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Abstract: Although numerous studies have explored key variables for forecasting crude oil prices, the
role of supply chain factors has often been overlooked. In the face of global risks such as COVID-19,
the Russia–Ukraine war, and the U.S.–China trade dispute, supply chain management (SCM) has
evolved beyond an individual company’s concern. This research investigates the impact of a supply
chain-oriented variable on the forecasting of crude oil import prices in South Korea. Our findings
reveal that models incorporating the Global Supply Chain Pressure Index (GSCPI) outperform those
without it, emphasizing the importance of monitoring supply chain-related variables for stabilizing
domestic prices for policy makers. Additionally, we propose a novel hybrid factor-based approach
that integrates time series and machine learning models to enhance the prediction performance of oil
prices. This endeavor is poised to serve as a foundational step toward developing methodologically
sound forecasting models for oil prices, offering valuable insights for policymakers.

Keywords: supply chain oriented; GSCPI; machine learning; forecasting; crude oil import price

1. Introduction

Until now, supply chain management (SCM) has primarily been perceived as an issue
confined to individual companies. Both large and small disruptions occur routinely at
the enterprise level, often being naturally resolved through price adjustments. However,
the landscape of supply chain disruptions has undergone a significant transformation,
reaching a global scale due to risks such as the obstruction of the Suez Canal, the COVID-19
pandemic, the Russia–Ukraine war, and the U.S.–China trade dispute. This escalation of
supply chain disruptions has surpassed the capabilities and scope of individual companies.
It is no longer sufficient to rely solely on price adjustments for resolution. Notably, the
direct correlation between supply chain risk management for critical goods or strategic
materials—integral for national security—and the maintenance of industrial competitive-
ness, social stability, and diplomatic and security leverage has elevated the issue. Con-
sequently, developing robust response systems and building resilience to supply chain
shocks have become imperative tasks, requiring coordinated efforts at both corporate and
national levels.

South Korea has been significantly affected by recent global supply chain risks. In
particular, it is important for the economy of South Korea to secure stable prices and
the supply of raw materials such as crude oil, which is 100% import-dependent. There
are many studies that have analyzed the correlation between the Korean economy and
international oil prices. Shin [1] derived, through quantitative analysis, that the impact of
international oil prices on the Korean economy continues to grow. Lee [2] analyzed how
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Korea’s GDP and producer price index change in response to oil price hikes and petroleum
product prices.

Also, as oil prices have a great impact not only on Korea but also on the world econ-
omy, numerous researchers have focused on predicting crude oil prices. Shin et al. [3]
proposed a semi-supervised learning method devised for oil price prediction. Mahdian
and Khamehchi [4] compared a modified neural network model with a pure neural net-
work in predicting both daily and monthly crude oil prices, demonstrating its superior
performance, particularly in situations with a small number of input data for training or
great fluctuations in variables. Xiong et al. [5] indicated that the proposed EMD–SBM–FNN
model using the MIMO strategy is the best in terms of prediction accuracy with accredited
computational load.

In this research, our objective is to examine whether supply chain-related variables
can enhance the forecasting performance of crude oil prices. Furthermore, we propose
a novel hybrid factor-based approach to enhance the accuracy of forecasting crude oil
prices. Our research contributes to the analysis and forecast of the crude oil price by using
the relationship with global supply chain parameters. The crude oil price variation is a
crucial parameter that affects the socio-economy. The instability of the crude oil price
causes unstable situations such as global energy supply instability and inflation. Therefore,
our work aims to provide an analysis frame that predicts the crude oil price time-varying
tendency regarding global supply chain pressure. Ultimately, this novel method aims to
cope with this uncertain and unstable supply chain situation and enable sustainable supply
chain management.

1.1. Types of Global Supply Chain Risk

Many previous studies have explored the types of global supply chain risks and the
triggers that cause these supply chain disruptions. Yang et al. [6] classified internal risk
types into logistical, financial, and information risks, and external risk types into policy,
economy, culture, technology, natural disasters, and demand-related risks. Elsewhere,
Harland et al. [7], Faisal et al. [8], and Manners-Bell et al. [9] also distinguished between
internal and external risks. According to this, internal risks refer to cases that are directly
related to operations, such as excessive inventory holding, product defects, and production
volatility. External risks are those that can affect the supply chain from the outside, such
as terrorism, war, piracy, or the global economic crisis. The WEF report in 2012 [10] also
divided risks into internal and external risks: internal risks include credit rating, capital
flow, intellectual property, asset value, and production quality, while external risks include
natural disasters, disputes, brand reputational damage, and asset damage.

Zsidisin and Hendrick [11] classified risks into six areas: transportation, inventory,
forecast, information, market, and suppliers. Dae-hyun et al. [12] added global risks
to supply, operation, and demand risks. Global risks include innovative technologies,
frequent legal and institutional changes, natural disasters, political risks, and strategic risks,
as mentioned by Jeongwook [13]. Houlihan and Laurent [14] categorized supply chain
risk factors into changes in short-term forecasts, changes in customer preferences, changes
in technology, changes in government policies, changes in organizational frameworks,
changes in organizational members, and changes in competitive strategies. Cooper and
Ellram [15] classify risk factors as inaccurate fluctuations in customer demand, inaccurate
supply lead times, partner financial conditions, inaccurate information, shortened product
lifecycles, frequent market changes, globalization, intensified competition, and innovative
technologies. These were divided into development risks and regulatory changes.

