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Abstract: The study introduces an Intelligent Diagnosis Framework (IDF) optimized using the
Grasshopper Optimization Algorithm (GOA), an advanced swarm intelligence method, to enhance
the precision of bearing defect diagnosis in electrical machinery. This area is vital for the energy
sector and IoT manufacturing, but the evolving designs of electric motors add complexity to fault
identification. Machine learning offers potential solutions but faces challenges due to computational
intensity and the need for fine-tuning hyperparameters. The optimized framework, named GOA-IDF,
is rigorously tested using experimental bearing fault data from the CWRU database, focusing on
the 12,000 drive end and fan end datasets. Compared to existing machine learning algorithms,
GOA-IDF shows superior diagnostic capabilities, especially in processing high-frequency data that
are susceptible to noise interference. This research confirms that GOA-IDF excels in accurately
categorizing faults and operates with increased computational efficiency. This advancement is
a significant contribution to fault diagnosis in electrical motors. It suggests that integrating intelligent
frameworks with meta-heuristic optimization techniques can greatly improve the standards of health
monitoring and maintenance in the electrical machinery domain.

Keywords: machine learning; bearing fault; intelligent framework; electric motor; variable load
conditions

1. Introduction

The precise diagnosis of bearing faults in rotating machinery, particularly in electric
motors, has remained a perennial concern within modern industry. The introduction of
innovative machinery designs often begets new categories of bearing defects under varying
operating conditions. Accurate characterization of these bearing faults is paramount
for the efficient operation of motors across diverse industrial applications, as bearings
constitute the bedrock of machinery performance. In machining industries, for instance,
bearings play a pivotal role in modulating actuator system speeds for executing operations.
Any unexpected bearing anomalies can lead to uncontrolled speed variations, potentially
jeopardizing system integrity [1]. Furthermore, the high maintenance costs and associated
penalties due to bearing faults are commonplace in industries, underscoring the need for
early bearing condition monitoring.
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In contemporary practice, various techniques leveraging computational devices have
been employed to facilitate the early monitoring of bearing conditions. Bearing faults
can manifest in components such as the ball, outer ring, inner ring, and rolling elements.
The cyclic impact modulation phenomenon is observable in acceleration signals, wherein
a faulty element induces positive fault frequency signals. Monitoring of bearing faults
primarily relies on analyzing these acceleration/vibration signals acquired from the driven
or fan end of the machinery. However, the practical operation often deviates from ideal
conditions, resulting in limited data samples acquired during fault conditions, which can
lead to inaccuracies and high costs, rendering data acquisition for fault diagnosis more
challenging [1,2].

The significance of utilizing advanced computational techniques to monitor bearing
conditions is particularly evident in industrial settings where bearings are critical com-
ponents. This also underscores the difficulties associated with acquiring sufficient data
during fault conditions, which can significantly influence the accuracy and effectiveness
of fault detection and diagnosis systems [3–8]. Recently, data-driven approaches have
gained prominence in the realm of bearing fault diagnosis, as they do not depend on
specific system dynamics. In certain cases, fault diagnosis is accomplished by employing
machines to replicate human intelligence. Here, specific algorithms are employed to train
machines to effectively classify or estimate faults. Among the top-tier machine learning
algorithms, the Support Vector Machine (SVM) stands out, as it utilizes data points near the
hyperplane vector to solve classification problems. The kernel parameters of this algorithm
govern the nonlinear transformation of input attributes into a higher-dimensional space
vector. Nevertheless, erroneous parameter selection or kernel functions can lead to errors
in bearing fault detection [9,10].

While studies have explored optimal parameter selection for SVM to enhance classifica-
tion accuracy in bearing fault diagnosis, heuristic methods can be time-consuming, and they
may not always identify the global optimal solution due to the presence of local minima. To
address these challenges, we propose a meta-heuristic-enhanced intelligent fault diagnosis
framework to improve bearing fault classification accuracy under various load conditions.
This framework leverages the Grasshopper Optimization Algorithm (GOA) to identify
salient features and integrates it with the SVM architecture. The hybridization of GOA-SVM
has been successfully deployed to achieve high-accuracy classification in bearing fault
diagnosis. The innovation in this work lies in harnessing the optimization capabilities of
GOA, known for its excellence in addressing optimization problems. Besides SVM, several
other machine learning algorithms have been developed to tackle bearing fault issues, and
a succinct overview of these methodologies is presented in a later section [11,12].

The Grasshopper Optimization Algorithm (GOA) is a bio-inspired optimization tech-
nique based on the swarming behavior of grasshoppers. It employs the principles of Lévy
flights and local and global attractions to explore and exploit the solution space efficiently.
In GOA, a population of potential solutions, represented as grasshoppers, moves through
the search space in a way that balances global exploration and local exploitation. GOA has
been chosen for hyperparameter optimization due to its ability to effectively explore high-
dimensional search spaces and to strike a balance between exploration and exploitation,
which is essential for finding optimal hyperparameter configurations. Researchers have
found it to be a promising approach for improving the performance of machine learning
models by tuning hyperparameters.

This research makes substantial contributions on both theoretical and practical fronts:

1.1. Theoretical Contributions

• Intelligent Diagnosis Framework (IDF): The introduction of the IDF represents a novel
and innovative approach to tackling bearing defect diagnosis. It is founded on a fusion
of machine learning techniques within an efficient framework, and this theoretical
innovation serves as a pivotal cornerstone for advancing diagnostic precision and
fault categorization.



Sustainability 2023, 15, 16722 3 of 25

• Integration of Meta-Heuristic Optimization: The incorporation of the Grasshopper
Optimization Algorithm (GOA) into the IDF framework establishes a robust theoretical
foundation for optimizing hyperparameters. This integration significantly bolsters the
accuracy and reliability of the diagnostic process.

1.2. Practical Contributions

• Enhanced Accuracy: Through the introduction of the IDF and the GOA optimizer, our
work provides a practical solution to the challenging task of accurate bearing defect
diagnosis. This contributes meaningfully to the improvement of reliability and safety
in real-world applications involving electrical machinery.

• Efficiency and Computational Economy: The proposed GOA-IDF offers not only
heightened accuracy but also demonstrates noteworthy computational efficiency. This
practical advantage renders it particularly suitable for real-time applications where
timely and dependable diagnoses hold paramount importance.

