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Abstract: Battery electric vehicles (BEVs) offer substantial potential to enhance the electric grid
through bi-directional charging technologies. In essence, BEVs, functioning as portable battery energy
storage systems, play a pivotal role in enabling the seamless integration of renewable energy, grid
optimization, and ancillary services. This article sets out to explore the value of BEVs equipped with
Vehicle-to-Grid (V2G) for grid operators, particularly in the context of alleviating congestion. This
valuable service, though not accompanied by direct monetary compensation for users, holds signifi-
cant promise in minimizing congestion and renewable energy curtailment. This study utilizes the
Day-Ahead Locational Marginal Price (LMP) data obtained from various locations within California
Independent System Operator (CAISO) to ascertain the financial benefits to BEVs located on either
side of congestion at different grid nodes, across various months. Similar analysis is performed on
some of the largest solar energy plants in California. Mixed-integer linear programs are used to
optimize the charging/discharging decisions for the BEV for maximizing revenue from LMP arbitrage
and for minimizing the congestion component of LMP. Additionally, we take into account the impact
of battery degradation, quantified as a cost per kilowatt-hour ($/kWh), and integrate this factor into
our assessment to understand the evolving discharging behavior of BEVs. The article compares the
benefits from the BEVs towards congestion minimization for the two different optimization scenarios,
discusses seasonality, and addresses the importance of adequately compensating BEV users and
incentivizing them to prioritize congestion relief during specific time intervals.

Keywords: electric vehicles; V2G; congestion relief; battery degradation; LMP

1. Introduction

The growing integration of intermittent renewable energy sources (RES), such as solar
and wind, alongside the increasing adoption of battery electric vehicles (BEVs) as part of
the global effort to combat climate change and reduce air pollution has presented notable
challenges in the effective management and stability of our energy grid [1]. Shifting our
electric grid towards a greater reliance on RES and electrifying our transportation to meet
sustainability goals demands effective instruments and markets to maintain grid equilib-
rium across all timeframes. Among the promising solutions supporting this transition
are battery energy storage systems (BESS), thanks to declining costs and extended battery
lifespans [2].

Grid-scale BESS stands out as a versatile option, capable of swiftly and economically
storing and supplying substantial energy quantities, often in the range of megawatt-hours
(MWh), all while maintaining high efficiency, reliability, and safety standards [3]. The
potential of BESS is multifaceted, offering benefits to Independent System Operators (ISOs),
Regional Transmission Organizations (RTOs), utilities, and end-users alike [4]. For instance,
behind-the-meter (BTM) energy storage can ensure backup power, optimize the utilization
of solar photovoltaics (PV), reduce electricity expenses through time-of-use (TOU) pricing
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schemes, and engage in peak shaving for both residential and commercial consumers [5].
Moreover, BESS has the capacity to minimize load variance [6], lower electricity costs by
mitigating RES curtailment [7], and facilitate electric bus charging, ultimately reducing
demand charges [8].

BESS can also harness fluctuating electricity prices in Day-Ahead Markets (DAM) and
Real-Time Markets (RTM) to generate revenue through arbitrage, a strategy that involves
charging batteries at low prices and discharging at high prices [9]. Additionally, BESS can
participate in ancillary services, such as voltage support, reserves [4], frequency regula-
tion [9], and reactive power compensation [10], across different jurisdictions, depending on
local regulations and market dynamics. Furthermore, BESS can yield savings through defer-
ring costly transmission grid upgrades, distribution grid enhancements, and by providing
congestion relief [4].

BEVs present another dimension in this evolving landscape. BEVs rely exclusively on
the energy stored in their batteries for transportation and have the advantage of emitting
fewer greenhouse gases (GHGs) when charged with RES compared to internal combustion
engine vehicles [11]. Coordinated smart charging of BEVs further reduces the cost per
mile driven [12]. Data from the US Department of Transportation’s National Household
Travel Survey (NHTA) suggests that, on average, private vehicles spend a mere 4% of
their day in active use [13]. This leaves substantial room for BEVs to provide grid services
when plugged in, especially considering their compatibility with the innovative concept of
Vehicle-to-Grid (V2G) technology [14].

With V2G capabilities, BEVs can facilitate two-way communication and power flow
with the grid, effectively enabling them to function as backup power sources [15]. Coor-
dinated energy management of BEVs enhances grid efficiency, performance, and power
quality [16] while minimizing charging costs. Parked and plugged-in BEVs have the poten-
tial to generate revenue by offering grid services like frequency regulation [17] and voltage
regulation or by participating in energy arbitrage with TOU pricing [18]. Furthermore,
BEVs can charge with excess renewable energy and supply that energy back to the grid
during periods of need, thus reducing curtailment and alleviating peak load, particularly
in regions with distinctive load profiles, such as California’s notorious “duck curve” [19].
BEVs contribute not only to lower emissions from vehicles but also to reduced emissions
from peaking power plants through their V2G capabilities [20]. The practical connection
between the BEV and the electric grid for V2G has not been discussed in this work. More
details on EV-grid integration, grid-connection standards, bidirectional/unidirectional
charger topologies, and V2G operation are explored in review articles [21,22].

As of 2021, numerous BEV models boast impressive battery energy capacities exceed-
ing 90 kWh and power transfer capabilities exceeding 250 kW [23]. However, the rate
of power transfer remains constrained by the internal power circuitry of the BEV and
manufacturer-imposed limitations. The increasing popularity of BEVs and the potential
financial incentives stemming from V2G technology are poised to motivate more BEV
manufacturers to embrace bidirectional power flow, driven both by economic and environ-
mental considerations. Despite the extensive exploration of BESS and BEVs with V2G in
numerous electric grid applications, one aspect that remains relatively uncharted is the
potential of BEVs with V2G to alleviate congestion. The prospects here are significant, with
the potential to realize substantial monetary savings, such as the case in CAISO, where
BEVs assisting in transmission congestion relief could result in monthly savings of up to
$280.47 [24]. However, it is essential to recognize that this work assumed constant BEV
availability for grid support, treated BEVs as small batteries, and did not account for the
effects of battery degradation.