Christine et al. [7] defined four supply chain risk types: financial loss, material loss,
psychological loss, and psychological loss. In addition, Tang and Musa [16] defined risk
as any factor that disrupts or disrupts the supply chain process and grouped risk factors
into material flow, financial flow, and information flow. Lin and Zhou [17], Seok-Mo and
Choong-Bae [18], and Choong-Bae and Hee-Chan [19] classified the internal environment
by supply chain nodes, such as supply and demand, while categorizing various risk factors,
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such as natural disasters, terrorism, international politics, and war, into one risk factor
called ‘external environment.’ In other words, these previous studies focused on risks that
can occur within the supply chain while neglecting to classify risk types.

As a result of analyzing previous studies, risks can be largely divided into external
and internal risks, with macro risk factors and micro risk factors. External risks refer to
global factors that affect the supply chain, including natural disasters, war and terrorism,
political instability, economic downturn, sovereignty risks, and regional instability. Internal
risk refers to the risk that may occur in relation to all activities that a company conducts
within its supply chain. Previous studies have identified risk factors by classifying them
into different supply chain stages, such as demand, manufacturing, and supply. In the
case of demand, risk factors such as inaccurate demand forecasts, rapid demand, short
product life cycles, competitor movements, and market changes were derived. Risks at the
manufacturing stage include technical knowledge, production capacity, product quality,
demonstrations, and design changes. In this study, we focus particularly on risks in the
logistics aspect that arise from external factors in the supply chain in the analysis.

1.2. Influential Factors and Models in Crude Oil Price Forecasting

Supply and demand factors have been widely recognized as significant indicators
for oil price prediction. Hamilton [20] and Kilian [21] emphasized that oil supply and
demand shocks are crucial determinants in explaining oil price shocks. Furthermore,
Miao et al. [22] suggested a total of twenty-six determinants for forecasting models for the
West Texas Intermediate (WTI) crude oil spot prices, grouping them into six categories:
supply factors, demand factors, financial factors, commodity market factors, speculative
factors, and political factors. With respect to supply and demand factors, they considered
factors such as global production, global stock, global export, OPEC surplus, US stock,
capacity utilization rate, Baltic Dirty, Kilian index; GDP growth in China, US, and EU;
Steel World; global imports of China, US, and EU; and ISM. Despite the significant impact
of supply chain disruptions on many economies, there is a scarcity of research papers
that consider supply chain factors as determinants in oil price forecasting models. In this
research, we aim to investigate whether supply chain-related variables could enhance
forecasting performance.

A variety of models, including statistical and econometric models, artificial intelligence
(AI) models, and hybrid models, have been employed to predict crude oil prices. Tradi-
tional time series econometrics models, such as autoregressive integrated moving average
(ARIMA), generalized autoregressive conditional heteroscedasticity (GARCH), random
walk (RW), a vector autoregression (VAR) model, and a vector error correction (VECM)
model, are commonly used for oil price prediction. However, these models often face
challenges in handling complexity and nonlinearity. As a response, AI models have been
increasingly applied to the forecasting domain. Safari and Davallou [23] noted that time-
series models might be insufficient to capture the nonlinear features of crude oil prices. To
address this limitation, AI models are employed for oil price prediction. Azadeh et al. [24]
introduced a flexible algorithm based on artificial neural networks (ANNs) and fuzzy
regression (FR) to optimize long-term oil price forecasting in noisy, uncertain, and complex
environments. Zhao et al. [25] utilized an advanced deep neural network model called
stacked denoising autoencoders (SDAE) and an ensemble method named bootstrap aggre-
gation (bagging) to demonstrate superior forecasting ability. Li et al. [26] proposed a novel
crude oil price forecasting method based on online media text mining, aiming to capture
more immediate market antecedents of price fluctuations.

In addition to individual approaches, there have been endeavors to explore hybrid
methods. Safari and Davallou [23] identify three categories of hybrid methods, encom-
passing a combination of soft-computing techniques, a fusion of econometric models, and
an amalgamation of soft-computing and econometric methods. They integrated the ex-
ponential smoothing model (ESM), the autoregressive integrated moving average model
(ARIMA), and the nonlinear autoregressive (NAR) neural network to enhance the accuracy
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of forecasting crude oil prices. Zhang et al. [27] introduced a hybrid method to predict
crude oil prices, combining the ensemble empirical mode decomposition (EEMD) method,
the least squares support vector machine together with the particle swarm optimization
(LSSVM–PSO) method, and the generalized autoregressive conditional heteroskedastic-
ity (GARCH) model. Abdollahi [28] constructed a hybrid model incorporating complete
ensemble empirical mode decomposition, support vector machine, particle swarm opti-
mization, and Markov-switching generalized autoregressive conditional heteroscedasticity
to more effectively capture the nonlinearity and volatility of the time series. Despite
numerous studies on developing hybrid models, a consensus on the best-fit model for
forecasting oil prices has yet to be reached. In this research, we propose a novel hybrid
factor-based approach to enhance the accuracy of forecasting crude oil prices. This will
be achieved by comparing time series models and machine learning models based on the
encompassing test.

