learner and γ denotes π the defor-
mation parameters made by the learner g(τ j ; ψ) with parameter ψ. The meta-training
process seeks to enable the multi-task learner to generalize across diverse episodes through
optimizing the parameters θ, φ, and ψ, and then we perform outer-loop optimization for
episode Ti using their own learner and query samples as formulated below:

(θ, φ, ψ)← (θ, φ, ψ)− η∇(θ,φ,ψ)∑
τ

L
(
Dts

i ; θi
)

(19)

Knowledge distillation [19] is a popular technique for knowledge transmission from
a robust teacher–learner to a minor student learner. At each step of the model’s learning
process, a distillation loss function is required to make sure that knowledge retaining
and acquisition are balanced in the best way possible. Rather than directly applying the
embedding function on the meta-testing set, the learned knowledge in the embedding
function is distilled into a new embedding function sharing the same building structure.
Then, we train the new model with a set of parameters φ′ to optimize dual-task focal loss
and the Jensen–Shannon (JS) divergence between outputs and soft targets:

φ′ = argmin
φ′

(
αLc f

(
Dcombine; φ′

)
+β JS

(
f
(
Dcombine; φ′

)
, f
(
Dcombine; φ

)))
(20)

where usually β = 1 − α.
To evade the problem of disastrous forgetting in our framework, the above distillation

loss is integrated as part of our loss function to empower the learner of the current episode
to keep achieving good performance similar to the learners’ performance in the previous
episodes. The JS distillation is attributed to its ability to deal with probability distributions
containing extreme values which is often the case in multi-task learning scenarios, in which
there is a high need to balance the contributions of different tasks, mitigating the impact
of outliers or noisy data. In addition, JS divergence possesses the desirable properties of
symmetry and smoothness, which guarantees that the order of the input distributions does
not affect the result. JS divergence can be interpreted as a softened form of discrimination
between probability distributions. In our design, we follow the approach from Born
again [20] to put on JS successively to engender manifold generations. For each episode,
the knowledge of the embedding function at the k− th generation is transmitted to the
embedding function of the next generation:

φk = argmin
φ

(
αLc f

(
Dcombine; φ

)
+βJS

(
f
(
Dcombine; φ

)
, f
(
Dcombine; φk

)))
(21)

This operation is repeated for K times, and the φK is designated as an embedding
function to learn discriminative features.

For each meta-testing tuple
(
Dtr

j ,Dts
j

)
, the multi-task learner is instantiated as Bayesian

multivariate logistic regression with weight W and bias parameters, b, as defined below:

θ = argmin
{W,b}

T

∑
t=1
Lc f

t
(
W fφ(xt) + b, yt

)
+R(W, b) (22)
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4. Experimental Materials and Setups

This section provides an in-depth discussion of the experimentation of this work in
terms of the coffee data adopted to evaluate the proposed model, the competing baselines
with which our model is compared, the evaluation indicators used in experiments, and the
implementation setups.

4.1. Materials

In this work, we train and evaluate the proposed model on the multi-task biotic
stresses dataset from [5]. It contains images of Arabica coffee leaves exaggerated by the
core biotic stresses that influence the coffee tree, which was captured using different
smartphones at diverse times of the year in the state of Espírito Santo, Brazil. The photos
were taken from the abaxial (lower) side of the leaves under partially controlled conditions
and placed on a white background. In addition to that, in-field images were not used
due to the occlusion of leaf parts and their inclination concerning the camera, making the
disease severity estimation infeasible in several cases. The images were captured from the
underside, or abaxial side, of the leaves and then superimposed onto a white background
for viewing. In addition, in-field imagery was not leveraged because of the obstruction
of leaf slices and their predisposition relative to the camera, which makes the estimate of
disease severity impracticable in some cases. There were no criteria used during image
collection, which resulted in a more diverse dataset. Leaf miner, brown leaf spot, rust, and
Cercospora leaf spot were just some of the biotic challenges experienced by the Arabica
coffee plants that led to the collection of 1747 photos of healthy and diseased leaves. An
expert used the acquired photos to perform the procedure of biotic stress identification for
dataset labeling. Two datasets were created from the collected pictures: symptom-only
pictures and the original, full-leaf images from which they were extracted. The following
paragraphs provide descriptions of each dataset.

• Leaf dataset: There are complete-leaf photos from the original source, and they have
been annotated with information about the most common biotic stress and its intensity.
There were 372 photos showing leaves experiencing multiple stressors, of which
62 indicated stresses of similar severity. Given that this study can only identify
a single stress per leaf, multi-stress categorization is outside the purview of this
work. Since it is challenging to visually determine which stress is predominant, these
62 photos with equal severity were not used on this dataset. The severity of stress was
determined by applying automatic image processing techniques, such as a mask, to
isolate symptoms and identify which leaves are stressed. All picture segmentation
findings were manually checked for accuracy. Images with inadequate segmentation
were removed from the severity calculation and were examined manually by a trained
professional using visual estimate techniques. This led to five degrees of severity,
namely healthy, very low, low, high, and very high.