This article aims at projecting the benefits of BEVs providing congestion-related cost
minimization in the current aging electric grid infrastructure. The charging/discharging
strategies used by BEVs for congestion relief and arbitrage are explored at different loca-
tions in the California Independent System Operator (CAISO) jurisdiction. The battery
degradation experienced by the BEVs is modeled as a constant degradation cost factor.



Sustainability 2023, 15, 16733 3 of 23

This study focuses on the nodes at the ends of some of the most congested lines as well
as some of the largest solar generation plants in California to explore the value of BEVs
supporting congestion relief for a multi-year time frame. We explore the temporal benefits
on a monthly basis at these key points by using locational marginal pricing (LMP) data and
study the trade-off between minimizing congestion and maximizing arbitrage revenue. To
the best of our knowledge, we are the first to explore the value of BEVs on congestion relief
in this manner by identifying existing congested transmission lines and large solar plants
and utilizing real pricing data. By participating in this form of congestion minimization,
BEVs can charge to potentially minimize the curtailment of cheaper sources of sustainable
energy like solar and discharge energy locally to offset the use of more expensive polluting
peaker plants, thereby minimizing pollution.

The subsequent sections of this paper are structured as follows: Section 2 provides a
comprehensive overview of congestion relief, financial transmission rights, and locational
marginal prices. Following this, we discuss the node selection process, battery degradation
models, and the optimization programs for minimizing total cost and congestion-related
costs. In Section 3, we present the results of the optimization programs at each node as a
total value of each BEV for congestion minimization and break it down on a monthly basis
as well. We also look at battery degradation in terms of capacity loss and the value per unit
of V2G. In the final Section 4, we discuss our findings and outline prospective directions
for future research.

2. Materials and Methods
2.1. Congestion Relief and Financial Transmission Rights

Line congestion arises when the existing transmission lines face limitations due to
thermal, voltage, or stability constraints. These constraints result in congestion pricing in
various electricity markets in some countries, incurring costs for operating transmission
lines near their capacity [25]. Such congestion can hinder the efficient flow of electricity
from low-cost sustainable RES to end-users. Consequently, more expensive generation
sources are turned on to send the required energy across non-congested lines, driving up
electricity prices in the affected areas. This phenomenon triggers alterations in LMPs at
specific nodes within the electric grid network [26].

To mitigate the uncertainty and variability of transmission prices stemming from
congestion, electricity markets establish agreements between system operators and market
participants known as Financial Transmission Rights (FTR) [27]. FTRs are typically issued
through auctions and allocations in the financial transmission market, with allocation
determined by the simultaneous feasibility within the market’s security-constrained op-
timal power flow problem [28]. FTRs grant holders the entitlement to payments equal
to the energy price differential between the source and sink nodes for each transported
megawatt-hour (MWh) of energy for a given transmission line. When lines become con-
gested, congestion rents are collected by the ISOs and distributed among FTR holders [27].

However, challenges persist within the FTR market. Notably, FTRs do not resolve
physical congestion; they remain a financial instrument. Furthermore, each regional ISO
operates with its distinct rules and regulations for potential FTR market participation, po-
tentially excluding entities that require protection against congestion costs. Even approved
participants may face difficulties in auctions. In ideal conditions, if transmission constraints
are unviolated, FTR allocation should mirror electricity flow in the Day-Ahead Market,
guaranteeing that FTR payouts equal auction revenue [29]. Nevertheless, real-world sce-
narios often deviate from this ideal, leading to underfunding. FTR underfunding reflects a
revenue shortfall when collected LMP congestion costs fall short of the credits distributed to
FTR holders [30]. This problem has persisted across various ISOs for years, with instances
like PJM (Pennsylvania Jersey Maryland RTO) experiencing FTR underfunding as high
as 31% in 2012–2013 and 28% in 2013–2014, while the SPP (Southwest Power Pool) ISO
reported 20% underfunding in 2014–2015 with monetary values in the range of tens of
millions of dollars.
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The design of FTRs involves bilateral contracts with transmission charges associated
with each transaction between injection and withdrawal points, based on the price disparity
between these nodes [31]. Typically, loads pay the LMP at the point of withdrawal, while
generators receive the LMP at the point of injection for each additional MWh. Both nodes
incur congestion fees when the LMPs at these points differ. The ISO, which collects
congestion rents, reimburses the FTR holders accordingly. FTRs go by different names in
various regions, such as Congestion Revenue Rights (CRR) in California and Transmission
Congestion Contracts (TCC) in New York, with variations mainly arising in contract
design, duration, acquisition methods, trading, auction mechanisms, allocation criteria,
and revenue distribution [31].

Regulation plays a vital role in the FTR market, as unchecked dominance within it
can incentivize generation curtailment and inflate FTR values [32]. Minimizing congestion
rent is a potential solution to address the inefficiencies of the FTR market. Achieving this
goal could involve leveraging energy storage or V2G to alleviate transmission congestion,
ultimately enhancing the utilization of existing grid assets.