This research aims to investigate whether supply chain-related variables have statisti-
cally significant effects on South Korea’s crude oil import price. Additionally, we propose a
novel hybrid factor-based approach to forecasting crude oil prices, incorporating supply
chain aspects. This involves comparing the forecasting accuracy between traditional time
series models and machine learning models. In the following section, we describe the time
series models ARIMA, VAR, and VECM and the machine learning models KNN, SVM, and
RF. The results are then discussed, followed by sections on discussion and conclusions.

The data are presented in Section 2.1. The main data sources are Petronet, KEEI, and
Neworkfed. The time series data of the main crude oil price indicators are applied to
analyze the effect due to global supply chain pressure. Supply and demand factors and
supply chain factors are elaborated in Sections 2.1 and 2.2, respectively.

In Sections 2.2.1–2.2.5, the analysis of the models that analyze the effect of the global
supply chain variables on the crude oil price is presented. Three time series models and
three machine learning prediction methods are proposed. The target is to estimate the
∆lnKprice by using the variation of the other parameters, such as supply demand and
global supply chain pressure.

In Section 3, the experiment results are exhibited. The exogeneity test and Johansen’s
cointegration rank test are applied to the VAR and VECM models, which are applied to
forecast the lnKprice based on the other indicators. The forecast performance of time series-
based forecast methods and the machine learning methods are compared by applying them
to the moving, expanding, and fixed window schemes. The limitations and the future
works are elaborated in Sections 4 and 5. Figure 1 presents the schematic diagram of
this research.
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2. Materials and Methods
2.1. Data

Table 1 presents a description of time series data for crude oil price indicators, divided
into three categories: crude oil price, supply and demand factors, and supply chain factors.
The dependent variable is crude oil import prices in South Korea, and the independent
variables include Dubai crude oil spot prices, global balance (supply–demand), global
strategic stocks, crude oil demand in South Korea, crude oil stocks in South Korea, and the
Global Supply Chain Pressure Index (GSCPI). The crude oil consumption data in South
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Korea, provided by Petronet [29], pertain to products processed from crude oil. In addition,
as South Korea does not disclose strategic reserve oil data, we used commercial stocks
disclosed by Petronet as an explanatory variable. We used monthly data covering the
period from February 2008 to February 2022.

Table 1. Description of data for crude oil price indicators.

Factors Variables Description Source

Crude Oil Price ln Kprice Crude oil import prices in South Korea Petronet
ln Dubai Global crude oil prices Petronet

Supply–Demand ln Gbalance Global crude oil supply–global crude
oil demand KEEI data

ln Strategic Global strategic reserves KEEI data
ln Kdemand Crude oil demand in South Korea Petronet

ln Kstock Crude oil stocks in South Korea Petronet
Supply Chain ln GSCPI Global Supply Chain Pressure Index Newyorkfed.org

Crude oil import prices in South Korea Petronet
The data from Petronet and Newyorkfed are officially published, whereas the data from KEEI are
sourced internally.

In this research, we would like to consider the Global Supply Chain Pressure Index
(GSCPI) as a supply chain-related variable for the models. The Federal Reserve Bank of
New York has reported the GSCPI since September 1997. According to the Federal Reserve
Bank of New York, the GSCPI is designed to develop a parsimonious measure of global
supply chain pressures that could be used to gauge the significance of supply constraints
concerning economic outcomes. Additionally, as mentioned by Benigno et al. [30], the
GSCPI captures factors that exert pressure on the global supply chain, both domestic and
due to international trade. The GSCPI integrates global transportation costs such as the
Baltic Dry Index (BDI), the Harpex index, and airfreight cost indices from the U.S. Bureau
of Labor Statistics (BLS), as well as manufacturing indicators from Purchasing Managers’
Index (PMI) surveys.

A number of studies have explored the relationship between the GSCPI and economic
indicators. Benigno et al. [30] showed that recent inflationary pressures are closely linked
to the GSCPI, especially at the level of producer price inflation in the United States and the
euro area. Andriantomanga [31] also studied the impact of supply chain disruptions on
inflation and monetary policy in sub-Saharan Africa. Their findings showed that increased
supply chain pressures significantly impacted headline, food, and tradable inflation across
a panel of 29 sub-Saharan African countries from 2000 to 2022. Laumer [32] investigated
the impact of supply chain disruptions on consumer price inflation and found that a
global supply chain shock significantly raised consumer price inflation in the US, the euro
area, and the UK. Lastly, Kabaca and Tuzcuoglu [33] examined the effect of six supply
shocks—labor supply, labor productivity, global supply chain, oil price, price mark-up,
and wage mark-up shocks—on US headline inflation since the COVID-19 pandemic. The
study revealed that the global supply chain and oil price shocks were the primary supply
contributors to US inflation during the pandemic.