• Real-World Applicability: The comparative analysis against other machine learning
algorithms underscores the practical superiority of the developed Internet of Things
(IoT) GOA-IDF. This carries significant implications for industries relying on electrical
machinery, such as manufacturing, energy, and the Internet of Things.

• Robustness in Handling Noisy Data: Our research delves into the robustness of GOA-
IDF when dealing with high-frequency data, which may inherently contain noise.
This practical contribution underscores the algorithm’s applicability in scenarios
characterized by varying data quality.

We have described the framework we used and the procedure we followed to obtain
our suggested fault detection system to be accurate. This is of interest to the engineering and
research community as this study explicit the process of securing the predicted diagnosis
results more accurately with high computational efficiency, i.e., small training and testing
time. The outcomes of the studies show that the suggested technique is successful in
bearing fault diagnosis.

The summary of this paper is organized as follows. In Section 1, we review and
summarize the latest related work for bearing fault diagnosis to explore the research
gap and highlight the main innovation and contribution of this work. The mathematical
fundamentals of the proposed meta-heuristic configured intelligent framework are studied
in Section 2, along with a flowchart of how the proposed method works in the diagnosis of
bearing faults. In Section 3, we have described the used dataset to measure the effectiveness
of the proposed framework. Here, we also describe the preparation of the dataset under the
experiment of varying load conditions. The experiment analysis using the proposed method
over the three different cases, along with analytical results, are illustrated in Section 4 to
show the efficacy and robustness of the proposed IDF in classifying bearing faults. Finally,
the study’s conclusions are reported in Section 5.

2. Related Work

Bearing fault diagnostics have benefited from the continual development of ML and
deep learning (DL) algorithms, which has led to the creation and implementation of several
new approaches. Several DL strategies, including deep belief networks (DBN), Neural
Networks (NN), Artificial Neural Networks (ANN), and convolutional neural networks
(CNN), have recently been the focus of study in the field of fault diagnosis. Researchers
developed a technique for bearing failure diagnostics in one of their studies based on the
wavelet packet transform and a CNN, and it was optimized using a simulated annealing
algorithm [13]. Another study proposed a prominent intelligent fault-detection technique
based on principal component analysis (PCA) and deep belief networks (DBN) [14]. Bearing
defect classification in induction motors was the focus of another research work, which
grouped two learning methods named random forest and XGBoost [15]. In another study,
a decision tree-based advanced fuzzy sliding mode observer (AFSMO) associated with
a deep auto-encoder approach was found to be the most effective way to carry out fault
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prediction, detection, and identification in a rotating machine [16,17]. Li et al. proposed
a technique that incorporates two different algorithms: the refined composite multi-scale
approximate entropy (RCMAE) algorithm and the improved coyote optimization algorithm-
based probabilistic neural network (ICOA-PNN) algorithm [18]. Although the above
machine learning techniques have successfully characterized the electrical motor bearing
fault, their performance may suffer due to high computational costs and a failure to select
proper hyper-parameters associated with them. This paper presents a novel deep learning
approach that combines CNN-CBAM and Transformer networks in parallel channels to
predict the remaining useful life (RUL) of drilling pumps, outperforming existing methods
and enhancing the safety and cost-efficiency of fossil energy production facilities.

However, the number of heuristic algorithm applications using ML and DL algorithms
has increased dramatically in recent years. To overcome the difficulties involved with
optimization in the area of bearing fault diagnosis, several optimization approaches have
been developed in recent years. The pathfinder algorithm (PFA), particle swarm optimiza-
tion (PSO), simulated annealing, Genetic Algorithm (GA), Artificial Bee Colony (ABC),
Grey wolf optimizer (GWO), and Slap swarm optimizer (SSO) are several optimization
methods utilized in the recent research [19–25]. The work in [26] presents a technique for
the detection of bearing faults in three-phase induction motors by concatenating the ABC,
decision tree, and multi-layer artificial perceptron Neural Network classifiers.

Problems Definitions and Formulation

Deep learning-based diagnosis confronts several challenges and unresolved issues.
Although DL algorithms have significantly improved bearing failure detection, their ef-
fectiveness is largely dependent on some key factors, including the number of layers and
nodes. The capability of deep learning new methods [27–36] in bearing fault diagnosis has
yet to be fully exploited due to these constraints, and additional research is needed.

The following constraints are based on a survey of existing fault diagnosis-based methods:

• The demand for large sample datasets increases the chance of data overfitting.
• Trial and error methods are typically used to develop the structure of the methods,

which complicates and prolongs the structure estimation procedure.
• The deep learning method uses additional steps to process data for executing predicted

performance that results in requiring large computational costs like high training and
testing time and needs a large memory size.

• Both the capability to generalize and the robustness of the system must be enhanced,
as machine data are typically obtained at high sample rates.

In our study, we employed the Case Western Reserve University (CWRU) bearing
fault datasets, categorized into three distinct types: the 12,000 drive end, 12,000 fan end,
and 48,000 drive end datasets. Our approach began with the extraction of pertinent features
from these datasets. Subsequently, we applied the Grasshopper Optimization Algorithm
(GOA) in conjunction with Support Vector Machines (SVM) to address the bearing fault
diagnosis challenge, thereby affording three separate experimental cases for comprehensive
evaluation. The intention behind these cases was to individually scrutinize the outcomes
and draw insightful comparisons. It is worth noting that despite the application of various
swarm intelligence algorithms to optimize SVM model parameters, their solution accuracy
remained suboptimal.

