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Abstract: This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable
integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distri-
bution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to
minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation,
and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method,
quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes
photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor
of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF),
the uncertainties in renewable energy generation, load demand, and energy costs are represented.
The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage
stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 ×
107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.)
to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 ×
103 p.u., when contrasted with traditional methods.

Keywords: distribution network; Renewable Energy Sources; multi-objective function; optimal
operation; Improved Walrus Optimization Algorithm; Demand Side Response

1. Introduction
1.1. Motivation

In recent years, the reliability of energy supplies to consumers has gained paramount
significance. This is owing to its role as a pivotal determinant of both capacity quality and
customer satisfaction within distribution networks. Enterprises wield a plethora of options
to enhance distribution network reliability, including the utilization of Renewable Energy
Sources (RESs). RESs, like wind and solar power, present promising low-carbon substitutes for
conventional fossil fuels [1,2]. Nevertheless, the intermittent and uncertain characteristics of
RESs present complex hurdles to grid design. To tackle these challenges, the integration of RESs
and the implementation of Demand Side Management strategies come to the forefront. DSR,
comprising compact power facilities located proximately to the point of consumption, holds the
capacity to alleviate strain on centralized networks and bolster resilience through fault isolation
for swift recovery from downtimes. Complementary to this, DSR techniques like real-time
pricing (RTP) exhibit the potential to reduce energy consumption during peak demand intervals.

Sustainability 2023, 15, 16707. https://doi.org/10.3390/su152416707 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152416707
https://doi.org/10.3390/su152416707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6808-9254
https://orcid.org/0009-0004-4359-7764
https://orcid.org/0000-0003-4706-3490
https://orcid.org/0000-0003-2025-9821
https://orcid.org/0009-0001-0171-8263
https://doi.org/10.3390/su152416707
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152416707?type=check_update&version=3


Sustainability 2023, 15, 16707 2 of 32

Collaboratively, the synergy of RESs and DSR stands poised to revamp the distribution system,
allowing for a substantial integration of renewable energy. This transformation is indispensable
for steering toward a sustainable energy future [3,4].