2.2. Model Specifications

This research employs three econometric models and three machine learning regres-
sion models: an autoregressive integrated moving average model (ARIMA), a vector
autoregression model (VAR), a vector error correction (VECM) model, a k-nearest neighbor
(KNN), a support vector machine (SVM), and a random forest (RF). We construct the
econometric models based on the statistical characteristics of the data. To investigate the
significant influence of the GSCPI on the forecast performance of crude oil import prices
in South Korea, we employ the ARIMA model as the benchmark. Considering our focus
on multivariate variables, we explore the VAR and VECM models. To construct the VAR
model, we utilize the weak exogeneity test and the Granger causality test. For the VECM
model, Johansen’s cointegration rank test is employed. The machine learning models are
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selected by the benchmark test to the deep neural network (DNN). The DNN model Long
Short-Term Memory (LSTM) is established to provide decent forecast performance for the
time domain forecasting problem. Meanwhile, the machine learning-based forecast models
RF, KNN, and SVM that are selected in our research provide superior performance under
the limited data quantity to learn. The benchmark test in Section 3 proves that the machine
learning method shows outstanding forecast performance in our problem. Therefore, three
machine learning methods, RF, KNN, and SVM, were selected. In the following section,
the formulation and the background of each time series and machine learning model will
be explained.

2.2.1. ARIMA Model

The first specifications of the autoregressive integrated moving average (ARIMA
(p,d,q)) model in this research are as follows:

∆lnKpricet = θ0 + ∑p
i=1 ∅i∆lnKpricet−i + εt −∑q

k=1 ρjεt−j, (1)

where ∆lnKpricet represents the first differenced crude oil import price in South Korea,
∆lnKpricet−i is the first differenced i th lags of ∆lnKpricet, and εt denotes the stochastic
error term, which is independently and identically distributed with a mean of zero and
constant variance of σ2.

2.2.2. VAR and VECM Model

In this research, we would like to consider multivariate variables to predict crude oil
prices and investigate if the GSCPI has a statistically significant effect on crude oil prices.
Thus, both a vector autoregression (VAR) model and a vector error correction (VECM)
model are considered. The VAR model can be constructed both in level and first differences.
In this research, we follow Sims et al.’s [34] work and estimate a VAR model in level. They
argued that even if the variables are not stationary over time, using the variables in levels
might be more appropriate than differencing. The specified VAR model in level form for
this research is as follows:
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where ak
ij i = 1, 2, 3, 4, 5, 6, 7, j = 1, 2, 3, 4, 5, 6, 7, and k = 1, 2, . . ., p denote the autoregressive

coefficients, and εKpricet, εDubait, εGbalancet, εStrategict, εKdemandt, εKstockt, and εGSCPIt represent
white noise disturbances with standard deviations of σKprice, σDubai, σGbalance, σStrategic,
σKdemand, σKstock, and σGSCPI , respectively.

In this research, the VECM model form is as follows:
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In this equation, at least one γij should not be zero because the VECM model can
be expressed with a multivariate VAR model in first differences, augmented by the error
correction term when γij = 0.

2.2.3. K-Nearest Neighbor (KNN)

Abdella et al. [35] used a regression machine learning model when predicting airline
ticket prices, and the results showed that the random forest model had excellent perfor-
mance. KNN regression and SVR are commonly adopted machine learning models because
those methods have decent clustering and forecast performance. KNN regression has
a structure that is easy to interpret and is a powerful model in both classification and
regression. SVR has little influence on outliers and enables regression analysis of nonlinear
data by introducing a kernel function. These two models and the random forest model
show superior performance under the limited amount of data available.

The KNN model is a supervised and localized learning algorithm used to build a
regression model. The principle of KNN is to predict the value of a target variable, which
is oil price in this manuscript, by finding the k-nearest neighbors of a given data point in
the training dataset and using their average or median value as the predicted value. In
the regression model, the value of K represents the value of adjacent neighbors. A small K
value can reflect the local characteristics of the data excessively, resulting in overfitting of
the model. Conversely, a larger K value tends to regularize the forecast model.

The KNN model first calculates the distance between the data points in the training
dataset and the data point for which we want to forecast the target variable. The most com-
monly used distance metric is the Euclidean distance. Once the distances are calculated, the
algorithm identifies the k-nearest neighbors, where k represents the number of neighbors.
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Finally, the algorithm computes the predicted value for the target variable by taking the
average or median of the target values of the k-nearest neighbors.

The KNN model used in this manuscript is the one suggested by Kantz [36], as
presented in Equations (4) and (5):

lnKpricet = ∑t−1
i=1 W(x, xi)xi (4)

where lnKpricei is the label oil category’s Consumer Price Index, W is the weight factor,
and xi = [Kpricei, Dubaii, Gbalancei, Strategici, Kdemandi,Kstocki, GCPIi]

W(x, xi) =
exp(−D(x, xi))

∑k
i=1 exp(−D(x, xi))

(5)

where D is the distance between the query point x and the i-th case xi of the training feature.
The performance of the KNN model is dependent on the value of the hyper-parameters;

hence, this manuscript adopts the grid search method that aims to find the optimal param-
eters for the KNN model proposed by Ambesange [37]. The hyper-parameters of the KNN
regressor defined by the result of the grid search are presented in Table 2.

Table 2. Selected hyper-parameters for KNN regressor.