2.2. Utility Scale Energy Storage Projects for Congestion Relief

There have been attempts to study the use of energy storage to minimize transmission
grid congestion without looking into FTRs. Del et al. used battery energy storage to
relieve thermal constraints and hence provide congestion relief [33]. Khani et al. developed
a Real Time Optimal Dispatch (RTOD) algorithm for privately owned large scale BESS.
This allowed BESS to generate revenue primarily by arbitrage in the Day-Ahead Market
and also prepared the BESS to maximize contribution to congestion relief as an ancillary
service [34]. Arteaga et al. researched the potential for BESS to compete in an electricity
market to trade energy and provide ancillary services. The BESS also has an opportunity to
provide transmission congestion relief (TCR) under a long-term contract with a regional
network operator [35]. They modelled the opportunity costs (difference between maximum
profit with and without TCR) for TCR with the limitations imposed on participating in the
electricity markets while providing TCR. The DOE (Department of Energy) Global Energy
Storage Database also contains information on grid-connected energy storage projects used
for transmission congestion relief [36]. Globally, there are 26 operational battery storage
projects that are used for transmission congestion relief, with 9 of them in the USA. Table 1
provides key information on the energy storage projects used for transmission congestion
relief in the USA.

Table 1. Grid-scale battery projects in the USA resulting in transmission congestion relief.

Project Name Rated Storage State City
Power Capacity
(kW) (kWh)

Long Island Bus BESS—New York Power Authority 1000 6500 New York Garden City
Redding Electric Utilities (Phase 1)—Ice Energy 1000 6000 California Redding

SustainX Inc Isothermal Compressed Air Energy Storage 1500 1500 New Hampshire Seabrook
Tehachapi Wind Energy Storage Project 8000 32,000 California Tehachapi

Glendale Water and Power/Skylar Energy BESS Pilot 2000 960 California Glendale
University of Hawaii Smart Grid Regional and Energy 1000 1000 Hawaii Wailea

Storage Demonstration Project (Maui Smart Grid)
PDE Smart Microgrid System 90 29.7 California Commerce

Borrego Springs Microgrid—SDG&E 500 1500 California Borrego Springs
Redding Electric Utilities (Phase 2)—Ice Energy 6000 12,000 California Redding

With respect to BEVs, Staudt et al., evaluated the effect of uncontrolled BEV charging
on the expansion of the German transmission grid and proposed a coordinated charging
approach to relieve the transmission grid of congestion [37]. In order to calculate possible
compensation for participants, they reduced their model to one node per state. Refer-
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ence [38] developed a Day-Ahead Market framework for congestion management by using
a decentralized mechanism for the collaboration of BEV aggregators that utilized BEVS as
distributed storage. Their work focused on day-ahead congestion and ran their simulations
for only 24 h time periods in an unbalanced 136 bus system. Gowda et al. claimed that
BEVs supporting transmission congestion relief can lead to monetary savings as high as
$280.47 in one month in CAISO [24]. This work was based on the assumption that each
BEV was always available to support the grid and treated the BEV as a small battery and
ignored the effects of battery degradation.

2.3. Locational Marginal Price

The LMP represents the price of electricity at a specific location on the electric grid
at any point in time. The total LMPT can be broken down into 3 components—energy,
congestion, and loss, as shown in Equation (1). Here, LMPE, LMPC, and LMPL represent
the energy component, congestion component, and the loss component.

LMPT = LMPE + LMPC + LMPL (1)

LMPC is positive when congested transmission lines do not allow electricity from
cheaper sustainable sources of energy (like renewables) to reach a node, resulting in the
usage of nearby or local higher-cost non-renewable sources to meet the demand, resulting in
increased energy prices and pollution. LMPC is negative when there is excess transmission
capacity at a location but little demand for electricity, leading to the under utilization of
sustainable sources of energy like RES. The difference between the congestion components
of the LMPs of two nodes is the congestion charge in moving energy between them [26].
The price of moving E MWh of energy between the source and sink node is given by
Equation (2).

CFTR = E(LMPC,sink − LMPC,source) (2)

FTRs allow settlements based on the difference between source and sink congestion
prices when the transmission line between them is congested in the Day-Ahead Market. In
CAISO, FTRs are called CRRs. Load Serving Entities (LSE) can become CRR holders if they
meet any of three minimum conditions—(1) $1 million tangible net worth, (2) $10 million
total assets, or (3) post financial $500,000 cash or letter of credit. Completing the required
applications is followed by registration, agreement policies, and training to obtain CRR.
Each ISO have their own criteria to become FTR holders. As mentioned previously, FTRs
protect a limited number of entities against price stochasticity, and the physical lines
connecting nodes are still congested.

In the following section, the maximum monetary benefits that could be obtained by a
single BEV at various nodes at the ends of congested lines and at large solar generation
plants in CAISO from March 2021 to September 2023 is presented. The required LMP data
to plug in the mathematical models are obtained from CAISO using the gridstatus module
in Python. With a larger range of time data, we can study the effect of seasonality as well
as the effect of the increase in renewable energy installed in the grid. The node selection
process is discussed next.

2.4. Node Selection Process

CAISO releases a market performance report for each month, and the reports from
2021 onwards are available on their website [39]. The market performance report discusses
trends in system peak load, resource adequacy, day-ahead and real-time prices, conges-
tion, CRRs, and ancillary services. These reports discuss congestion rents on interties,
transmission lines, transformers, nomograms, and nodal group constraints. The following
three transmission lines show up often in the reports from March 2021 to September 2023,
(1) 230 kV line between Panoche and Gates, (2) 500 kV line between Los Banos and Gates,
and (3) 230 kV line between Gates and Midway. The locations of these transmission lines
were identified from the California Electric Transmission Lines dataset hosted on the Cali-
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fornia State Geoportal [40]. The ends of the transmission lines were identified and mapped
with the nodes on the price map provided by CAISO [41]. The nodes at the two ends of the
transmission lines are shown in Table 2.

Table 2. Congested transmission lines and nodes at the ends of the transmission lines.