• Symptom dataset: This dataset was produced by selectively cropping the original
photos so that just a single stress was visible in each. The cropping process involved
2147 photos of symptoms.

To make things simpler, for both tasks, we provide a detailed description of the class
distribution of the data, presented in Table 1. Moreover, samples for different types of
coffee leaves from the above datasets are provided in Figure 2.

Table 1. Summary of class distribution of the dataset.

Biotic Stress Healthy Leaf Miner Rust Brown Leaf
Spot

Cercospora
Leaf Spot Total

Leaf dataset 272 387 531 348 147 1685
Symptom dataset 256 593 991 504 378 2722

Severity Healthy Very low Low High Very high /
Leaf dataset 272 924 332 101 56 1685
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4.2. Baselines

The evaluation of the proposed method should involve a comparison with the state-
of-the-art meta-learning algorithms. To this end, this experimental part of this work
used six meta-learning methods as our baselines, namely SiameseNet [21], TripletNet [22],
ProtoNet [23], MatchingNet [24], MAML [25], and RelationNet [26]. For each baseline,
three vision transformers are applied as a backbone, namely MobileViTv2 [27], LeViT [28],
and Mobile-Former [29].

4.3. Evaluation Metrics

The evaluation of the performance of deep learning models for both classification and
severity estimations is designated using a different set of metrics. Four of them (i.e., accuracy,
precision, recall, F1-measure) are calculated according to the confusion matrix comprising
true positive (TP), true negative (TN), false positive (FP), and false negatives (FN). These
metrics are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Precision =
TP

TP + FP
(24)

Recall =
TP

TP + FN
(25)

F1−measure = 2 ∗ Recall × Precision
Recall + Precision

(26)

The area under the receiver operating characteristic (AUROC) curve [30] is also re-
ported as a numerical metric for model evaluation in both tasks.

4.4. Environmental Setups

The implementation of deep learning models is coded with the Pytorch library running
on Python 3.8.0 environment. All experimental tools are fixed on a Dell workstation
equipped with 128 GB RAM, Intel® Xeon® Silver 4316 Processor (30 M Cache, 2.30 GHz),
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and operated with Windows 10 64-bit OS. The learning of the models is accelerated with
Nvidia GeForce RTX 3090. To guarantee consistent comparative results, experiments are
run with standardized hyper-parameter settings. The specifics of model hyper-parameters
are presented in Table 2.

Table 2. Summary of training hyper-parameters in our benchmark.

Hyper-Parameters Assigned Value

Batch Size 32
# Epochs 80
Input size 244 × 244 × 3
Patch size 16
Optimizers AdamW
Loss function Focal loss
# Attention heads 8
Learning rate 0.001
Decay 0.0003
Kernel 3 × 3
Linear 128
Dropout rate 0.3

5. Results and Discussion

To determine how well the proposed models fit the challenges of biotic stress identifica-
tion and severity estimate, a different set of experiments was carried out in this section. The
findings are reported in the following parts, for both datasets (coffee leaves and symptoms).

5.1. Comparative Analysis

In this section, we provide a detailed discussion of the numerical analysis of the
experimental comparisons between the proposed method and competing baselines. For
each dataset, we report the performance of the models under five-way one-shot and
under five-way five-shot scenarios. The experimental conditions are kept constant for
all experiments to maintain the fairness of the comparisons. The results of comparative
experiments are reported in terms of the average and standard deviation of the results
from training data folds. In Table 3, we present the quantitative results obtained from
the different methods with five-way five-shot training on the leaf dataset. The tabulated
results represent the performance of the models on coffee biotic stress classification as
well as the severity estimation tasks. Notably, the SiameseNet achieves the lowest stress
classification accuracy (ranging from 91.73% to 92.49%) for all backbones, and it also
achieves the lowest severity estimation accuracy (ranging from 88.38% to 90.55%) for
all backbones. Comparatively, the TripletNet can achieve improved stress classification
accuracy but achieve similar severity estimation accuracy except for Mobile-Former (with
92.38% accuracy). This reflects that the appropriate selection of backbone network is
important to severity estimation. In addition, ProtoNet can notably achieve higher results
than TripletNet across all performance indicators for both tasks. Similar performance can
be observed for MatchingNet with biotic stress classification accuracy in the range from/to
and severity estimation accuracy in the range from/to. The performance of RelationNet is
similar to TripletNet in the biotic stress classification task; however, this is not the case for
the severity estimation task. Further, it is worth noting that the NAML achieved the highest
performance (with accuracy between 96.15 and 96.69), overcoming the other baselines for
both tasks. This reflects the advantage of combining optimization-based meta-learning
into FSL for improving the generalizability of the underlying model. More importantly,
the proposed model is achieving remarkable improvement over all baselines reflecting
the ability of our model to learn the discriminatory features necessary for biotic stress
classification in coffee leaves and simultaneously to learn the severity attributes from small
data scenarios.
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To further interpret and analyze the performance of the proposed model (five-way
five-shot), Figure 3 provides a visualization of the class-level performance by plotting the
confusion matrices for both classification and severity estimation tasks. For coffee biotic
stress classification, it is worth noting that the class “rust” attains the lowest detection
performance with 97.2% precision, while the classes “healthy and Brown leaf spot and
Cercospora leaf spot” attain the highest detection performance with 100% precision. For
severity estimation, it is worth noting that the class “very high” attains the lowest detection
performance with 90% precision, while the class “very low” attains the highest detection
performance with 98.2% precision. These findings coincide with the findings from previous
studies [2,5], where the lowest performance was attained in this same class. This can be
attributed to the high resemblance between lesions in these classes. However, different
from the previous studies [2,5], the proposed model can recognize the different types of
stresses with high confidence, which further demonstrates the discriminatory power of
our model.