Hyper-Parameters Value

K (Number of Neighbors) 5
W (Weight) Euclidean Distance

2.2.4. Support Vector Machine (SVM)

Support vector machine (SVM) regression is a supervised learning algorithm used
to generate a regression model. In SVM regression, the goal is to find the optimal weight
‘w_SVM’ that maximizes the margin from the closest data points at the decision hyperplane.
The margin denotes the distance between the hyperplane and the closest data points, and
the hyperplane with the largest margin is considered the best fit. In SVM regression, the
choice of kernel function plays a crucial role in determining the quality of the fit. Linear,
polynomial, and radial basis function (RBF) kernels are the most commonly used kernel
functions in SVM regression. The training process in SVM regression involves finding
the optimal values for the model parameters, including the kernel function, regulariza-
tion parameter, and kernel function parameters. This manuscript adopts the Lagrangian
multiplier to find the optimal values.

The SVM utilized in this manuscript is based on the proposal by Fan [38]. The SVM
forecasts linear regression by using the weighing factor wi and the slack variable, as
presented in Equation (6):

lnKpricei = wsvmln(x i) + β (6)

where Kpricei is the label, xi is the i-th training features, wsvm is the weight, β is the intercept
of the linear function.

The grid search method that optimizes the hyper-parameter was conducted, as sug-
gested by Paul [39]. The margin is an area that does not include any data. The regression
model is to learn to encompass as many data as possible within the margin. The hyper-
parameters of the SVM regressor are defined as shown in Table 3.

Table 3. Selected hyper-parameters for SVM.

Hyper-Parameters Value

Regularization Parameter 5
Width of Margin Epsilon (ε) 0.01

Weight (wSVM) Distance



Sustainability 2023, 15, 16725 10 of 18

2.2.5. Random Forest (RF)

The random forest regressor is a meta-predictor that first builds several classifying
decision trees on sub-samples of the training dataset. It is an ensemble learning method
that combines multiple decision trees to increase prediction accuracy. The random forest
regressor generates many decision trees, each of which is trained on a random subset of
the training data and a random subset of the features. During training, the decision trees
are built in such a way that they split the data based on the feature that provides the most
information gain, as presented in Figure 2.
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Each tree in the forest predicts an output value during prediction, and the final output
is the average of all the individual tree forecasts. This forecasting process helps to reduce
overfitting, as the combination of multiple trees can smooth out the noise in the data and
provide more robust predictions.

Random forest [40] is a supervised learning algorithm that uses the decision tree
structure, as presented in Equations (7) and (8).

xi = [Kprice i, Dubaii, Gbalancei, Strategici, Kdemandi,Kstocki, GCPIi, ] (7)

where xi is i-th of training subset vector.

P̂(y = 1|xi) =
1
b

b

∑
i=1

P̂lk(xi)(y=1) (8)

where b represents the depth of tree, P is Bayesian probability, xi denotes the training
subset, y is the forecast target lnKprice.

The hyper-parameters for random forest regression are defined in Table 4. The grid
search method is applied to find the optimal hyper-parameter that yields the best forecast
precision for the random forest model. As a result, the proposed random forest model is
composed of 50 trees with 100 depths.
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Table 4. Selected hyper-parameters for random forest (RF).

Hyper-Parameters Value

Number of Estimator (n) 50
Maximum Depth (b) 100

Criterion Squared Error

3. Results

To investigate whether the supply–demand and supply chain factors are weak ex-
ogenous variables, we conducted a weak exogeneity test utilizing the standard Wald test.
The null hypothesis of a weak exogenous variable was rejected at 1% level for ln Kprice,
ln Dubai, ln Gbalance, ln Strategic, ln Kdemand, and ln GSCPI, and for ln Kstock at the 5%
level. These results imply that supply–demand and supply chain factors react to disequilib-
rium in the long run and could improve the accuracy of predicting the ln Kprice. Table 5
below shows the results of the weak exogeneity test. In the case of a larger VAR (n > 2), the
Granger causality restriction implies a weak exogeneity form. The results of the Granger
causality test based on the VAR and VECM models align with those of the weak exogeneity
test. In both models, tests 1, 2, 3, 5, 6, and 7 reject the null hypothesis at the 1% significance
level, while test 4 does so at the 10% and 5% levels. For the test, group 1 includes variables
from ln Kprice to ln GSCPI, each corresponding to a specific test (e.g., ln Kprice for test 1,
ln Dubai for test 2, ln GSCPI for test 7). Group 2 comprises the remaining six variables.

Table 5. The results of weak exogeneity test.

Variable χ2 Pr>χ2

ln Kprice 195.18 <0.0001 ***
ln Dubai 30.51 <0.0001 ***

ln Gbalance 40.99 <0.0001 ***
ln Strategic 13.95 0.0075 ***
ln Kdemand 29.11 <0.0001 ***

ln Kstock 12.08 0.0168 **
ln GSCPI 19.51 0.0006 ***

The last column entry is the p-value of the null hypothesis of a weak exogenous variable. The asterisks **, and
*** indicate the null hypothesis can be rejected at the 0.05, and 0.01 levels, respectively.