Transmission Line Nodes

230 kV Panoche–Gates DGPAN1_7_B1, HURON_6_N001
500 kV Los Banos–Gates SNTANLA_6_N001, HURON_6_N001
230 kV Gates–Midway HURON_6_N001, MIDWAY_1_N047

Additionally, nodes representing 5 of the largest solar PV plants in California are chosen to
study the potential for V2G to minimize congestion losses and potentially mitigate sustainable
energy curtailment. The locations of these power plants were identified from the California
Power Plants dataset hosted on the California State Geoportal [42]. The solar power plants
were filtered based on capacity (250 MW or greater), status (not retired), and location (power
plants near borders were excluded). The locations of these solar power plants were identified
and mapped with the nodes on the price map provided by CAISO [41]. The names, capacity,
and nodes of these solar power plants are shown in Table 3.

Table 3. Chosen solar power plants from California for analysis.

Name Capacity (MW) Node

Topaz Solar Farm 550 TOPAZC1_7_N021
Antelope Valley Solar 250 AVSOLAR_7_N008

Desert Stateline Solar Facility 300 DSRTHV3_7_N003
California Valley Solar Ranch 250 CAVLSRGN_7_B1
Genesis Solar Energy Project 250 TOT223L2_7_N001

2.5. LMP Visualization

In this section, we will observe some of the characteristics of the LMPs at the chosen
nodes. We focus on one transmission line and the nodes at the ends of it, as well as one node
from the solar power plants for brevity. Typically, the units of LMP are $/MWh, but we plot
them as $/kWh since the charging/discharging rate from the BEV are in the order of kW.

In Figure 1, we can observe the energy component of LMP and the congestion com-
ponent of LMP plotted across the given time frame (March 2021 to September 2023) for
the node DGPAN1_7_B1. LMPE is the average LMP for the entire grid and reflects, on
average, the cost to add the next unit (MWh) of energy into the grid. We observe that LMPE
is mostly positive and generally higher in the summer months each year. Figure 1 also
shows that there was a higher LMPE in the winter months of December 2022 until March
2023. Meanwhile, at this particular node, LMPC is negative most of the time and is mostly
positive in the months of December 2022 until March 2023. We can observe that there are
instances where it makes sense to charge the BEV during time intervals with high LMPE
when the LMPC is low to minimize congestion or renewable energy curtailment. We will
delve into details in future sections.

Figure 2 shows the congestion components of LMPs at the two nodes at the ends
of the transmission line 230 kV Panoche–Gates. It can be seen on multiple points in the
chosen time frame that BEVs at the nodes need to perform the opposite task if the goal is to
minimize congestion. During the month of December 2022, we would expect the BEVs at
node HURON_6_N001 to charge at certain hours, while the BEVs at node DGPAN1_7_B1
would discharge at the same hours. The optimized actions of BEVs will be discussed in
future sections.
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Figure 1. Congestion and energy components of LMP visualized for DGPAN1_7_B1.

Figure 2. Congestion components of LMP visualized for the ends of the 230 kV Panoche–Gates
transmission lines at nodes DGPAN1_7_B1 and HURON_6_N001.

Finally, we look at Figure 3 to observe LMPC at large solar power plants. We can see
that LMPC is predominantly negative. We see that there is a seasonal component to it.
LMPC is largely negative during the spring months of the year, and some positive spikes in
LMPC can be observed during summer. This indicates seasonal curtailment in renewable
energy in the nodes near the solar power plants due to lack of demand. However, existing
transmission capacity does not allow for this energy to be transported to other nodes,
perhaps due to a lack of demand.

CAISO provides data on renewable energy curtailment each year [43]. With increasing
penetration of renewable energy in the grid, the curtailment in the months of February to
June for both 2022 and 2023 have been over 200,000 MWh. In 2021, the maximum amount
of curtailment occurred in the month of March, about 240,000 MWh. In 2023, the curtailed
energy in the month of March almost tripled to 700,000 Mwh. By potentially creating
markets that incentivize electricity consumption at local nodes based on congestion pricing,
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sustainable energy curtailment and reliance on expensive polluting power plants could
be minimized.

Figure 3. Congestion and energy components of LMP visualized for DSRTHV3_7_N003.

2.6. Battery Degradation

Participation in V2G applications reduces the service life of the batteries housed by
BEVs due to the increased number of charging cycles. There are multiple approaches that
have been used to account for battery degradation in V2G, like equivalent circuit models,
electrochemical models, performance based models, neural networks, and so on [44]. In
our case, we choose to use a degradation model represented as a constant degradation cost
factor that can be directly utilized in the objective function of the optimization model [45].
While battery degradation consists of both calendar and cyclic aging, we focus on the
capacity loss purely due to the increased cycles and ignore the degradation that occurs
from calendar aging. This enables the use of a constant degradation parameter in the
optimization objective instead of a variable degradation parameter that depends on the
current state of health of the battery [18]. Our battery degradation model is based on recent
work in [44] that describes a weighted Ah-throughput model (wAh model) using a constant
degradation cost factor.

The wAh model used here is based on curve fitting performed on measured ex-
perimental data in [46]. The fitting function describing capacity loss Closs is shown in
Equation (3).

Closs = kCkD f 1/2 (3)

In Equation (3), kC describes the influence of C-rate and kD describes the influence
of depth of cycle (DoC). f represents the number of full equivalent cycles. The fitting
functions of kC and kD are described in Equations (4) and (5), respectively.

kC = 0.063Crate + 0.0971 (4)

kD = 4.0253(DoC − 0.5)3 + 1.0923 (5)

kC is a linear function of the C-rate of the battery, and kD depends non-linearly on the
depth of cycle. f is a function of cell capacity Ccell and charge quantity throughput Q, as
shown in Equation (6).

f =
Q

2Ccell
(6)
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The battery cell under consideration has a nominal capacity (Ccell) of 2.85Ah. The
effect of temperature on degradation is ignored since BEVs are equipped with a Battery
Thermal Management Systems (BTMS) that ensure that the battery pack operates at an
optimal range [46]. Ref. [47] reviews the latest advancements in BTMS for BEVs and
discusses in detail how combinations of passive and active cooling/heating methods are
used by BTMS to meet the stringent thermal requirements.