Using the leaf dataset for five-way one-shot training, the quantitative results of biotic
stress categorization using various approaches are shown in Table 4. The results demon-
strated the effectiveness of the models in classifying and estimating the severity of biotic
stresses on coffee. SiameseNet uses Mobile-Former as its backbone to achieve the lowest
stress classification accuracy (89.48%) and the lowest severity estimation accuracy (87.8%).
While TripletNet outperforms the other backbones and SiameseNet by a small margin
(93.5%) when trained using LeViT for stress classification, the other backbones perform
about the same. Based on these findings, it appears that selecting the right backbone
network is crucial for the multi-task diagnosis of coffee leaves. Furthermore, the ProtoNet
performs better than the TripletNet on both tasks across the board. It is also notewor-
thy that the NAML, MatchingNet, and RelationNet all outperform the other baselines by
around the same margins on both tasks. Our model’s remarkable ability to learn multi-task
features allows it to significantly beat all baselines. Although it was expected that model
performance would suffer when going from five shots to one, the findings show that the
suggested model still does well in a five-way one-shot scenario.
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Table 3. Comparison of numerical results of the proposed model against baselines on leaf dataset in 5-way 5-shot setting.

Biotic Stress Classification Severity Estimation

FSL
Method Backbone Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SiameseNet MobileViTv2 92.34 ± 5.22 92.88 ± 3.10 92.48 ± 3.77 92.68 ± 3.89 95.61 ± 2.79 88.38 ± 2.72 89.06 5.96 90.68 3.48 89.86 3.74 93.09 ± 6.00

LeViT 92.49 ± 5.22 91.49 ± 2.59 92.3 ± 2.23 91.9 ± 3.46 96.55 ± 2.28 90.55 ± 2.27 87.79 ± 5.13 91.08 ± 3.87 89.41 ± 3.14 96.38 ± 2.12

Mobile-Former 91.73 ± 2.09 91.88 ± 4.27 92.24 ± 3.03 92.06 ± 2.81 95.5 ± 2.14 90.37 ± 2.05 89.99 ± 3.63 88.71 ± 4.04 89.35 ± 2.79 94.31 ± 2.10

TripletNet MobileViTv2 94.31 ± 3.43 94.81 ± 4.01 94.18 ± 3.28 94.5 ± 3.69 97.31 ± 2.06 90.55 ± 2.34 91.39 ± 2.80 91.13 ± 4.33 91.26 ± 2.55 96.67 ± 2.19
LeViT 94.34 ± 5.29 93.80 ± 5.37 93.95 ± 2.31 93.87 ± 5.33 96.67 ± 2.79 90.68 ± 4.09 89.99 ± 2.85 90.71 ± 2.58 90.35 ± 3.36 95.71 ± 5.60

Mobile-Former 94.98 ± 3.18 94.65 ± 5.80 95.48 ± 2.37 95.06 ± 4.11 97.43 ± 2.57 92.38 ± 3.15 92.66 ± 2.86 93.08 ± 4.15 92.87 ± 3.00 96.94 ± 2.04

ProtoNet MobileViTv2 95.31 ± 4.54 95.15 ± 4.95 96.06 ± 2.77 95.6 ± 4.73 97.81 ± 3.18 91.5 ± 2.67 92.34 ± 2.80 94.88 ± 4.07 93.59 ± 2.73 96.2 ± 2.06
LeViT 95.62 ± 2.08 95.61 ± 3.79 94.96 ± 3.08 95.29 ± 2.68 98.21 ± 5.58 93.91 ± 3.09 93.85 ± 5.96 92.6 ± 4.43 93.22 ± 4.07 98.13 ± 4.05