3. Methodology
3.1. Proposed Intelligent Diagnosis Framework

The proposed Intelligent Diagnosis Framework (IDF) based on machine learning
techniques is discussed here to classify the two distinctive units of observations into
their relevant classes. It is a mathematical entity, a procedure for maximizing a specific
mathematical characteristic about a set of data. The proposed framework is a supervised
learning method that analyzes data for each classification and regression analysis. It
can successfully handle high-dimensional and nonlinear records quite well. It offers
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a collection of instructions to forecast the necessary characteristics of unidentified checking-
out data based on the structure of training statistics sets. The mechanism of the proposed
framework is based on discovering the nice hyperplane that separates the records of
two exceptional lessons of the category. The best hyperplane is the one that maximizes
the margin or the separation between it and the closest coaching spots. The following is
how the suggested framework’s structural design is supported: First, to manage the trade-
off between margin maximization and a variety of misclassifications, the regularization
parameter C is applied. Second, kernel characteristics for converting training data from
a lower dimension’s characteristic space to a higher dimension’s characteristic space hyper-
parameters refer to all kernel features, such as linear, polynomial, radial groundwork
function, and sigmoid, that have certain free parameters. The kernel generally used in the
research was the Gaussian or radial basis function (RBF) kernel with width σ, which is
represented as

K(m, n) = exp(−||m− n||2/2σ2) (1)

Here, K(m,n) is termed the kernel function, which is founded on the dot product of
two invariants, x and y. The suitable trade-off parameter C and the kernel parameter σ are
required to educate the proposed framework classifier and are generally obtained using
the capability of the K-fold cross-validation technique. The application of the proposed
framework may provide two challenges: choosing the right kernel feature and modifying its
parameters. Finding the optimum decision plane is a computational optimization challenge
that helps kernel functions locate the appropriate space for linearly separating instructions
using a nonlinear transformation.

The working process of the proposed intelligent framework of two different classes is
mentioned in the following to classify them. For taking set A to train

A = {mk , nk}uk = 1 (2)

where mkεRN and nkε{−1,+1}. Now, the goal of the proposed framework is to assemble
a most effective hyperplane in the following way:

g(m) = wTmk + b = ∑u
p=1 wpmp + b =0 (3)

Here, the bias value, denoted by b, is a scalar and weight vector. The function of the
isolating hyperplane is controlled by a vector mkεRN and scalar b. The signal g(m) is used
to make a choice characteristic for producing a hyperplane that classifies the input records
into either a superb or terrible class. Thus, the discrete distinguishing of hyperplanes has
to fulfill the following requirements:

g(mi) = +1 if, ni = +1 (4)

g(mi) = −1 if, ni = −1 (5)

It can be stated as

nig(mi) = ni

(
wTmi + b

)
≥ 1 for I = 1, 2, . . . , U (6)

By positioning and orienting a hyperplane between the two unique groups in this
method, the margin can be increased while minimizing generalization error. Guide vectors
are the fact points used to specify the margin that is closest to the hyperplane. A hyperplane
that allows linear separation in higher dimensions can be created for this circumstance
when linear separation may not be adequate to appropriately separate two classes. It is
referred to as a linear aid vector machine if the data region can be split linearly (straight
line or hyperplane) to distinguish the classes in the real domain. When the information
domain cannot be divided linearly, nonlinear help vector machines can be used instead.
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These machines can be moved to a house known as the characteristic space, where the
information domain can be divided linearly to separate the classes.

To distinguish data from distinct classes, the proposed framework calculates a maxi-
mum margin hyperplane. mi denotes the input vector; ni denotes the labels; L denotes the
total number of samples; b denotes the dimension of the input vector:

min
ω,b,ξ

1
2

∥∥ω′
∥∥2

+ C ∑L
l=1 ξl (7)

nl
[(

ω′ . m′ l
)
+ b
]
− 1 + ξl ≥ 0, l = 1, 2, . . . . . . , Lξl ≥ 0, 1, . . . . . . , L

where ω′ is an n-dimensional vector, b denotes a scalar, C denotes a regularization parame-
ter, and ξl denotes the slack variable. For a nonlinear situation, the ideal hyperplane in the
high-dimensional feature space can be formed as follows.

min
ω,b,ξ

1
2

∥∥ω′
∥∥2

+ C ∑L
l=1 ξl (8)

nl

[(
ω′ . ϕ(m ′ l

))
+ b
]
− 1 + ξl ≥ 0, l = 1, 2, . . . . . . , L

ξ l ≥ 0, 1, . . . . . . , L

The decision function in the developed intelligent framework is specified as

f (x(t)) = ∑M
i=1 K(x∗i , x(t)) + b∗ (9)

where x∗i is ith vector of M support vectors, yi is the class label, and x(t) is the tth input
frame vector. The optimization bias b* and the Lagrange multiplier α* may be derived by
successfully resolving a quadratic programming problem.

The following formula is obtained when the radial basis function is used as the kernel
function K(xi*, x(t)):

K(xi *, x(t)) = exp
(
−γ‖x∗i − x(t)‖2

)
(10)

where the RBF kernel parameter is denoted by γ. Algorithm 1 depicts the pseudo-code for
the proposed framework.

In Algorithm 1, the variables Ni, Ns, and Nf denote the number of input vectors,
support vectors, and features input and support vectors. The term sv[k] includes features
for the proposed framework, and in[j] is a structure’s array containing an input vector’s
feature array. Again, the variable m indicates K (xi*, x(t)) in Equation (11), and F indicates
f(x(t)) in Equation (10). The outermost loop repeatedly delivers input vectors to the middle
loop that is implemented in Equation (10), and the innermost loop computes the square of
an input vector’s distance from a support vector.

Algorithm 1. Pseudo-code for the proposed intelligent framework.

1. for i← 1 to Ni by 1 do
2. F = 0
3. for j← 1 to NS by 1 do
4. dist = 0
5. for m← 1 to N f by 1 do

6. dist + = (sv[k].feature[m]− in[j].feature[m])2

7. end
8. m = exp(−γ× dist)
9. F + = sv[k]. α∗ ×m
10. end
11. F = F + b∗

12. end
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The proposed framework focuses on the regularization hyperparameter C, which is
used to control the trade-off between increasing margins and reducing misclassification.
Additionally, kernel features are used by way of nonlinear functions for mapping the
datasets to greater dimensional characteristic spaces. However, this higher-dimension
function house transformation wants much greater calculations. It is possible to observe
a kernel method that controls this transformation, restricts the computation depth, and
maintains the effects of higher-dimensional transformation.