The opportunity cost from battery aging is determined using the initial cost of the
battery, assuming that the battery is valued at 0$ when it reaches the end of its life at 20%
capacity loss (or 80% of its initial capacity). The specific price of the battery pack Cinv is set
at $118/kWh based on [44]. With this information, we can obtain a constant degradation
cost factor CFdeg in $/kWh using Equation (7).

CFdeg =
CinvErat

Eli f e (7)

Erat is the rated capacity of the battery, and Eli f e is the maximum possible lifetime
energy throughput until the battery reaches the end of its life. Eli f e can be computed using
Equation (8) by utilizing Equation (3) and the fact that the battery is valued at 0$ at 20%
capacity loss.

Eli f e = 2Erat(
20%
kCkD

)2 (8)

The constant degradation cost factor CFdeg will be directly utilized in the objective of
the optimization problem. We estimate the CFdeg for a Nissan Leaf BEV with a battery ca-
pacity 40 kWh that can be charged/discharged at 6.6 kW using the described methodology
as 0.18 cents/kWh.

2.7. Optimization

At each node under consideration, we optimize for two outcomes. Firstly, we use
a Nissan Leaf BEV for the minimization of the congestion component of the LMP at the
node and then for the minimization of the total LMP at the node by means of charging
and V2G. Minimization of the congestion component results in greater utilization of local
cheaper sustainable energy, and potential reduction in sustainable energy curtailment and
stress on transmission lines. The minimization of total LMP results in maximum revenue
or minimum charging cost to the BEV by trading energy at the appropriate times. Here, we
only look at the benefits to a single BEV and the tradeoff between the outcomes with these
two methods. The usage of a large number of BEVs for V2G (hundreds of kW or MW) can
potentially update the LMPs significantly and drastically affect the power flow in the entire
grid. Hence, we pick a single BEV for our analysis to identify the value that it brings to
congestion relief.

For our study, we consider a Nissan Leaf with a battery capacity of 40 kWh that can be
charged/discharged at at a maximum rate of 6.6 kWh with 90% efficiency. We assume that
the minimum possible state of charge of the BEV is 10% and a maximum possible state of
charge is 90%. Within these constraints, the charging or discharging profile is assumed to
be linear. Time is discretized into hourly intervals, and we work with a simple uncertainty
that the BEV is not available for charging or V2G for a one hour interval interval between
8–10 AM, as well as another hour between 4–6 PM to be used for transportation, creating
4 scenarios typical for an average workday. The minimized congestion-related costs or
charging costs, the total energy discharged by the BEVs, the battery degradation, and the $
value per kWh of discharge is calculated at each of the nodes for all the months between
March 2021 to September 2023 and reported as an average value from all scenarios. We
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also assume that the BEVs do not travel far enough to another node’s service area. The
optimization problem is described below.

Minimize
T

∑
k=1

(LMPi,k(Pch,k − Pdch,k)− CFdeg(Pch,k + Pdch,k))∆T (9)

subject to
Ek = Ek−1 + (Pch,kηch − Pdch,k/ηdch − Pdriv,k)∆T ∀k ∈ {T} (10)

Emin ≤ Ek ≤ Emax ∀k ∈ {T} (11)

0 ≤ Pch,k ≤ δch,kPch,max ∀k ∈ {T} (12)

0 ≤ Pdch,k ≤ δdch,kPdch,max ∀k ∈ {T} (13)

δch,k ∈ {0, 1} ∀k ∈ {T} (14)

δdch,k ∈ {0, 1} ∀k ∈ {T} (15)

δch,k + δdch,k ≤ 1 ∀k ∈ {T} (16)

δch,k = 0 ∀k ∈ {Tdriv} (17)

δdch,k = 0 ∀k ∈ {Tdriv} (18)

Ek ≥ Edep,k ∀k ∈ {Tdep} (19)

The optimization problem is formulated as a mixed integer linear program (MILP)
that is run multiple times for each node for all the months chosen (with no change in
timings of EV departure, arrival, and energy consumed driving). The day-ahead LMP
data including the 3 components—energy, congestion, and loss for every time interval at
each node—is obtained using the gridstatus module in Python. Equation (9) states that the
objective function minimizes the charging cost with LMPi, k using the BEV with V2G. The
i in LMPi, k can be T, with LMPT,k representing the total LMP or i can be C to represent
the congestion component LMPC,k for time interval k at the node. The timeline under
consideration is discretized to T time intervals of size ∆T , which, in this case, is 1 h. Pch,k
and Pdch,k are the charging and discharging power of the BEV at time interval k. CFdeg is
the constant degradation cost factor of the BEV battery. The cost of charging/discharging
the energy from the BEV and/or the prevented congestion-related costs are incorporated in
this objective.

Equations (10)–(19) represent the constraints of the optimization model. Equation (10)
is based on the law of conservation of energy—it states that the energy stored in the BEV
at time k depends on the energy in the BEV at time (k − 1), energy expenditure due to
driving in time k, as well as the power flow into or out of the BEV at time k when plugged
in. The BEV can be charged with power Pch,k with efficiency ηch, discharged with power
Pdch,k with efficiency ηdch, or the BEV consumes power Pdriv,k when driven at time interval
k. Pdriv,k is randomly set in the range of 5 to 10 kW to reflect a driven distance in the range
of 15 to 30 miles but is fixed at that value for a given scenario. Both ηch and ηdch are set at
90%. Equation (11) sets limitations on the maximum and minimum energy stored in the
battery of the BEV. The energy in the BEV at any time interval k is assumed to lie between
10% (Emin) and 90% (Emax) of the BEV battery’s rated capacity Erat. Equations (12) and (13)
set the charging and discharging power limitations of the BEV as Pch,max and Pdch,max,
respectively, which, in this case, is 6.6 kWh. δch,k and δdch,k are binary decision variables as
shown in Equations (14) and (15). When δch,k equals 1, the BEV is charging, and when it
equals 0, the BEV is not charging. The same rule applies to δdch,k. The sum of δch,k and δdch,k
is always less than or equal to 1, as shown in Equation (16), ensuring that the BEV can either
charge, discharge, or remain idle when plugged in. Equations (17) and (18) ensure that the
BEV cannot charge or discharge during the time intervals when it is driven. Equation (19)
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states that the BEV must hit a minimum amount of energy Edep,k before its departure from
a charging station.