Mobile-Former 95.60 ± 4.33 94.61 ± 3.19 94.49 ± 2.43 94.55 ± 3.68 96.98 ± 2.73 94.42 ± 2.45 92.42 ± 2.75 92.19 ± 5.59 92.3 ± 2.59 95.02 ± 2.47

MatchingNet MobileViTv2 95.91 ± 4.76 96.25 ± 4.42 96.19 ± 4.49 96.22 ± 4.58 97.88 ± 3.96 94 ± 5.52 95.2 ± 2.27 94.87 ± 4.86 95.03 ± 3.22 96.98 ± 3.56
LeViT 95.86 ± 4.63 96.26 ± 4.94 96.68 ± 4.42 96.47 ± 4.78 98.84 ± 3.50 94.49 ± 5.16 94.4 ± 5.78 93.06 ± 5.91 93.72 ± 5.46 98.27 ± 2.62

Mobile-Former 96.88 ± 2.87 96.27 ± 3.45 95.93 ± 2.11 96.1 ± 3.13 97.4 ± 3.90 95.22 ± 4.17 94.07 ± 2.90 92.28 ± 3.55 93.17 ± 3.42 96.15 ± 2.55

MAML MobileViTv2 96.15 ± 4.16 96.48 ± 3.86 95.5 ± 2.27 95.99 ± 4.00 98.16 ± 5.33 93.14 ± 5.19 92.61 ± 2.70 93.71 ± 3.15 93.16 ± 3.55 95.51 ± 2.46
LeViT 96.69 ± 5.63 97.46 ± 5.08 97.27 ± 4.16 97.37 ± 5.34 98.36 ± 2.13 95.1 ± 3.86 95.05 ± 3.36 95.32 ± 3.28 95.19 ± 3.59 97.26 ± 3.63

Mobile-Former 96.55 ± 2.15 95.96 ± 5.57 96.33 ± 4.79 96.15 ± 3.10 98.5 ± 2.38 94.58 ± 4.52 93.74 ± 2.86 93.38 ± 2.68 93.56 ± 3.51 97.04 ± 3.70

RelationNet MobileViTv2 94.93 ± 5.13 94.69 ± 5.16 94.11 ± 5.09 94.4 ± 5.14 97.65 ± 5.69 92.46 ± 3.62 91.51 ± 2.27 92.71 ± 5.74 92.1 ± 2.79 94.94 ± 3.75
LeViT 94.00 ± 2.19 93.18 ± 2.46 92.59 ± 2.19 92.89 ± 2.31 98.54 ± 2.50 91.06 ± 2.54 91.02 ± 3.99 91.12 ± 5.42 91.07 ± 3.10 95.69 ± 4.95

Mobile-Former 95.32 ± 5.95 95.36 ± 2.69 95.39 ± 5.81 95.37 ± 3.70 96.82 ± 2.14 91.91 ± 5.45 91.96 ± 4.21 93.1 ± 4.48 92.52 ± 4.75 96.46 ± 2.49

Proposed 98.51 ± 2.09 98.92 ± 2.65 98.31 ± 3.31 98.61 ± 3.49 99.63 ± 5.67 96.13 ± 2.17 94.22 ± 2.35 94.55 ± 2.39 94.35 ± 2.26 99.31 ± 2.47
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Table 4. Comparison of numerical results of the proposed model against baselines on leaf dataset in the 5-way 1-shot setting.

Biotic Stress Classification Severity Estimation

FSL
Method Backbone Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SiameseNet MobileViTv2 92.32 ± 2.98 91.18 ± 4.84 91.86 ± 2.85 91.52 ± 3.69 94.95 ± 1.58 87.8 ± 2.46 89.57 ± 3.59 88.81 ± 1.88 89.19 ± 2.92 94.22 ± 3.87

LeViT 90.1 ± 1.76 91.46 ± 4.24 90.79 ± 1.10 91.12 ± 2.48 95.12 ± 3.19 90.28 ± 3.96 89.93 ± 4.04 90.97 ± 1.82 90.44 ± 4.00 92.9 ± 1.58

Mobile-Former 89.48 ± 4.65 88.09 ± 4.80 88.8 ± 3.41 88.44 ± 4.72 94.06 ± 1.92 88.96 ± 2.64 87.95 ± 2.53 87.88 ± 4.13 87.91 ± 2.59 93.23 ± 2.59