Since the variables are non-stationary over time and all have a single unit root, a
Johansen’s cointegration rank test is conducted to ascertain the presence of a long-run
equilibrium relationship between the variables. Table 6 indicates the results of Johansen’s
cointegration test. Both trace and maximum eigenvalue tests fail to reject the null hypothesis
of four cointegration vectors at the 5% level. The below table indicates the long-run
equilibrium relationship in the VECM model, which consists of the long-run parameter β
and the adjustment coefficient αwith ln Kprice normalized.

Based on the results of the weak exogeneity test and Johansen’s cointegration rank
tests, we constructed the VAR model and the VECM model. Further, we employed the KNN,
SVM, and RF models to forecast the target variable, lnKprice. In principle, the proposed
three machine learning models are supervised models and require sufficient subsets of
training. The number of data in the training set is one hundred and seventy in this research,
and it is not sufficient to build a machine learning forecast model. Therefore, the fine-time
interval data might enhance the performance of models. In addition, the optimization
method’s hyperplane parameters also make a difference in the forecast performance. This
research adopts the grid search method that experiments with the forecast effects due to
the combination of the hyperplane parameters of the model. In particular, it is necessary to
define the weight (wSVM) that maximizes the margin of the forecast model in the SVM
model. The optimization method is involved in the weight decision process. This research
adopts the Lagrangian multiplier to define the weight that aims to have the maximum
margin, but other optimization methods, such as gradient descent, the genetic algorithm,
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the particle swarm method, and steal annealing, can be applied to optimize the SVM model
based on the characteristics of the dataset.

Table 6. Johansen’s cointegration rank tests.

Trace Test

H0 : Rank = r H0 : Rank > r Trace Statistics Pr > Trace

0 0 568.2114 <0.0001
1 1 171.0168 <0.0001
2 2 100.6094 <0.0001
3 3 52.807 0.0014
4 4 21.6404 0.1039

Maximum Eigenvalue Test

H0 : Rank = r H0 : Rank = r + 1 Max Statistics Pr > Maximum

0 1 397.1946 <0.0001
1 2 70.4074 <0.0001
2 3 47.8024 0.0004
3 4 31.1666 0.0046
4 5 12.6967 0.2474

We considered three window schemes, moving window, expanding window, and
fixed window, to compare the forecasting performance of the resulting models. In the
moving window, the model predicts based on 119 monthly data. We measure the first
one-step-ahead forecasts using the first 119 observations (from February 2008 to December
2017). For the second forecast values, we drop the very first observation (February 2008)
and include the 120th datum (January 2018). In this case, the size of the window is fixed at
119. For the expanding window, we used all the data available to estimate the one-step-
ahead forecast values. The dataset used to estimate the 120th forecast value (January 2018)
is the same as the moving window scheme. However, to estimate the 121st prediction
(February 2018), the expanding window scheme incorporates all the data from the 1st to the
120th (from February 2008 to January 2018), whereas the moving window dropped the very
first datum (February 2008). In other words, the size of the expanding window increases
by one as time goes by. Lastly, for the fixed window scheme, we used 119 in-sample data
points (from February 2008 to December 2017) to estimate the 50 forecast values (from
January 2018 to February 2022).

To assess the predictive performance of the forecast models, we utilized the root mean
square error (RMSE) and the mean absolute percentage error (MAPE) of each forecasting
model. According to Table 7, for the time series model, the VAR and the VECM models
outperform the ARIMA model under moving window and expanding window schemes.
This result implies that the crude oil supply–demand factors and supply chain factors are
useful in improving the forecasting performance of the crude oil import price in South
Korea because the VAR and VECM models are suitable methods to forecast the target
multivariable that mutually influences each. Additionally, the VECM model has the
smallest RMSE under the moving window scheme and has the smallest RMSE and MAPE
under the expanding window scheme. This result implies the VECM model can be an
appropriate method when the large time series data are sufficient to find the equilibrium
among the occupied multivariable. For the fixed window scheme, the table denotes that
the VAR model outperforms the ARIMA and VECM models. These results suggest that the
VECM model is a superior model when the amount of data is relatively limited. Therefore,
the VECM and the VAR models are recommended in most situations to forecast the effect
on crude oil by the Global Supply Chain Pressure Index).
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Table 7. Comparison of machine learning and deep learning.

Performance of AI RMSE MAPE

DNN 7.3421 1.788
KNN 0.2335 4.2130
SVR 0.11048 1.6716

Random Forest 0.1221 1.8657

The performance comparison Is conducted between the deep neural network (DNN)
and the machine learning models, as presented in Table 7. The superior forecast perfor-
mance of the machine learning method is valid under the limited data quantity. It was
empirically established that machine learning methods would perform better than deep
learning for numerical data. As a result of verification, the results of comparing the DNN
and machine learning methods without any special tuning were as follows. Among the
total data, those from the period from 2008 to 2017 were used as learning data, and the data
from 2018 to 2022 were used as testing data.

For the machine learning models, Table 8 shows that the random forest model out-
performs under the expanding window and fixed window schemes. The SVM model has
the best performance at the fixed window scheme and is slightly better than KNN under
the moving and expanding window. The SVM and the RF models have a robust forecast
performance when the training datasets are insufficient and unbalanced compared to the
KNN model. The random forest model basically consists of the ensemble model, so it shows
a decent performance when the data are not sufficient for machine learning. Our problem
is more explainable with a hyper-parameter optimized by the Lagrangian multiplier. This
finding aligns with a previous study by Keerthan [41], which also shows the superiority of
the SVM forecast model for oil price prediction that has a similar structure to our dataset.