The optimization is set up and solved using the gurobipy module in Python [48].
The only input data to the program are the LMPT and LMPC data of the nodes for the
months of March 2021 to September 2023. The other parameters are set as stated in the
assumptions. The outputs obtained are the average maximum revenue from the BEV, the
congestion-related savings, the charging schedule of the BEV, the total discharged power,
benefit per kWh of V2G, and battery degradation as capacity loss.

3. Results

In this section, we will first look at the total benefits from V2G-enabled BEVs at each
node. Following this, we will explore seasonality and the behavior of BEVs at smaller time
scales in these nodes.

The blue bars in Figure 4 shows the total savings (or revenue) earned by a single BEV
at each node that participates in energy arbitrage with LMPT pricing. The orange bars in
the figure represent the congestion savings as an outcome of minimizing total charging
cost. We can see that in each of the nodes, the BEV earns over 200 dollars, with a maximum
of $290.37 at node HURON_6_N001. However, the congestion savings are only in the range
of 110–190 dollars for these nodes.

Figure 4. Savings from LMPT minimization at the nodes at the ends of the transmission lines.

The results of the LMPC optimization in Figure 5 shares an interesting find. Here, the
blue bars show the total congestion savings by a single BEV at the appropriate node that
participates in congestion minimization with LMPC pricing. The orange bars represent
the minimized total congestion costs. We see that congestion minimization comes at a
significant cost based on the current market design. In each of the nodes, we can see
congestion savings over $380, except for one node at $259.8. However, based on the current
electricity market design, the BEVs have to pay in the range of $670–950 to help minimize
local congestion. This is one of the main reasons why BEVs with V2G capability will not
participate in local congestion minimization with the current LMP pricing, unless they can
be incentivized to do so.
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Figure 5. Savings from LMPC minimization at the nodes at the ends of the transmission lines.

The blue and orange bars in Figure 6 show the capacity degradation from the LMPT
and LMPC optimization, respectively. The capacity losses for the LMPT optimization are
in the range of 3.7–3.8% for the timeline in consideration (March 2021 to September 2023),
while the capacity losses for the LMPC optimization are less than 2.7%. This suggests that
the BEV discharges in fewer instances for the LMPC optimization when compared to the
LMPT optimization.

Figure 6. Battery capacity loss (%) from LMPT and LMPC minimization at the nodes at the ends of
the transmission lines.

The blue bars in Figure 7 shows the total savings (or revenue) earned by a single BEV
at each solar power plant node that participates in energy arbitrage with LMPT pricing. The
orange bars in the figure represent the congestion savings. We can see that in each of the
cases, the BEV earns over 275 dollars, with a maximum of $420.1 at node DSRTHV3_7_N003.
However, the congestion savings are only in the range of 120–255 dollars.
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Figure 7. Savings from LMPT minimization at the solar power plant nodes.

Figure 8 shares a similar finding as Figure 5. Here, the blue bars show the total savings
earned by a single BEV at the appropriate node that participates in congestion minimization
with LMPC pricing. The orange bars represent the minimized total congestion costs. We
can observe congestion savings in the range of $150–290 depending on location. However,
the BEVs have to pay in the range of $400–660 to help minimize local congestion. This
again shows that local congestion minimization may come at a cost to earning revenue
from total LMP and highlights the need to incentivize action at a nodal level.

Figure 8. Savings from LMPC minimization at the solar power plant nodes.

The blue and orange bars in Figure 9 show the capacity degradation from the LMPT
and LMPC optimization, respectively, at the solar power plant nodes. The capacity losses
for the LMPT optimization are close to 3.8% for the timeline in consideration (March 2021 to
September 2023), while the capacity losses for the LMPC optimization are around 1.7–2%.
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Figure 9. Battery capacity loss (%) from LMPT and LMPC minimization at the solar power
plant nodes.

For conciseness, we focus on the nodes whose LMPs were highlighted in Figures 1–3
to observe the monthly trends in BEV behavior. The monthly distribution of arbitrage
revenue and congestion savings from both the LMPT and LMPC optimization as well
as the distribution of V2G commitment and degradation from nodes DGPAN1_7_B1,
HURON_6_N001, and DSRTHV3_7_N003 are discussed below.

Figures 10–12 show the monthly distribution of revenue or congestion savings. A
BEV optimized for LMPT at DGPAN1_7_B1 can earn over $50 in the months of May 2022,
September 2022, and April 2023, but the congestion savings are much larger in May 2022
and April 2023 compared to September 2022. This shows that the LMPT optimal charging
strategy for a BEV results in both higher earnings and congestion savings during the spring
season, but during summer, there is an opportunity to earn a higher amount with minimal
influence on congestion. We also see that during the winter months, the congestion savings
are higher than the revenue from arbitrage. This indicates a lower opportunity to earn
revenue from arbitrage during winter. A drastic example in this case is during the months
of December 2022 and January 2023, where $84 and $49 are required to charge the BEVs.
Figure 11 shows a similar promise with higher earnings (greater than $40) in the months
of May 2022, September 2022, and April 2023, but congestion savings peak mostly during
the spring months (though the value is much lower). Here again, the congestion savings
are higher than the revenue from arbitrage during the winter months. We see a similar
outcome for the solar power plant node DSRTHV3_7_N003 in Figure 12, showing potential
earnings in May 2022, September 2022, and April 2023 being greater than $35. However, we
see that the revenue continues to remain high except for a dip in June 2023. We also see that
the congestion savings are higher one month earlier compared to nodes DGPAN1_7_B1
and HURON_6_N001.
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Figure 10. Monthly savings from LMPT minimization at DGPAN1_7_B1.