TripletNet MobileViTv2 94.73 ± 1.07 93.18 ± 4.46 90.51 ± 4.96 91.83 ± 1.73 97.95 ± 3.42 90.85 ± 1.17 93.06 ± 1.58 91.2 ± 2.32 92.12 ± 1.34 95.21 ± 2.95
LeViT 93.56 ± 4.28 92.91 ± 4.97 93.48 ± 1.73 93.2 ± 4.60 95.51 ± 2.58 92.25 ± 1.63 90.19 ± 2.97 89.34 ± 4.49 89.76 ± 2.11 94.53 ± 1.19

Mobile-Former 91.15 ± 1.54 92.56 ± 4.19 91.77 ± 2.04 92.16 ± 2.25 95.45 ± 4.33 88.5 ± 1.93 89.14 ± 3.51 88.32 ± 3.79 88.73 ± 2.49 93.45 ± 2.95

ProtoNet MobileViTv2 93.1 ± 2.58 93.02 ± 1.76 94.04 ± 1.35 93.53 ± 2.09 96.45 ± 4.08 91.89 ± 3.96 90.44 ± 2.53 90.43 ± 3.61 90.43 ± 3.08 95.04 ± 3.02
LeViT 92.01 ± 2.03 91.44 ± 4.87 92.59 ± 1.26 92.01 ± 2.87 97.04 ± 2.22 93.15 ± 3.50 90.51 ± 2.15 92.73 ± 1.35 91.61 ± 2.66 94.4 ± 3.96

Mobile-Former 92.47 ± 3.83 94.63 ± 2.75 93.08 ± 3.64 93.85 ± 3.20 97.94 ± 4.95 91.26 ± 1.07 92.59 ± 2.15 93.71 ± 2.72 93.15 ± 1.42 96.28 ± 3.44

MatchingNet MobileViTv2 94.27 ± 3.41 92.86 ± 3.89 94.93 ± 3.24 93.89 ± 3.63 97.69 ± 1.70 91.01 ± 1.04 91.36 ± 3.15 93.32 ± 4.04 92.33 ± 1.56 97.26 ± 2.94
LeViT 94.68 ± 2.84 93.11 ± 1.58 94.62 ± 3.67 93.86 ± 2.03 97.08 ± 1.42 91.19 ± 1.76 92.13 ± 4.60 91.96 ± 2.73 92.05 ± 2.55 95 ± 2.64

Mobile-Former 94.25 ± 2.42 93.11 ± 2.03 95.48 ± 2.83 94.28 ± 2.20 97.93 ± 4.87 91.08 ± 4.54 92.58 ± 2.00 91.74 ± 4.61 92.16 ± 2.78 96.76 ± 2.14

MAML MobileViTv2 94.31 ± 2.53 92.98 ± 3.51 95.04 ± 4.66 94 ± 2.94 97.47 ± 4.89 92.14 ± 1.30 91.36 ± 4.33 93.19 ± 2.10 92.27 ± 2.00 96.99 ± 2.07
LeViT 94.55 ± 3.64 93.29 ± 1.73 96.49 ± 3.91 94.87 ± 2.35 98.81 ± 1.33 91.8 ± 3.88 92.73 ± 4.98 92.4 ± 2.95 92.57 ± 4.36 97.14 ± 4.05

Mobile-Former 93.3 ± 1.01 92.86 ± 3.91 92.78 ± 3.58 92.82 ± 1.61 95.88 ± 1.71 91.21 ± 1.21 91.27 ± 4.51 94.19 ± 2.29 92.7 ± 1.90 96.31 ± 2.09

RelationNet MobileViTv2 94.11 ± 4.47 92.05 ± 2.84 93.88 ± 3.11 92.96 ± 3.48 97.75 ± 3.90 92.36 ± 4.51 90.74 ± 4.85 91.22 ± 4.88 90.98 ± 4.67 97.28 ± 4.59
LeViT 94.69 ± 2.57 94.32 ± 1.83 94.18 ± 4.48 94.25 ± 2.14 98.01 ± 1.37 90.75 ± 3.05 89.79 ± 2.65 87.27 ± 4.06 88.51 ± 2.83 96.96 ± 3.88

Mobile-Former 92.69 ± 3.43 94.03 ± 3.11 94.61 ± 2.10 94.32 ± 3.26 97.12 ± 4.27 90.06 ± 1.61 93.11 ± 4.70 88.56 ± 2.19 90.78 ± 2.40 97.65 ± 1.78