1.2. Related Work

Several studies have been carried out on the integration of renewable energies into electrical
networks. For example, the authors in [5] present a novel and effective approach to the ideal
siting and dimensioning of PV resources in distribution networks. In [6], a hybrid Harmony
Search Algorithm approach is proposed to enhance bus voltage profiles and minimize power
losses in the distribution network (DN). Integrating the Particle Artificial Bee Colony algorithm
with Harmony Search addresses convergence issues. The hybrid algorithm determines optimal
locations and sizes for distributed generators and capacitor banks (CB), proving superior loss
reduction compared to current methods in the literature on test systems with 33 and 119
nodes. The authors in [7] present a method for optimal placement and sizing of PV and
WT in distribution networks. Their approach, using a weighted aggregation Particle Swarm
Optimization technique, addresses power loss minimization, voltage stability, and network
security while considering the stochastic nature of renewable resources. Applied to an Indian
rural distribution network, the method showcases effective enhancement of network operational
benefits. In [8], a reinforcement learning-based method is proposed for optimal sizing of PV
sources in unbalanced distribution networks, considering uncertainty and seasonal variations.
The technique is validated on IEEE 13- and 37-bus feeders and is shown to be suitable for
real-system implementation. The paper [9] addresses various technological challenges related
to stability issues associated with high PV penetration into the power grid. These challenges
include frequency regulation, active power reduction, reactive power injection, and energy
storage. In [10], ramp-rate control algorithms have been proposed to minimize grid power
fluctuations by using energy storage systems. The technical challenges arising from the extensive
integration of PV systems into the electrical grid, like voltage limit violations and frequency
disturbances, are explored in [11]. The optimal network reconfiguration is obtained using
an enhanced whale optimization approach [12]. The mine blast method is used to find the
best location and size of CB in DN [13] and the grey wolf optimization method [14]. The ant
lion optimization algorithm in [15] is suggested for the best RES sizing and allocation in DN.
The authors of the paper [16] have proposed a new method for optimal placement and sizing of
RESs in DN, considering the uncertainties of RESs output powers and loading. In [17], the Salp
Swarm Algorithm is applied to optimize the allocation of WT in DN to reduce overall energy
and power loss. This approach supports the integration of commercially available renewable
energy technologies, particularly wind turbines, and responds to global environmental concerns.
In [18], the authors introduce a novel methodology, HHO-PSO, for optimizing the planning
of RESs in active distribution systems. The results demonstrated that HHO-PSO provides
superior solutions, maximizing techno-economic benefits. In [19], the authors propose a new
algorithm for optimal allocation of distributed generation units in radial distribution networks.
The proposed algorithm, called AEO-OBL, is a modified form of the optimization method
modeled on artificial ecosystems. The authors in [20] propose an effective RESs allocation
strategy for energy loss minimization in the presence of variable power demand. In [21],
the study introduces a hybrid stochastic-IGDT strategy to improve the resilient functioning of
intelligent DN with the incorporation of RESs and intelligent parking facilities. A comprehensive
integration of storage approaches for the OOP of energy storage systems is proposed in DN [22].
In [23], a method is presented for concurrent positioning of distribution static compensators,
RESs, and DN reconfiguration using stochastic multi-objective optimization. The problem is
formulated as a mixed-integer, nonlinear programming problem. The authors in [24] propose
a new approach for the optimal siting and sizing of wind turbines and devices for storing
energy in distribution networks. The suggested methodology takes into account the impact
of WTs on power quality, specifically flicker emission. In [4], the authors propose a technique
for improving the reliability of DN using DSR programs and smart charging/discharging
of plug-in electric vehicles (PEV). In [25], a DSR mechanism is introduced to enable energy
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consumers to adjust their energy consumption patterns as proposed. The authors in [26]
study the potential benefits of DSR resources for distribution networks. They consider two
different types of customers: residential and commercial. They install data loggers on two
real distribution feeders in Golpayegan city and collect load profiles. They then use these
load profiles to develop two DSR programs: time-of-use and emergency DSR. They apply the
DSR programs to the real network and simulate the system using the CYME software. In [27],
the authors address the uncertainties introduced by the stochastic nature of RESs and DSR in
distribution grids. The authors in [28] present a novel darts game theory-based optimization
algorithm for microgrid formation, considering multiple objectives, topological and electrical
constraints, and demand response. The modified IEEE 33-bus test system is used to validate the
suggested methodology, demonstrating its superiority over existing methods and its potential
to improve system resiliency under extreme events.

The addition of Cauchy mutations to optimization algorithms has been shown to improve
their capability to address intricate global engineering optimization challenges. This enhance-
ment leads to the discovery of better optimal solutions, as has been demonstrated by many
research studies [29]. Furthermore, the refinement of optimization performance is achievable
through the harmonization of fitness and distance considerations within the search process.
This improvement has been substantiated through a diverse array of research inquiries [30].

In this context, quasi-opposite-based learning (QOBL) emerges as a widely adopted
strategy to amplify population diversity within optimization algorithms. Proposed as an
extension of the opposition-based learning approach, QOBL operates on a similar premise,
involving the evaluation of agents at their opposite points within the parameter space.
QOBL extends this principle by uniformly assessing points selected along a straight line
connecting the search space’s center with the opposing point of the agent’s current location.
The viability of QOBL holds promise for further enriching optimization algorithms’ perfor-
mance and diversification strategies, contributing to a holistic advancement in engineering
optimization techniques [31]. Table 1 summarizes the work given and compares it to other
relevant research on the optimal operation of DN with RESs.