3.2. Design of Meta-Heuristic Optimization Algorithm

The Grasshopper Optimization Algorithm (GOA) stands out as an exceptional meta-
heuristic optimization method, renowned for its accuracy and ease of application across
a wide range of industrial scenarios. Meta-heuristic Optimization Algorithms have rapidly
evolved and found applications in diverse fields, including signal detection, load balancing,
feature resolution, and engineering processes. These algorithms share a common char-
acteristic in their two primary phases: exploration and exploitation. In the exploration
phase, they thoroughly investigate the search space, while the exploitation phase focuses
on pinpointing optimal solutions within promising areas. For an effective meta-heuristic
algorithm, striking a balance between exploration and exploitation is crucial. GOA draws
inspiration from mature grasshoppers’ behavior, which involves both long-range and
abrupt movements, reflecting the exploration phase, as well as nearby hops to seek better
food sources, symbolizing the exploitation phase. What sets GOA apart is its ability to
address shortcomings without placing significant emphasis on factors like the balance
between exploration and exploitation or the relationship between population size and
convergence speed during the optimization process.

A mathematical model for this conduct was introduced. The model is described
as follows:

xp = Sp + G + A (11)

In this equation, xp represents the p grasshopper’s function, Sp represents the group’s social
interaction, G represents the gravitational effect acting on p, and A represents the direction of
the wind. GOA analyzes only social interaction (Sp) to resolve optimization challenges.

Sp = ∑N
j = 1
j 6= i

s
(
dpq
)
d̂pq (12)

where dpq = |xq − xp| and d̂pq= xq−xp
dpq

, and G component in Equation (1) is obtained as
Gp = −gêg, component. Now, the term A in Equation (1) is determined as

Ap = u.êw (13)

Depending on where an individual grasshopper is relative to nearby grasshoppers, it
may experience the three forces of attraction, repulsion, and neutrality in a grasshopper
swarm. To demonstrate how grasshoppers interact in terms of comfort zone:

S(r) = fe−
r
l − e−r (14)

Here, f denotes the level of attraction, and l is the scale of attractive length. By
expanding Sp, G and A in Equation (11) can be rewritten as follows:

Xp = ∑N
q=1,j 6=1 s

(∣∣xq − xp
∣∣)xq − xp

dpq
−gêg + uêw (15)

To solve optimization problems effectively, a stochastic algorithm has to perform
exploration and exploitation successfully, approximating the global optimum as accurately
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as possible. The GOA method uses the following mathematical model for grasshopper
position updates:

Xp
d= c

(
N

∑
q=1,j 6=i

c
ubd − pbd

2
S
(∣∣∣Xd

q − Xd
p

∣∣∣)xq−xp

dpq

)
+ T̂d (16)

The coefficient c decreases the remedy area equivalent to the wide variety of generations:

c = cmax−iter
cmax − cmin

Maxiter
(17)

The optimization process is often divided into two stages, exploration and exploitation,
and in each case, the teaching of nature-inspired algorithms emphasizes the importance
of improving the probability up until a stop condition is reached. The Grasshopper Opti-
mization Algorithm is a successful approach with many benefits, including simplicity in
development, efficiency in searching, and ease in modifying algorithm parts.

Algorithm 2 depicts the GOA algorithm in pseudo-code form. To begin optimization,
the GOA generates a list of possible solutions at random. The locations of the search agents
are changed by using Equation (17).

Algorithm 2. Pseudo-codes of the Grasshopper Optimization Algorithm.

Start the swarm Xp(p = 1, 2,3, ....., n)
Set up cmax, cmin, , and max no. of iterations
Calculate each search agent’s fitness.
L = the best search agent
While (t < Limit of iterations)
Adjust c with the aid of Equation (17)
For each search agent

Standardize the spacing between agents [1,10]
Adjust the equation to reflect the changed location of the search agent (17)
If the search agent leaves the specified boundary, bring it back.

end for
Update L and position if a better solution is available.
t = t + 1
End
While
Return L (the target fitness and target position)

Every iteration maintains the position of the excellent target purchased in such
a manner. Additionally, problem C is determined using Equation (17), and for each
iteration, the separations between the grasshoppers are normalized in [1,10]. Position
updates are performed repeatedly until a stop requirement is satisfied. The international
optimum is eventually best approximated by the role and fitness of the first-class goal.

3.3. Meta-Heuristic Optimization Configured Intelligent Diagnosis Framework

The proposed MHOA-IDF model’s entire process is depicted schematically in Figure 1.
The proposed method begins by importing the acquired data, as shown in the diagram.
The preprocessing techniques, such as data preprocessing and missing value handling,
are then performed. We will create a feature matrix later by utilizing the input dataset by
computing time-domain features. The feature extraction divides huge quantities of raw
data into smaller sections that can be processed further. The major purpose of this method
is to select variables and convert them into features, therefore compressing the data that
must be processed while correctly categorizing the main data set. A large amount of data
is necessary to detect the fault precisely. As a result, feature extraction is important to the
process’s simplification. From the time-domain data, ten features were extracted. Max, min,
mean, standard deviation, skewness, kurtosis, root mean square, crest, and form factor are
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the time-domain characteristics obtained from the signal. Time-domain features for the
feature matrix are shown in Table 1.
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Table 1. Comparison for bearing fault diagnosis published in previous years.

References Accuracy Classifier Data
Amount

Fault
Type

Required
Time Efficient Robustness

(High)

[37] 97.27% GAN High 10 Moderate Yes Yes
[38] 90.28% MPE-PSOSVM High 6 High Yes Yes
[38] 96.56% VMD-MPE-PSOSVM Medium 6 High Yes Yes
[39] 89.2% VMD and GMDE Medium 4 High No Yes (Noise only)
[40] 97.09% Triplet Network + SVM High 9 Low No Yes
[1] 93.8 Quadratic SVM High 4 High Yes No

[41] 99.77% CNN + LSTM Network High 5 High Yes No
[42] 98.5% GWO-SVM Medium 8 Low No No
[43] 98.24% Hybrid CNN High 3 High No No

Proposed High GOA-SVM High 15 Low Yes Yes

The training and testing sections are then carried out using a cross-validation method.
After that, MHOA is used to optimize proposed diagnosis framework parameters based on
the training data. The MHOA algorithm is performed to obtain the optimal parameters.

To optimize the two parameters, c and σ, using the Meta-heuristic Optimization
Algorithm (MHOA), the following process is employed:
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• Initialization: Set the parameters for the Grasshopper Optimization Algorithm (GOA).
Here, we configure the maximum number of iterations to 10 and define a population
size of n= 30 grasshoppers.

• Fitness Assessment: Evaluate the fitness of each grasshopper within the population
and identify the best solution among them.