Proposed 96.72 ± 2.67 96.72 ± 5.76 96.22 ± 3.99 96.46 ± 2.65 98.89 ± 2.60 94.34 ± 2.02 94.26 ± 2.01 94.37 ± 2.49 94.24 ± 2.02 98.84 ± 4.74
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To further understand and scrutinize the behavior of our model (five-way one-shot),
Figure 4 provides a visualization of the class-level performance by plotting the confusion
matrices for both classification and severity estimation tasks. For coffee biotic stress
classification, it is worth noting that the class “Brown leaf spot” attains the lowest detection
performance with 95.7% precision, while the class “healthy” attains the highest detection
performance with 98.1% precision. For severity estimation, it is worth noting that the class
“very high” attains the lowest detection performance with 91% precision, while the class
“high” attains the highest detection performance with 95% precision. This can be attributed
to the class imbalance or the in-between severity levels that cause the model to be confused.
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In Table 5, we present the quantitative results obtained from the different methods
under both five-way five-shot and five-way one-shot training on the symptom dataset.
The tabulated results only represent the performance of the models on coffee biotic stress
classification. It is worth noting that the NAML achieves the highest performance among
other baselines, while SiameseNet gets the lowest performance. This observation applies to
both five-way one-shot as well as five-way five-shot settings. Conforming to our findings
on the leaf dataset, the proposed model shows competing for performance outperforming
overall baselines on the symptom dataset. Notably, the competing baselines don’t show
significant performance gain when increasing the number of shots. The same behavior
applies to the proposed model, in which the classification performance only reduces by
1% when shifting from five shots to one shot. This can be attributed to the fact that the
leaf dataset encompasses only a few categories, which makes the learner not require many
support instances per category to achieve good generalization.

In Figure 5, we present the confusion matrix of the proposed model on the symptom
dataset. For five-way five-shot settings, it is observable that the proposed model recognizes
different types of biotic stresses with an average precision above 98%. For the five-way one-
shot setting, it is worth noting that the class “Brown leaf spot” attains the lowest detection
performance with an average precision of 94.8%, while the class “Leaf miner” attains the
highest detection performance with an average precision of 99.1%. This is explained by
the fact that the variation in the representativeness of support symptom samples has a
significant impact on the class-level performance and overall model performance.
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Table 5. Comparison of numerical results of the proposed model against baselines on symptom dataset.

Biotic Stress Classification (5-Way 5-Shot) Biotic Stress Classification (5-Way 1-Shot)

FSL
Method Backbone Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SiameseNet MobileViTv2 92.34 ± 2.64 92.88 ± 3.62 92.48 ± 5.62 92.68 ± 3.05 95.11 ± 4.31 92.24 ± 3.87 93.24 ± 2.33 91.81 ± 3.41 92.52 ± 2.91 95.46 ± 2.07
LeViT 91.99 ± 2.78 90.99 ± 2.61 91.3 ± 2.56 91.14 ± 2.69 96.55 ± 2.28 92.36 ± 3.64 90.47 ± 3.07 90.38 ± 4.25 90.42 ± 3.33 97.08 ± 4.85

Mobile-Former 91.23 ± 5.51 91.38 ± 3.78 92.24 ± 5.09 91.81 ± 4.49 94.5 ± 2.82 91.61 ± 5.44 91.04 ± 4.36 92.46 ± 3.63 91.74 ± 4.84 94.47 ± 3.70

TripletNet MobileViTv2 93.31 ± 2.39 93.81 ± 2.38 94.18 ± 2.24 93.99 ± 2.39 97.31 ± 5.57 93.33 ± 5.60 94.32 ± 4.78 93.99 ± 5.88 94.15 ± 5.16 96.81 ± 5.11
LeViT 93.84 ± 3.62 93.8 ± 3.83 92.95 ± 3.95 93.37 ± 3.72 96.17 ± 3.59 93.83 ± 2.49 94.52 ± 2.53 93.31 ± 3.29 93.92 ± 2.51 95.83 ± 5.85

Mobile-Former 94.98 ± 5.22 93.65 ± 3.74 95.48 ± 4.44 94.56 ± 4.36 96.93 ± 3.23 94.91 ± 4.34 94.45 ± 4.30 94.5 ± 5.28 94.48 ± 4.32 97.07 ± 3.05

ProtoNet MobileViTv2 95.31 ± 4.10 94.15 ± 3.94 95.56 ± 3.82 94.85 ± 4.02 96.81 ± 4.34 95.69 ± 3.34 93.5 ± 2.51 94.83 ± 4.66 94.16 ± 2.87 96.25 ± 2.65
LeViT 95.31 ± 5.06 95.61 ± 3.91 94.46 ± 2.08 95.03 ± 4.41 98.21 ± 4.80 95.09 ± 4.47 95.84 ± 5.18 95.4 ± 2.30 95.62 ± 4.80 97.27 ± 3.40

Mobile-Former 94.6 ± 5.44 94.61 ± 3.28 94.49 ± 3.45 94.55 ± 4.09 96.48 ± 2.03 94.75 ± 2.98 94.54 ± 4.93 93.69 ± 2.30 94.11 ± 3.71 96.91 ± 4.15