Figure 11. Monthly savings from LMPT minimization at HURON_6_N001.

Figure 12. Monthly savings from LMPT minimization at DSRTHV3_7_N003.

Figures 13–15 show the monthly distribution of revenue or congestion savings under
LMPC optimization. As seen previously, LMPC minimization results in congestion savings
but significantly increases charging costs. In both DGPAN1_7_B1 and HURON_6_N001,
the congestion savings spike close to the months of April and May each year. During these
months, the charging costs are not significant as well. However, for most other months
from early summer to early spring, there are negligible congestion savings for a very large
rise in charging costs, especially during December 2022, with charging costs as high as
$174 and $117 in DGPAN1_7_B1 and HURON_6_N001, respectively. We see a similar
trend with the solar power plant node DSRTHV3_7_N003. In the case of DGPAN1_7_B1
and HURON_6_N001, congestion minimization leads to revenue on the order of $8 and
above (up to $35) for the months of April and May 2022 and 2023. The positive revenue
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for DSRTHV3_7_N003 shows up in March 2021, March–April 2022, March 2023, and
July–August 2023.

Figure 13. Monthly savings from LMPC minimization at DGPAN1_7_B1.

Figure 14. Monthly savings from LMPC minimization at HURON_6_N001.

Figure 15. Monthly savings from LMPC minimization at DSRTHV3_7_N003.

Figures 16–18 show the total amount of V2G throughput provided by the BEV at the
node for both LMPT and LMPC optimization. For the three nodes with LMPT optimization,
the V2G throughput is in the range of 500–900 kWh per month, with the exception of the
months from October 2022 to January 2023 for DGPAN1_7_B1. For the three nodes with
LMPC optimization, the V2G throughput is in the range of 0–600 kWh per month, with
the exception of the months from November 2022 to January 2023, where it is closer to
800 kWh for DGPAN1_7_B1 and HURON_6_N001. With respect to LMPC optimization,
we see a much smaller throughput of V2G in the range of 0–250 kWh for the months of



Sustainability 2023, 15, 16733 17 of 23

June 2021 to March 2022, with an exception in October 2021, as well as from January 2023
to March 2023 for all three nodes. Additionally, in DSRTHV3_7_N003, we see a low V2G
throughput from September 2022 to June 2023, with an exception in March 2023.

Figure 16. Monthly total V2G power throughput at DGPAN1_7_B1.

Figure 17. Monthly total V2G power throughput at HURON_6_N001.

Figure 18. Monthly total V2G power throughput at DSRTHV3_7_N003.

Figures 19–21 show the value of congestion savings per units of V2G provided by the
BEV at the nodes for both LMPT and LMPC minimization. We see a seasonal variation for
the benefits per unit of V2G. As expected, the congestion savings from LMPC minimization
are higher than those from LMPT minimization since the focus is to reduce congestion in
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the former optimization. In all the cases, the benefits from LMPC minimization are positive,
but for some months, LMPT optimization increases congestion, like July and August 2023
in DGPAN1_7_B1 and HURON_6_N001. The value from LMPC optimization is in the
range of 0.01–0.07 $/kWh for most months for the three nodes. While no exceptions are
seen at DGPAN1_7_B1, we observe a higher value (upto $0.12/kWh) at HURON_6_N001
in the months of December 2021 and December 2022 to March 2023 and a very large spike
in DSRTHV3_7_N003 in the month of January 2022, with a value of $0.23/kWh.

Figure 19. Congestion savings in $/kWh of V2G at DGPAN1_7_B1.

Figure 20. Congestion savings in $/kWh of V2G at HURON_6_N001.

Figure 21. Congestion savings in $/kWh of V2G at DSRTHV3_7_N003.
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The other nodes listed in Tables 2 and 3 show similar findings as reported for DG-
PAN1_7_B1, HURON_6_N001, and DSRTHV3_7_N003. We show that local congestion at
nodes can potentially be minimized using BEVs and V2G with LMPC minimization. The
benefits seem to be larger during certain months of the year. Strong incentives to utilize
V2G for congestion minimization could lead to lower stress on the grid and minimize
sustainable energy curtailment and pollution.

4. Discussion

In this study, our initial focus centers on electric grid congestion and the utilization
of FTRs as a means to mitigate price uncertainties that arise due to the inability of certain
locations to use closer sustainable sources of energy due to transmission congestion. The
large amounts of RES installed in the grid to combat climate change and air pollution are
intermittent in nature, leading to frequent supply–demand mismatch and price fluctuations
with the existing transmission infrastructure and electricity markets. We delve into the
shortcomings of FTR markets, emphasizing that they are not a universal remedy for all
transmission congestion challenges. Furthermore, we explore the application of utility-
scale energy storage to alleviate transmission issues, while also considering the potential
advantages of V2G technology in minimizing local congestion. We subsequently delve
into the elements of LMPs and explore the potential utility of the congestion component in
mitigating congestion, sustainable energy curtailment, and environmental pollution.

We identified three of the most congested transmission lines within CAISO and
designated the nodes at the end of these lines as potential focal points for our analysis.
Additionally, we factored in the nodes representing several of California’s largest solar
power facilities. Subsequently, we outline the approach for quantifying battery degradation
using a constant degradation cost factor, which can be incorporated into our optimization
program’s objectives. Our next step involved developing optimization programs that
incorporate either the total LMP LMPT or the congestion component of LMP LMPC within
their objective functions.