• Iteration Check: Check if the current iteration is within the defined maximum iteration
limit. If it is, proceed to the next step (Step 4); if not, display the best solution found
and conclude the process.

• Position Update: Update the positions of the grasshoppers while considering the
distances between them. This step also involves checking if any grasshoppers have
strayed beyond the defined boundaries.

• Best Solution Update: Update the current best solution and replace it with any new,
superior solution that emerges during the iteration.

• Iteration Control: Increment the iteration counter and verify if the current iteration
is still below the maximum iteration limit. If this condition holds true, return to Step
4 for the next iteration. If it is false, display the best solution obtained.

• Output: Finally, present the optimized parameters for the proposed Intelligent Diag-
nosis Framework.

This section examines issues regarding the optimal and overall performance of the
MHOA algorithm. The results are then furnished and analyzed in detail.

4. Dataset

The dataset for this experiment is collected from the Case Western Reserve University
(CWRU) bearing dataset.

fault, and 12,000 fan end fault. Each category contains data sets for ball faults and
inner and outer race faults. The outer race faults are split into three sections based on
“centered” (a fault at 6 o’clock), “orthogonal” (3 o’clock), and “opposite” (12 o’clock). Some
features and description of the dataset are as follows:

Data Type: The CWRU bearing fault dataset contains vibration data collected from
accelerometers placed on a test rig that simulates a rotating machinery system. The data
are collected in the form of time-domain and frequency-domain signals.

Bearing Types: The dataset includes data from two types of bearings:

• Ball Bearings;
• Roller Bearings.
• Fault Types: There are several fault conditions simulated in the dataset:
• Normal (healthy) condition;
• Inner race fault (IR);
• Outer race fault (OR);
• Ball fault (BF);
• Cage fault (CF).

Data Size: The dataset is organized into multiple files, each containing data for different
combinations of bearing types and fault conditions. The dataset is relatively large, with
each file containing thousands of data points. In total, the dataset contains tens of thousands
of data points.

Data Characteristics: The data are collected at varying motor load conditions, which
make them more representative of real-world scenarios where machinery operates under
different loads. The sampling frequency for the data is typically 12 kHz, although there
may be variations in different subsets of the dataset.

Data Format: Each data file is typically in a text format with columns for time and
vibration measurements. These measurements are taken at different positions on the test
rig, and the columns correspond to different sensor locations.

The pressure motor is put to the test, and the analog defect is detected with the
help of an accelerometer attached to the motor’s driving end. The signal’s data are sam-
pled at a rate of 12,000 per second. Figure 2 illustrates the experimental setup for rolling
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bearings. Acceleration data were collected from the motor bearings during testing us-
ing a 2 hp Reliance Electric motor. A two-horsepower Reliance Electric motor operates
a shaft that holds a torque transducer and an encoder. To apply torque to the shaft,
a dynamometer and an electronic control system are used. Bearings were contaminated
with faults utilizing an electro-discharge machining (EDM) process. Inner raceway, ball,
and outer raceway faults were inserted in a certain order, with fault dimensions ranging
from 0.007 to 0.040 inches (0.18 to 0.71 mm). After replacing the faulty bearings in the test
motor, vibration measurements were taken at loads from 0 to 3 horsepower (motor speeds
of 1797 to 1720 RPM). A summary of the variation of parameters over the generation is
shown in Table 2. Acceleration was observed on the base (BA), the fan end bearing, and
the drive end bearing during each test. Four distinct groups of data are distinguished by
their sample rate (12 or 48 kHz) and the position of the faulty bearing: 48,000 baseline,
12,000 drive end fault, 48,000 drive end fault, and 12,000 fan end fault.
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Table 2. Diameter and load condition for various fault level generation.

Bearing Status Diameter (in) Motor (hp) Label

Ball fault

0.007

0, 1, 2, 3 BF
0.014
0.021
0.028

Inner race fault

0.007

0, 1, 2, 3 IF
0.014
0.021
0.028

Outer fault
centered load zone

0.007
0, 1, 2, 3 OFC0.014

0.021

Outer fault
orthogonal load zone

0.007
0, 1, 2, 3 OFO0.014

0.021

Outer fault
opposite load zone

0.007
0, 1, 2, 3 OFOP0.014

0.021

5. Experimental Results

Frequency-related data are significant in the vibration study of the bearings, but
feature extraction becomes extremely important in the auto fault detection system. Using
Python programming, the attributes shown in Table 3 were retrieved from all the signals:
maximum, minimum, mean, kurtosis of the signal, standard deviation, skewness, root
mean square, crest factor, and form factor value. The results of employing MHOA-IDF
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to identify and categorize bearing faults are shown in this section. The dataset is used
to train the MHOA-IDF algorithm in this regard. The enormous amount of data and the
usage of IDF are responsible for the subpar classification results. The only way to resolve
this problem is to combine MHOA with IDF. We divided the dataset into segments to
extract features. We used the appropriate formulae for each segment to determine the value.
Three cases make up the whole dataset. Each case contains one of five fault kinds. The
effectiveness of various model types, the setup of settings, and the preparation of datasets
are all covered in great detail in this section. The proposed MHOA-IDF fault diagnosis
method is applied in three cases to evaluate the method and confirm its suitability for
locating rolling bearing defects. This research runs three tests for each of the five defects
to further verify the stability of the approach, and the results of the classification are
shown below.

Table 3. Time-domain features for the feature matrix.

Feature Equation Feature Equation

Mean: µ = 1
N

N
∑

i−1
xi

RMS: Xrms =

√
∑N

i=1 xi
2

N

Standard Deviation: σ =

√
∑N

i=1(xi−µ)2

N−1
Crest factor: C f =

Xmax
Xrms

Skewness: xskewness = 1
N

∑N
i=1(xi−µ)3

σ3
Form factor: Ff =

Xrms
µ

Kurtosis: xkurtosis = 1
N

∑N
i=1(xi−µ)4

σ4

5.1. Case 1

The CWRU bearing dataset, which is accessible on the CWRU bearing website, was
used in this investigation. We utilized the 12,000 drive end fault data for the experiment in
case 1. Figure 3 displays the time-domain waveform for each fault for the 12,000 drive end
data of the vibration signals of the bearings in various states for each of the five types of
faults that we use.