Table 1. A comparative analysis of the presented work against other relevant studies on the optimal
operation of DN.
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[4] PEV ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

[5] PV ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

[6] WT with CB ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[7] WT with PV ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

[8] PV ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[17] WT ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

[18] WT with PV ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗

[32] PV ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

[33] WT with PV ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

[27] WT with PV ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

[28] WT with PV ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

This paper WT with PV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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1.3. Contribution

As evident, the literature on addressing the OOP is extensive. However, to our
knowledge, only a limited number of studies have tackled the stochastic OOP with optimal
WT and solar PV system integration along with DSR while accounting for uncertainties in
wind speed fluctuations, load, temperature shifts, variations in solar irradiation, and the
volatility of energy purchasing prices. In summary, the research gaps identified in these
studies are outlined below:

1. References [5–7] identified the optimal locations for PV and WT, but the shortcoming
in these studies is the lack of consideration for uncertainty and DSR.

2. References [8,17,18,32,33] explored the issue of OOP, taking into consideration uncer-
tainties in load, radiation, and wind speed. However, these studies omitted uncertain-
ties related to temperatures and prices. Additionally, the Demand Side Response was
not considered in these studies.

3. References [4,27,28] investigated the optimal operation problem (OOP) while relying
exclusively on Demand Side Response to enhance the performance of the electrical dis-
tribution network. However, a limitation of these studies is the lack of consideration
for all uncertainties within the system.

In this study, we investigate the impact of integrating a system comprising photovoltaic
generators and wind turbines in conjunction with Demand Side Response.
We introduce a novel approach termed the Improved Walrus Optimization Algorithm,
aiming to address the optimization challenge within the IEEE 118 Distribution Network.
Our primary objective is twofold: to reduce costs and voltage deviations (VD) while enhanc-
ing the voltage stability index (VSI) for the duration of a day. The effectiveness of the model
is carefully evaluated, taking uncertainties into account in wind speed fluctuations, load,
temperature shifts, variations in solar irradiation, and the volatility of energy purchasing
prices. We compare our proposed method (I-WaOA) against established optimization tech-
niques, including Sand Cat swarm optimization (SCSO), Artificial Hummingbird Algorithm
(AHA), Dandelion Optimizer (DO), Harmony Search (HS), Artificial Rabbits Optimization
(ARO), Chernobyl Disaster Optimizer (CDO), Zebra Optimization Algorithm (ZOA), and
standard Walruses behavior (WaOA).

Figure 1 represents the graphical summary of this paper, incorporating the integration
of RESs with DSR in line with the DN of impedance Ri,j + jXi,j connected between buses i
and j.

Figure 1. Basic construction of the proposed RESs with a DSR-based system.
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The key accomplishments of this research can be summarized as follows:

1. A novel Improved Walrus Optimization Algorithm (I-WaOA) is proposed to solve
the optimal operation problem (OOP) of renewable energy resources (RESs) with
Demand Side Response (DSR) in distribution networks (DN).

2. The uncertainties related to load demand, RESs generation, temperature, and energy
pricing are represented through PDF and simulated using MCS.

3. The optimal size and location of wind turbines, solar photovoltaics, and DSR resources
are determined simultaneously under uncertainties to minimize costs, reduce voltage
deviations, and improve voltage stability in the IEEE 118-bus DN.

4. The proposed I-WaOA is demonstrated to outperform other optimization algorithms,
like SCSO, AHA, DO, HS, CDO, ZOA, ARO, and standard WaOA, in handling uncer-
tainties and solving the complex optimal operation problem.

1.4. Organization of Article

The paper presents the structure of an optimal planning study of a power system
under uncertainties. Section 2 introduces the problem and its mathematical formulation.
Section 3 discusses the modeling of systems, while Sections 4–6 present the uncertainty
parameters, mathematical formulations of the WaOA, and I-WaOA problems, respectively.
Section 7 is reserved for simulation results and discussions, and Section 8 concludes the
paper with the implications of the results.

2. Formulating the Problem

This section presents the formulation of the problem, detailing both the optimal
operation’s governing constraints and objective function.