Table 8. One-step-ahead crude oil import price in South Korea forecasting comparison by moving and
expanding window schemes, and fifty-step-ahead crude oil import price in South Korea forecasting
comparison under fixed window scheme.

Moving Window Scheme

Models RMSE MAPE

Time Series Model ARIMA(1, 1, 1) 0.07192 1.195155
VAR(1) 0.04608 0.790037

VECM(1) 0.0451 0.794936
Machine Learning Model KNN 0.33586 6.449434

SVM 0.25460 6.449061
RF 0.34308 6.631965

Expanding Window Scheme

Models RMSE MAPE

Time Series Model ARIMA(1, 1, 1) 0.07088 1.197634
VAR(1) 0.04921 0.809486

VECM(1) 0.04791 0.798104
Machine Learning Model KNN 0.26189 4.79626

SVM 0.18020 4.79052
RF 0.11115 1.745939

Fixed Window Scheme

Models RMSE MAPE

Time Series Model ARIMA(1, 1, 1) 0.26162 4.671115
VAR(1) 0.25478 4.656029

VECM(1) 0.26432 4.817335
Machine Learning Model KNN 0.2335 4.213045

SVM 0.11048 1.671631
RF 0.11339 1.865766

Interestingly, under the moving window and expanding window, the time series
model seems to have better prediction performance than the machine learning model.
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However, under the fixed window scheme, the machine learning models outperform the
conventional time series models. This could imply that the prediction performance of
machine learning and time series models might vary depending on the prediction range.

Regarding the sensitivity analysis, the result of the sensitivity analysis is shown in
Table 9. The windows of the fixed, moving, and expanding schemes are varied to analyze
the forecast performance of the machine learning method. Three window sizes, 99, 119,
and 139, are selected and experimented with. Based on the sensitivity test results of the ex-
periment with the learning data size, the forecast tendency of the machine learning method
is maintained. Therefore, it can be concluded that this forecast scheme has robustness for
this crude oil price prediction using the relation of the GSCPI.

Table 9. Sensitivity analysis.

Window Type ML(Error)
Window Size

99 119 139

Expanding Widow

SVM(RMSE) 0.2788 0.1802 0.1713

KNN(RMSE) 0.3804 0.2618 0.1903

RF(RMSE) 0.1168 0.1111 0.0599

Moving Window

SVM(RMSE) 0.3806 0.2546 0.1900

KNN(RMSE) 0.3807 0.3358 0.1900

RF(RMSE) 0.3781 0.2568 0.1837

Based on the preliminary comparison results, we conducted the encompassing test
to compare the forecast values of the conventional time series model with those of the
machine learning model. The below is the equation for the test:

lnKpricet = α + λ1 f1t + λ2 f2t + vt (9)

where lnKpricet is the real value of the crude oil import price in South Korea, f1t is the
forecast values from the time series model, f2t is the forecast values from the machine
learning model, λi are the coefficients of i th forecast, and vt is the error term.

Table 10 denotes that we could reject both the null (H0 : λ1 = 0) and alternative
(H1 : λ2 = 0), which means the combined (or weighted) forecasts with f1t and f2t provide
a better forecast at the 5% level. That is, for the moving window and expanding window
schemes, the combined VECM forecasts and SVM forecasts would provide better forecast
information. Further, under the fixed window scheme, the combined VAR and SVM
prediction values could improve the forecasting accuracy.

Table 10. Encompassing test by moving, expanding, and fixed window scheme.

Moving Window Scheme

Models t-value Pr > t

VECM(1) 56.73 <0.0001
SVM 3.3 0.0018

Expanding Window Scheme

Models t-value Pr > t

VECM(1) 43 <0.0001
SVM 3.94 0.0003

Fixed Window Scheme

Models t-value Pr > t

VAR(1) 2.03 0.0475
SVM 15.14 <0.0001

The last column entry is the p-value of the null hypothesis of a weak exogenous variable.
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4. Discussion

As the importance of the role of supply chain risk management for strategic materials,
especially those that are 100% import-dependent, has increased, we incorporated the supply
chain-related variable into the crude oil import price forecasting model. This research
investigates whether the supply chain factor, represented by the GSCPI, could significantly
influence the improvement in the forecast performance of crude oil import prices in South
Korea. We conducted the weak exogeneity test to see if the GSCPI is a weak exogenous
variable. The null hypothesis (H0 : ln GSCPI = weak exogenous variable) was rejected
at the 1% level, which implies that the GSCPI might improve the predicting accuracy of
the ln Kprice. Furthermore, we compared the forecasting performance of the VAR and
VECM models, including the GSCPI with the ARIMA model, and found that the models
with the GSCPI outperformed the models without the GSCPI in predicting the crude oil
import price in South Korea. Based on these results, we propose that monitoring variables
related to supply chain disruptions, such as the GSCPI, could be effective in stabilizing
domestic prices and establishing long-term sustainable supply chain or energy policies. For
instance, the South Korean government is currently seeking to enact a basic bill to support
supply chain stabilization for economic security. This proposed bill includes the selection
of economic security items and the operation of an early warning system to proactively
identify and respond to supply chain risks. Building on the findings of this research, the
authors suggest that early warning systems for crude oil should include monitoring of the
GSCPI. Moreover, these implications are applicable to countries facing conditions similar
to South Korea, particularly those heavily dependent on 100% oil imports.