Each of them was plotted on a MATLAB simulation. Each represents different states of
the time-domain waveform for case 1. The test rig’s drive-end bearing, which has a variety
of defects, provided the vibration data at a sampling frequency of 12,000 Hz used in this
research. In this experiment, we generated five distinct statuses, each with four distinct
load scenarios, for the failed bearing signals. Ball fault, inner race fault, outer centered fault,
outer orthogonal fault, and outer opposite fault are all used with motor loads between 0
and 3 horsepower.

The 12,000 drive end-bearing dataset must first be mined for vibration signals. We may
compute time-domain features on the full signal or on subsets of it to obtain the feature
matrix. Seven integers will result from computing seven features on the full signal. A better
approach is to divide the raw data into 1410 b segments that do not overlap one another.
Each time-domain feature is computed for a length of 1410 segments. The time-domain
properties of each signal may be calculated using the formulae presented in Table 3. At
least 80% of the bearing samples are randomly chosen for training, while the other 20% are
utilized for testing. Optimize the IDF parameters using GOA using the samples that were
chosen at random. The final optimization results are best: C = 9.8467, best σ = 1, and best
fitness = 0.9956.

To train the IDF model and generate a trained IDF model, the optimal parameters
shown in Figure 4 should be employed. Then, enter the test samples into the IDF model,
train it, and use it to categorize and identify the test dataset. The diagnostic precision of the
proposed method is 99.26% measured using the confusion matrix shown in Figure 5. The
diagnostic precision using IDFs is 97.45%. The comparison demonstrates the importance of
MHOA in maximizing IDF parameters.
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(c) Outer centered fault, (d) Outer orthogonal fault, (e) Outer opposite fault.

Figure 4. Optimization result of the IDF parameters using MHOA in case 1.
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5.2. Case 2

From the same CWRU bearing dataset, 12,000 fan end fault data have been used for
case 2. Similarly, the test rig’s fan end bearing supplied the vibration data for this study at
a sampling frequency of 12,000 Hz shown in Figure 6. The five fault types are similar to the
previous case 1 for a motor load of 0–3 hp.
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For case 2, time-domain waveforms for the five fault categories that we use are shown
in Figure 7 for the 12,000 fan end data of the vibration signals from the bearings at various
states. A MATLAB simulation graph was used to depict each. There are many different
states that a waveform can be in during its passage through time.
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Comparable to case 1 from before, the data preparation method was similar. To
produce the feature matrix, time-domain features must be calculated for either the whole
signal or a subset of it. Calculating seven characteristics throughout the whole signal
yields seven digits. A more effective strategy is to divide the raw data into 1410 non-
overlapping pieces of the same length. Each time-domain feature is computed for a length
of 1410 segments. We randomly choose at least 80% of all bearing samples for training
and utilize the remaining 20% for testing. Apply MHOA to optimize the IDF parameters
using the randomly sampled data. The final optimization results are best C = 9.9293, best
σ = 1, and best fitness = 0.9836. Using the best parameters, a trained IDF model was
developed. The proposed technique accurately identifies and categorizes the test dataset
using a MHOA-IDF model and gives 98.92% accuracy measured by using the confusion
matrix shown in Figure 8.

The accuracy of IDF diagnosis is 96%. MHOA improves IDF parameters comparatively.

5.3. Robustness Measurement (Case 3)

In case 3, we used the 48,000 drive end fault data for the experiment. The vibration
signals employed in this study originated from the faulty drive end bearing of the test rig
as shown in Figure 9. The sampling frequency was 48,000 Hz. For a motor load of 0–3 hp,
the types of faults used are the same as before: ball fault, inner race fault, outer centered
fault, outer orthogonal fault, and outer opposite fault.
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For the five fault categories we employ, for the 48,000 drive end data of the vibration
signals from the bearings in their various states. A graphical representation of a MATLAB
simulation was used to depict each. Different stages of a waveform’s evolution are possible
at any given instant.

Finally, case 3 is illustrated in Figure 9, which displays the time-domain waveforms
for the five fault categories we employ for the 48,000 drive end data of the vibration
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signals from the bearings in their various states. A graphical representation of a MATLAB
simulation was used to depict each. Different stages of a waveform’s evolution are possible
at any given instant.

The feature matrix is generated by computing time-domain features on all or a portion
of the signal. Seven numbers are the result of calculating seven features throughout the
whole signal. To obtain the most out of the data, it is best to cut it into 1410 uniformly
sized parts that do not overlap. A total of 1410 segments are used in the computation
of each time-domain characteristic. During training, we use at least 80% of all available
bearing samples, while the remaining 20% are put to use during testing. Use MHOA to
fine-tune the IDF settings based on the randomized data. One IDF model was trained
using the optimal settings shown in Figure 10. Accuracy in diagnosis is 90.58% using
the recommended strategy measure from Figure 11. IDFs have an accuracy of 89.9% in
diagnostics. The results show that MHOA is crucial for optimizing IDF settings.
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optimized GOA-IDF for case 3.

The confusion matrix shows the total signals examined and how many were correctly
categorized. The confusion matrix, overall accuracy, recall, precision, and the F1-score are
the performance measures in this research. The assessment parameters are established
using the equations shown in Table 4.
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Table 4. Performance evaluation parameters.

Accuracy = TP+TN
TP+FP+TN+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 score = 2× Precision×Recall
Precision+Recall

The output of the MHOA-IDF model based on the performance measures is shown in
Table 5. The MHOA-IDF approach was successful in three instances. For three cases, the
output has been shown. From case 1, 12,000 drive end data have the most accuracy, then
comes 12,000 fan end data from case 2, and lastly, case 3, 48,000 drive end data. All these
parameters are calculated explicitly.

Table 5. Results of the MHOA-IDF in terms of the evaluation parameters.