We discovered that optimizing for LMPT leads to revenue for the BEVs, along with
some accompanying congestion savings. In contrast, optimizing for LMPC yielded more
substantial congestion savings but also led to a significant rise in the charging expenses
for the BEVs. For the time period from March 2021 to September 2023, LMPT optimization
results in the BEV earning in the range of $200–290 at the transmission line nodes and
$275–420 at the solar power plant nodes. However, the congestion savings are only in
the range of $110–190 and $120–255 for the transmission line and the solar power plant
nodes, respectively. In the case of LMPC optimization, the congestion savings are in the
range of $260–430 and $150–290 for the transmission line and the solar power plant nodes,
respectively. However, the BEVs have to pay in the range of $670–950 and $400–660 for
the transmission line and the solar power plant nodes, respectively, to help minimize local
congestion. Local congestion minimization seems to come at a large increase in charging
cost from total LMP and highlights the need to incentivize action at a nodal level. We
also see that among the nodes chosen, the solar power plant nodes reflect greater revenue
from arbitrage with LMPT optimization; however, the congested transmission line nodes
showcase significantly greater congestion savings with LMPC minimization. The capacity
losses for the BEV batteries from LMPT optimization are in the range of 3.7–3.8% for all
nodes, while the capacity losses for LMPC optimization are in the range of 1.8–2.7% for
transmission line nodes and 1.7–2% for the solar power plant nodes. This suggests that the
BEV discharges in significantly fewer instances for LMPC optimization when compared
to LMPT optimization, and the BEV performs V2G actions more often for the congested
transmission line nodes.

Furthermore, we delved into the monthly breakdown of charging costs, revenue,
congestion savings, and V2G throughput for both LMPT and LMPC optimization. This
analysis sheds light on the seasonal variability of congestion and curtailment. While
looking at the monthly distribution of revenue or congestion savings, we see that the LMPT
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optimal charging strategy for a BEV results in both higher earnings and congestion savings
during spring months, but during summer, there is an opportunity to earn higher with
minimal influence on congestion. We also see that during the winter months, the congestion
savings are higher than the revenue from arbitrage, indicating a smaller opportunity to
earn from arbitrage during winter. In the case of the solar power plant node, we see that the
congestion savings are higher one month earlier compared to the transmission line nodes.
LMPC minimization results in congestion savings but significantly increases charging costs.
The congestion savings are high during late spring/early summer with low charging costs.
However, for most other months from early summer to early spring, there are negligible
congestion savings for a very large rise in charging costs. The V2G throughput for LMPC
optimization is lower than that of LMPT optimization for the transmission line nodes for
most of the time period, with the exception of May–July 2022, which could indicate frequent
transmission congestion in these months. The BEV at the solar power plant node always
participated in more V2G for LMPT optimization. We also clearly see that the congestion
savings from LMPC optimization is always greater than that from LMPT optimization.
However, there are a few months where the $/kWh value from LMPC optimization is
significantly larger than the LMPT counterpart, and this depends on both the location and
the month.

These findings on the total benefits of V2G-enabled BEVs at different nodes, including
financial savings and congestion cost reductions, highlight spatio-temporal patterns in local
congestion. This work provides another lens to evaluate the value of V2G in a real-world
context to alleviating congestion, in addition to other V2G services like frequency regulation,
voltage regulation, energy arbitrage, and so on. We hope that this work helps in the push
towards the automotive industry and government entities embracing V2G, and the launch
of more V2G-enabled car models and charging stations, leading to a more sustainable
planet. The battery degradation and capacity losses due to V2G participation were also
studied to observe the trade-off between benefits and the longevity of BEV batteries.

Investigating the detailed correlation between different battery degradation models
and the computed costs/savings is a potential idea for future work. There are multiple
battery degradation models in the literature, and it will be very interesting to study the
sensitivity of V2G operations on battery degradation costs. Another promising avenue
for future research could involve investigating the implementation of a variable battery
degradation cost factor in the context of LMPC optimization, particularly given that LMPC
is notably lower than LMPT in most instances. Initial attempts at utilizing a straightforward
ratio of LMPC/LMPT multiplied by a constant degradation factor resulted in suboptimal
outcomes due to occasional negative or near-zero prices of LMPT . It is worth considering
optimizing for the ratio of the monetary benefit to V2G throughput rather than monetary
benefits alone. A mechanism could be devised to ensure that V2G actions are taken only
when the benefits exceed a predefined threshold ratio, with the aim of minimizing battery
degradation while maximizing the overall advantages.

This study highlights that prioritizing LMPC optimization effectively reduces con-
gestion costs. This, in turn, indirectly leads to diminished congestion, renewable energy
curtailment, and pollution. However, it comes at the expense of higher charging costs in
the present electricity markets. Typically, energy arbitrage with non-grid-scale storage is
aligned with TOU pricing rather than LMP. A potential future research endeavor might
investigate incentives and congestion-driven pricing at the distribution level to influence
BEV user behavior to alleviate transmission congestion. This compensation approach
becomes particularly vital for addressing challenges like aggregator fees, mitigating battery
degradation, and discouraging participation in other V2G applications when congestion
relief takes precedence.

Exploring the involvement of higher-power charging and the integration of BEVs with
larger capacities, such as heavy-duty electric trucks and buses, in this context could offer
intriguing insights. Given that nodes along congested transmission lines are occasionally
located near freeways (as seen in this study with the congested lines running parallel and in
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close proximity to the I-5 freeway), electric trucks have the potential to charge and discharge
strategically at specific times and locations to alleviate congestion. The advantages of such
an approach are likely to exhibit seasonal variations, and the application of innovative
pricing mechanisms may encourage trucks to follow slightly adjusted routes for optimizing
local energy supply and demand within the electric grid.
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