MatchingNet MobileViTv2 95.91 ± 4.70 95.25 ± 5.46 95.19 ± 2.19 95.22 ± 5.05 97.88 ± 3.71 95.57 ± 3.36 95.31 ± 4.74 94.41 ± 4.31 94.86 ± 3.93 98.12 ± 4.55
LeViT 95.86 ± 3.55 95.76 ± 2.39 95.68 ± 2.39 95.72 ± 2.86 97.84 ± 2.04 95.99 ± 4.38 95.83 ± 4.14 94.92 ± 5.54 95.37 ± 4.26 97.24 ± 5.43

Mobile-Former 95.88 ± 3.50 95.27 ± 5.32 94.93 ± 5.39 95.1 ± 4.22 96.4 ± 4.72 96.81 ± 2.87 95.18 ± 2.41 95.05 ± 3.24 95.12 ± 2.62 96.99 ± 4.74

MAML MobileViTv2 96.15 ± 5.19 95.98 ± 3.98 95.5 ± 4.35 95.74 ± 4.51 97.16 ± 5.77 96.83 ± 4.58 95.89 ± 2.83 95.03 ± 5.64 95.46 ± 3.50 96.87 ± 4.22
LeViT 95.89 ± 4.07 96.46 ± 2.77 96.77 ± 3.73 96.61 ± 3.29 97.36 ± 2.62 95.02 ± 3.58 95.82 ± 3.16 97.57 ± 4.07 96.69 ± 3.36 97.83 ± 4.01

Mobile-Former 96.05 ± 3.81 94.96 ± 2.19 96.33 ± 4.43 95.64 ± 2.78 98.5 ± 3.39 95.96 ± 5.30 94.66 ± 2.88 96.56 ± 4.61 95.6 ± 3.73 99.3 ± 2.18

RelationNet MobileViTv2 94.93 ± 5.86 93.69 ± 2.04 93.11 ± 3.41 93.4 ± 3.03 97.65 ± 4.51 95.92 ± 4.29 94.37 ± 3.34 92.24 ± 4.56 93.29 ± 3.76 97.02 ± 3.84
LeViT 93.5 ± 4.75 92.18 ± 5.13 91.59 ± 3.75 91.88 ± 4.93 97.54 ± 3.46 93.58 ± 2.79 91.75 ± 5.20 90.75 ± 4.46 91.25 ± 3.63 97.97 ± 3.41

Mobile-Former 94.32 ± 2.50 95.36 ± 4.84 94.39 ± 5.92 94.87 ± 3.29 96.32 ± 3.89 93.33 ± 2.48 95.7 ± 3.53 93.4 ± 3.24 94.54 ± 2.92 97.19 ± 5.40

Proposed 98.34 ± 1.29 98.4 ± 3.14 98.14 ± 2.23 98.27 ± 1.83 99.68 ± 2.35 97.79 ± 1.18 97.22 ± 1.47 97.38 ± 1.67 97.30 ± 1.31 99.12 ± 3.93
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In Table 6, we display the results of two-tailed t-test experiments applied to assess and
statistically analyze the role significance of achieved improvements under both five-way
five-shot and five-way one-shot settings. In these experiments, we use a threshold value
of 0.05. As observed, the statistical results reveal the remarkable classification accuracy
in categorizing coffee leaf diseases and determining their severity level. The statistical
significance is observed for both types of settings validating the robustness of our model
and its potential to address the complications of multi-task leaf diagnosis efficiently. Based
on these outcomes, we can conclude that the performance improvements achieved by our
approach are realistic and not achieved by chance, which proves the competitive advantage
of our mode over the competing models.

Table 6. Statistical Analysis Results for 5-Way 5-Shot and 5-Way 1-Shot Settings.