Data Accuracy Precision Recall F1 score

12,000 drive end 99.26% 98.79% 99.26% 99.02%
12,000 fan end 98.92% 99.15% 99.1% 99.13%

48,000 drive end 90.58% 90.53% 88.98% 88.85%

With 12,000 drive-end data, Figure 12 shows that the fitness is marginally below
0.994 for the first iteration. For 12,000 fan end data, the minimum fitness level is 0.9804,
whereas for 48,000 drive end data, it is 0.887. Iterations after that have a little greater
fitness value than the minimum. The system has rather strong robustness and interference-
fighting capabilities after classifying them with MHOA. The 12,000 drive end-bearing
dataset produces superior results compared to the other examples. Classification accuracy
for the proposed MHOA-IDF was 99.26%.
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5.4. Comparative Analysis

We have provided a comparison, as shown in Table 6 and Figure 13, between our
proposed MHOA-IDF and other related machine learning algorithms. The comparison
is based on our dataset, the CWRU bearing datasets, for three cases on the accuracy,
training time, and average reaction time parameters. The comparison parameters are
measured by using the same configuration computer, and it may change according to the
computer configuration. By observing the recorded performance, it can be stated that the
proposed method, developed by MHOA-IDF, outperforms competing methods in terms
of having less computational complexity. Here, the computational complexity mainly
indicates achieving high accuracy with a lower response time. The obtained parameters
from the comparison using three different datasets are reported in Tables 6 and 7. It can be
noticed that a considerable amount of training time is required for the proposed intelligent
framework as it integrates a meta-heuristic optimization approach with the ML framework,
which generally demands large processing power. Although the proposed framework takes
a long time to train itself, it can provide improved accuracy, as well as reduce response
time over the change of system parameters variation. This is possible because of its ability
to reach a global optimum solution for the given optimal problem. Finally, it can be
concluded that the proposed method provides low computational complexity in bearing
fault diagnosis, as the efficacy of any intelligent framework relies on its response time
and level of accuracy. In both cases, the proposed method confirms high effectiveness as
compared to other related approaches.

High sampling frequency data often introduce additional noise, making accurate
analysis a challenge, especially in real-world scenarios. The proposed GOA-IDF (Grasshop-
per Optimization Algorithm with Improved Dimensional Filtering) offers a solution by
integrating the Improved Dimensional Filtering (IDF) technique. IDF effectively filters out
noise and irrelevant data components, emphasizing critical features. The GOA component
of the algorithm provides global optimization, aiding in the identification of robust patterns
amidst the noise. This adaptability and noise-tolerant approach make GOA-IDF robust
in real-world situations where data can be noisy and dynamic. Its ability to handle and
mitigate noise while maintaining efficiency and accuracy is a significant advantage in
applications such as predictive maintenance and fault diagnosis, where data quality can
vary widely.

Table 6. Comparison with other machine learning algorithms.

Dataset 12,000 Drive End 12,000 Fan End 48,000 Drive End

Model Accuracy
Training

Time
(s)

Response
Time

(s)
Accuracy

Training
Time

(s)

Response
Time

(s)
Accuracy

Training
Time

(s)

Response
Time

(s)

SVM 97.45% 0.21 0.227 96% 0.16 0.133 89.9% 3.55 0.81
Logistic

Regression 65.02% 0.58 0.017 68.64% 0.59 0.009 75.64% 1.14 0.0003

Random Forest
Classifier 98.05% 0.61 0.057 99.72% 0.43 0.012 89.15% 0.48 0.025

Decision Tree
Classifier 98.26% 0.20 0.019 96.72% 0.22 0.022 89.38% 0.62 0.003

ANN 11.06% 28.67 0.073 25.68% 10.82 0.09 23.80% 12.4 0.024
Proposed
Algorithm 99.26% 150.05 0.004 98.92% 132.04 0.002 90.58% 120 0.0002
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Table 7. Comparison with other latest works.

Study
Ref Year Method 12,000

Drive End
12,000

Fan End
48,000

Drive End Database Result

[13] 2022
Wavelet packet transform

and convolutional
neural network

X X X Case Western
Reserve University 97% Accuracy

[15] 2020

Discrete wavelet transform
(DWT) + Random forest

(RF) and Extreme gradient
boosting (XGBoost)

X X X Real-time dataset
of machine 99% Accuracy

[33] 2023 Fault-tolerant control (FTC) X X X Real-time dataset
of machine

Complexity reduction
of 23.5%

[34] 2023
Adaptive synchronous

demodulation transform
(ASDT)

X X X Real-time dataset
of machine Mean error = 0.0237

Our
work Proposed

Grasshopper Optimization
Algorithm with Improved

Dimensional Filtering
4 4 4 Public datasets Accuracy = 90%

In the provided comparison using the CWRU bearing datasets, the newly proposed
MHOA-IDF method is evaluated against other machine learning algorithms, considering
accuracy, training time, and average reaction time parameters. The results indicate that
the MHOA-IDF outperforms its competitors by achieving high accuracy with lower re-
sponse times, demonstrating its computational efficiency. While it requires a relatively long
training time due to its integration of meta-heuristic optimization and machine learning, it
compensates with improved accuracy and reduced response times across varying system
parameters. This efficiency is attributed to its ability to find global optimal solutions for
complex problems. In conclusion, the MHOA-IDF method exhibits low computational
complexity in bearing fault diagnosis, emphasizing the importance of response time and
accuracy, and it proves highly effective compared to other related approaches in both
aspects. Wang et al. [45] introduce a hybrid fault diagnosis method (WKN-BiLSTM-AM)
that combines WaveletKernelNetwork and BiLSTM with an attention mechanism for im-
proved bearing fault diagnosis accuracy, validated on multiple datasets, which is a similar
approach, then our method. Accurate diagnosis of rolling bearing defects in electrical
machinery presents a longstanding challenge, given their wide-ranging applications in
energy and IoT manufacturing. The introduction of innovative electric motor designs often
introduces new challenges, particularly in the form of rolling bearing faults. Precisely
categorizing these bearing faults is essential for the efficient operation of motors in various
industries. While numerous machine learning algorithms have been developed for fault
characterization and condition estimation, their effectiveness is sometimes impeded by
high computational costs and suboptimal hyperparameter selection. To address these
challenges, this paper introduces an Intelligent Diagnosis Framework (IDF). However, the
accuracy of IDF can be compromised due to limited datasets and suboptimal hyperparame-
ters. Therefore, the paper suggests integrating the Grasshopper Optimization Algorithm
(GOA), a meta-heuristic swarm intelligence optimizer, to enhance the performance of
IDF. The effectiveness of the optimized GOA-IDF is evaluated using experimental data
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from Case Western Reserve University (CWRU), specifically the 12,000 drive end and
12,000 fan end datasets, in comparison with the non-optimized IDF. Furthermore, the paper
conducts a comparative study with other machine learning algorithms to demonstrate
the superior performance of the developed IoT GOA-IDF. Additionally, the paper inves-
tigates the robustness of GOA-IDF in handling high-frequency data, which may contain
extraneous noise. The experiments conducted in this research underscore the competitive
performance of the proposed GOA-IDF without compromising computational efficiency.
Clarification: The paper’s focus is on the diagnosis of defects in rolling bearings, and it is
crucial to highlight this distinction for clarity. Future studies can be based on using the
latest techniques [3,46–64] that are based on innovative methods.