In this research, a novel hybrid factor-based approach is proposed. We compared
the forecasting performance of time series models ARIMA, VAR, and VECM, as well as
the machine learning models KNN, SVM, and RF, using RMSE and MAPE under three
different window schemes. As shown in Table 8, for time series models, the VECM model
outperforms the ARIMA and VAR models under the moving and expanding window
schemes, while the VAR model outperforms the ARIMA and VECM models under the
fixed window scheme. For the machine learning model, the SVM model has the smallest
RMSE and MAPE under all three window schemes. Based on these preliminary comparison
results, we conducted the encompassing test to compare the forecast values of traditional
time series models with those of machine learning models. Interestingly, the results of the
encompassing test indicated that combining forecasts from time series models and machine
learning models provided a better forecast. These findings are consistent with the previous
research, which showed better prediction performance of proposed hybrid models than
their counterparts (Safari and Davallou [23]; Zhang et al. [27]; Abdollahi [28]; He et al. [42];
Ning et al. [43]).

This research is meaningful in that it may serve as a foundation for the development
of future oil price prediction models by examining whether supply chain-related variables
are important factors in oil price prediction and what methodologies can be applied to
enhance the forecasting accuracy of oil prices. Based on this, it is expected that more
sophisticated forecasting models can be developed in future studies. In addition, it will be
necessary to continue to discover supply chain-related variables such as the GSCPI for oil
price prediction.

5. Conclusions

In this research, we aim to offer valuable insights for policymakers tasked with estab-
lishing a stable supply and demand strategy for strategic commodities and a national price
stability strategy. Given South Korea’s 100% dependence on crude oil imports, forecasting
crude oil prices is crucial. This research emphasizes the importance of monitoring supply
chain-related variables to enhance the predictive performance of crude oil prices, proposing
a hybrid factor-based forecasting approach.

Nevertheless, there are a few considerations to solidify this approach. Firstly, this
research evaluated the forecast performance of three representative machine learning-based
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regression methods to determine if these could enhance the forecasting performance of the
crude oil import price in South Korea. We analyzed the performance of the time windows
of SVM, RF, and KNN. This research contributes by suggesting the appropriate hyper-
parameter to build the machine learning model-based analysis framework. The grid search
method was employed to find the optimal value that boosts the forecast performance of ma-
chine learning models. In addition, the weight of the SVM is suggested by the Lagrangian
multiplier-based optimization. The machine learning-based estimator presents the forecast
excellence of the fixed window-based forecast and the encompassing experiments.

Meanwhile, further studies can be conducted to optimize the SVM’s parameter selec-
tion. Investigating different optimization methods, such as gradient descent, the genetic
algorithm, and the particle swarm method, could help define the weighting factor more
effectively. In addition, the machine learning method’s forecast performance is also re-
quired to be studied when the time interval of the learning feature is finer than in this
research. If the number of learning features is insufficient, then the augmentation or the
replication of the time series data can be examined. Furthermore, other real-time-based
estimators, such as the Long Short-Term Memory (LSTM) model, could be helpful for oil
price prediction. LSTM is the one type of recurrent neural network model that has strong
forecast performance in real-time variant data.

The data of the crude oil price is gathered from Petronet, but the oil price data can
be gathered in identical forms from other sources such as Bloomberg energy and Wall
Street Journal market data [44,45]. Global balance, Strategic Reserves, and GSCPI are
global indexes, so their data can be obtained from various sources (e.g., Bloomberg and the
Organization of the Petroleum Exporting Countries (OPEC) [44,46]) in similar forms. The
limitation of this paper is that it only targeted the Korean market, which is described by
Kprice, Kdemand, and Kstock, so future works can look into applying our model to other
markets, for example, Europe, China, and the United States.

The change in the measurement frequency of the original data source that represents
the relation between the crude oil price and GSCPI could be a valuable topic to be studied
further in the future. If sufficient data, enough to apply the deep learning model, is
reserved, then it can be used to predict the future time domain tendency of the crude oil
price. Also, the recent generative AI foundation model has the potential to make a general
AI model that can answer the projection of the crude oil price due to the GSCPI and other
parameters’ conjectures.

Lastly, as Livieris [47] mentioned, AI methods do not guarantee better forecasting per-
formance in all cases. In this research, we found that the forecasting accuracy of traditional
econometric models outperformed that of machine learning methods in the case of one-
step-ahead oil price forecasting. While we considered three window schemes—moving,
expanding, and fixed window—for the robustness of the estimates, it would be interesting
to conduct a forecasting horizon sensitivity test, as it could impact the forecasting perfor-
mance. Furthermore, it might be meaningful to analyze specific cases where the machine
learning method demonstrates higher accuracy. Future research should focus on specific
cases that contribute to increasing the prediction accuracy of econometric models, machine
learning models, or hybrid models.
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