5-Way 5-Shot 5-Way 1-Shot

Biotic Stress
Classification Severity Estimation Biotic Stress

Classification Severity Estimation

Proposed vs. SiameseNet 3.983 × 10−11 8.405 × 10−11 8.014 × 10−15 2.377 × 10−70

Proposed vs. TripletNet 3.399 × 10−40 4.268 × 10−14 7.375 × 10−80 1.662 × 10−90

Proposed vs. ProtoNet 8.185 × 10−20 1.363 × 10−21 8.313 × 10−90 6.254 × 10−40

Proposed vs. MatchingNet 4.482 × 10−11 6.694 × 10−31 8.539 × 10−12 2.501 × 10−50

Proposed vs. MAML 6.641 × 10−50 8.805 × 10−12 4.539 × 10−13 3.357 × 10−80

Proposed vs. RelationNet 4.369 × 10−3 6.220 × 10−8 5.713 × 10−7 2.819 × 10−11

5.2. Ablation Analysis

In this section, the results from ablation experiments are discussed to explain the
contribution of different building blocks to the final performance of the proposed model.
In this context, a set of learner ablation experiments is implemented to compare the per-
formance of the MVT to other multi-path learners from the literature. In Figure 6, the
results of these experiments on the leaf dataset are reported for both five-way five-shot and
five-way one-shot settings. It is worth noting that the proposed MVT enables our model
to achieve higher performance on biotic stress classification and severity estimation tasks.
The findings further demonstrate the efficiency of MVT. This can be attributed to the ability
of MVT to extract the fine-grained features from both support and query images while
considering the feature interaction among them.
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Moreover, to interpret the performance of our MVT, a comprehensive ablation analysis
is conducted to evaluate the efficacy of our IPE against the conventional PE, as shown in
Figure 7. This experimental analysis is expected to elucidate the distinct contributions of
IPE to the overall model performance. As shown, the detection performance improvements
achieved by our IPE module, demonstrated its effectiveness in modeling complex spatial
relations and context representations within leaf images. Amazingly, the results on the
severity estimation task conform with the findings on the detection task, which further
supports our claims regarding the role of the IPE module. These findings collectively lay the
groundwork for future research intended to enhance embedding strategies in the context
of multi-task leaf diagnosis, promoting an in-depth interpretation of the complicated
associations between spatial information and accurate disease classification.
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According to the above findings, it is worth noting that our work has important rami-
fications for the social and economic fabric of rural areas in addition to their experimental
merits. The proposed framework has the potential to completely alter the coffee farming
environment, especially in areas where the industry is vital to the economy. With the quick
and accurate multi-task diagnosis of coffee leaf diseases, the proposed model can provide
farmers with the data they need to take corrective and preventative steps. The consequence
is improved food security for populations that rely heavily on coffee for both economic
and nutritional support. The financial security of farmers is bolstered by higher yields, and
their ability to weather agricultural crises is strengthened [30–32]. Our findings support
sustainable agriculture’s broader mission to improve the lives of farmers and rural com-
munities while also bolstering regional economies and ensuring a reliable supply of staple
food. Though the origins of our study are in the fields of machine learning and multi-task
leaf diagnostics, its implications are substantially more general. The potential of our model
to solve real-world difficulties faced by coffee farmers increases the program’s potential
social and economic impact. The capacity to correctly identify biotic stress affecting coffee
leaves is vital not just for effective disease management but also for the continued existence
of agricultural communities. Since correct diagnosis improves harvests, it helps ensure that
people in coffee-growing areas have access to a safe and sufficient food supply. As a result
of increasing yields and farmer incomes, the economy stands a better chance of remaining
stable thanks to this productivity boost. Our novel strategy has contributed to a robust and
sustainable agriculture sector [33–36].

6. Conclusions

This work presents a novel meta-learning approach for a few-shot multi-task diagnosis
of biotic stresses from coffee leaf images. A new MVT network is proposed to perform
mixed contextual attention on both query and support images of the meta-training dataset.
An adaptive meta-training strategy is introduced based on an objective function that
acclimates to each episode according to its state throughout the inner-loop optimization,
hence empowering the model’s generalizability. The experimental results demonstrated
that the proposed targeted approach not only enhances the diagnosis and management
of coffee leaves but also empowers coffee farmers with efficient and accurate tools to
combat diseases, safeguard crop productivity, and promote sustainable practices. The
proposed holistic approach enables site-specific disease management policies tailored to
the exceptional conditions of each coffee plantation. However, the centralized scenario of
our model remains a significant limit to the use and deployment of our model in real-world
smart farms which are geographically distributed across different locations.

In line with continuous advancements in the field of multi-task coffee leaf diagnosis,
many promising avenues are envisioned for future exploration. Firstly, our knowledgeable
meta-learning approach can be fine-tuned to optimize its adaptability to a variety of crop
diseases and varied environmental settings. In addition, the continuous evolution of
sustainable agriculture highlights the importance of integrating real-time monitoring and
IoT technologies into the proposed approach to allow timely and data-driven decision-
making for farmers. The potential for our investigation to grow to incorporate remote
sensing data and satellite pictures for disease forecasting and early diagnosis is quite
encouraging. We also plan to work with agronomists and ecologists to better understand the
intricate interplay between crop health and environmental factors through the development
of interdisciplinary collaborations. Furthermore, Figure 8 displays the comprehensive
ablation analysis that thoroughly assesses the performance of our model when implemented
with the proposed adaptive meta-training, and when implemented with the standard meta-
training approach. As shown, the experimental results show that adaptive meta-training
reveals a noteworthy advantage and demonstrates superior adaptability to developing task
distributions and complexities. With the dynamic adjustment ability of our meta-learner,
our approach excels in capturing task-specific nuances, thus showcasing higher accuracy
and robustness in multi-task leaf diagnosis. On the other hand, with the conventional



Sustainability 2023, 15, 16791 22 of 24

meta-training approach, our model suffers from limited adaptability in the face of changing
circumstances.
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