This study focuses on the importance of precise bearing fault diagnosis in rotating
machinery, particularly in the context of industrial applications. Here are the summarized
findings and key points:

• Importance of Bearing Fault Diagnosis: Bearing faults in rotating machinery can have
significant consequences, leading to uncontrolled speed and potential damage to the
entire system. The early monitoring and diagnosis of bearing conditions are crucial to
prevent these issues.

• Data-Driven Techniques: The use of data-driven techniques for bearing fault diagnosis
has gained popularity. These techniques are independent of system dynamics and can
effectively classify and estimate faults based on recorded data.

• Support Vector Machine (SVM): SVM is highlighted as a top-of-the-line algorithm in
machine learning for bearing fault diagnosis. However, incorrect parameter settings
or kernel functions can lead to errors in fault detection.

• Optimization of SVM Parameters: Some studies have focused on optimizing SVM
parameters for more accurate fault diagnosis. While heuristic methods can improve
classification accuracy, they may be time-consuming and struggle to find the global
optimal solution.

• Meta-Heuristic Optimization: To address the limitations of heuristic methods, the
paper proposes a meta-heuristic configured intelligent framework for improving
the accuracy of bearing fault diagnosis. It combines the Grasshopper Optimization
Algorithm (GOA) and SVM.

• GOA: GOA is introduced as a bio-inspired optimization technique that balances global
exploration and local exploitation in a high-dimensional search space. It is used for
hyperparameter optimization in the proposed framework.

Heuristic Algorithms: The application of heuristic algorithms in combination with
machine learning and deep learning approaches is discussed as a means to address opti-
mization challenges.

The practical implications of this study are significant, particularly for industries
relying on electrical machinery. The proposed Intelligent Diagnosis Framework (IDF)
enhanced by the Grasshopper Optimization Algorithm (GOA) offers an efficient and
accurate solution for diagnosing bearing defects, thereby ensuring the safety and reliability
of electrical machinery. By addressing the challenges of high computational costs and
suboptimal hyperparameter selection, this approach allows for more cost-effective and
precise maintenance practices. The robustness of GOA-IDF in handling high-frequency
data, even in the presence of noise, makes it a valuable tool for real-world applications,
such as predictive maintenance in the energy and IoT manufacturing sectors. This study’s
outcomes have practical relevance in improving the operational efficiency and safety of
electrical machinery in various industries.

Future work in the field of the accurate diagnosis of bearing defects in electrical
machinery could focus on the following areas:

• Enhanced Data Collection: Expand the dataset used for testing and training the
diagnosis framework. Collect data from a wider range of operating conditions, motor
types, and fault severities to improve the model’s generalization capabilities [46–50].
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• Robustness to Real-World Conditions: Investigate the model’s performance in real-
world industrial environments, where factors like varying loads, temperature fluc-
tuations, and environmental noise can affect the accuracy of diagnosis. Developing
techniques to make the model more robust to such conditions is essential [51–55].

• Online Monitoring and Predictive Maintenance: Develop methodologies for real-
time monitoring and predictive maintenance. This would involve implementing the
diagnosis framework on IoT devices or edge computing platforms for continuous
monitoring and early fault prediction [3,56–64].

• Human–Machine Collaboration: Explore ways to integrate the diagnosis framework
into human–machine collaboration systems. This could involve developing user-
friendly interfaces that provide actionable insights to maintenance personnel, enabling
them to make informed decisions [4–8].

• Integration with Maintenance Scheduling: Integrate the diagnosis framework with
maintenance scheduling systems. This would enable the automatic scheduling of
maintenance tasks based on the severity and urgency of detected faults.

• Fault Severity Estimation: Develop methods to estimate the severity of bearing faults
accurately. Knowing the extent of a fault’s progression can help prioritize maintenance
efforts and resources.

• Advanced Optimization Algorithms: Continue exploring and experimenting with
different optimization algorithms beyond the Grasshopper Optimization Algorithm
to further enhance the performance and efficiency of the diagnosis framework.

• Integration with Existing Systems: Develop strategies for integrating the diagnosis
framework with existing industrial control and monitoring systems
seamlessly [32–36,65–67].

6. Conclusions

In this research, we introduced a novel approach for classifying bearing defects, which
combines the power of the Meta-heuristic Optimization Algorithm (MHOA) with the Intel-
ligent Diagnosis Framework (IDF). The foundation of our approach lies in the extraction
of essential features from the CWRU bearing dataset, which was meticulously prepared
for fault diagnosis. We focused our attention on three distinct cases within the bearing
dataset to thoroughly evaluate our methodology. Our approach can be divided into two
primary stages. First, we harnessed the capabilities of the IDF machine learning algorithm
to effectively categorize bearing faults. Subsequently, we addressed the critical issue of
fine-tuning the IDF parameters using the optimization prowess of MHOA. This hybrid
MHOA-IDF approach significantly boosts global search capabilities. In comparison to
traditional methods such as IDF, Logistic Regression, Random Forest Classifier, Decision
Tree Classifier, and Artificial Neural Networks (ANN), our approach stands out for its
remarkable feature extraction capabilities and high accuracy. The empirical results from our
experiments validate the effectiveness and robustness of our combined system, particularly
when classifying faults under diverse noise conditions and varying motor load scenarios.
It is worth noting that while our model demonstrates impressive performance, it does not
demand excessive computational resources for data processing. However, it is essential
to acknowledge that training the model without optimization can be time-consuming. As
a potential avenue for future research, we encourage further investigations to enhance train-
ing efficiency by incorporating advanced mechanisms. In conclusion, our research presents
a cutting-edge approach to bearing defect classification, offering an effective blend of fea-
ture extraction and parameter optimization. This method exhibits promise in real-world
applications and contributes to the advancement of fault diagnosis in electrical machinery.
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