2.1. Objective Function

Multiple objective functions are examined in this study, and they are as follows:

2.1.1. The Minimization of Costs

The considered objective function includes the cost of WT (CWT), the cost of PV units
(CPV), the annual price of energy loss (CLoss), and the price of electricity procured from the
grid ( CGrid). The total annual price can be written as:

C = CWT + CPV + CLoss + CGrid (1)

In which,

CGrid = 365 ×
24

∑
h=1

PGrid(h) × UGrid(h) (2)

where UGrid is the price of buying energy from the network and PGrid(h) is the hourly power
taken out of the grid.

CLoss = 365 × ULoss ×
24

∑
h=1

PT_Loss(h) (3)

where ULoss represents the expenditure associated with energy loss and PT_Loss(h) indicates
the overall power losses during time h.

CPV = Cinst
PV + CO&M

PV (4)

where CO&M
PV denotes the maintenance and operating expenses for the PV unit, while Cinst

PV
represents the installation cost of the PV system.

CO&M
PV = 365 × UO&M

PV ×
Ns

∑
i=1

24

∑
h=1

PPV(i,h) (5)
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Cinst.
PV = CF × UPV × Prated_PV (6)

where Prated_PV is the maximum amount of power that the PV system can generate, and CF
is a factor that influences how quickly the cost of the PV system is paid back.

CWT = Cinst.
WT + CO&M

WT (7)

where CO&M
WT is the wind’s maintenance and operating costs and Cinst.

WT is the cost of installing
the WT.

CO&M
WT = 365 × UO&M

WT ×
Ns

∑
i=1

24

∑
h=1

PWT(i,h) (8)

where the maintenance and operating expenses for WTs and PVs are represented by UO&M
WT

and UO&M
PV . Ns is the number of RESs with the DSR system considered.

Cinst.
WT = CF × UWT × Prated_WT (9)

where UWT and UPV stand for the corresponding purchasing costs of WTs and PVs.
The rated generated power of WT is denoted by Prated_WT . PWT(i,h) and PPV(i,h) denote the
hourly produced power from WTs and PVs of the ith system.

CF =
β × (1 + β)NP

(1 + β)NP − 1
(10)

where NP and β are the system lifetime and interest rate of the PVs or WTs, respectively.

2.1.2. Increasing the Voltage Level

To ensure that the power grid operates efficiently and reliably, the voltage deviations
should be maintained within an allowable range, ideally close to 1 p.u. The definition of
the overall voltage deviation is [34,35]:

TVD =
24

∑
h=1

NB

∑
i=1

∣∣∣(V(i,h) − 1
)∣∣∣ (11)

where V(i,h) represents the hourly voltage of the ith bus and NB represents the number of
buses in the network.

2.1.3. Enhanced System Stability

The index for voltage stability of the bus j is as follows [36,37]:

VSI j = |Vi|4 − 4
(

Pj Xi,j − Qj Ri,j
)2 − 4

(
Pj Ri,j + Qj Xi,j)

2|Vi|2 (12)

TVSI =
24

∑
h=1

NB

∑
j=2

VSI(j,h) (13)

where VSI(j,h) is the voltage stability index for bus j. Pj and Qj define the real and reactive
power flow of the branch between i and j near at bus j, respectively. Xi,j and Ri,j represents
the reactance and resistance of the transmission line.

The optimization takes into account the following three goal functions concurrently:

min(F) = min(ε1F1 + ε2F2 + ε3F3) (14)

F1 =
CRERs/DSR

CBase
(15)

F2 =
TVDRERs/DSR

TVDBase
(16)
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F3 =
1

TVSI
(17)

where Base and RERs/DSR are the base case and subscripts referring to RESs with DSR,
respectively. The weighted values of ε1, ε2, and ε3 were chosen to be 0.5, 0.25, and 0.25,
respectively [15].

2.2. Inequality and Equality Constraints
2.2.1. Limitations of the Network (Inequality Constraints)

Vmin ≤ V(i,h) ≤ Vmax (18)

Ns

∑
i=1

PPV_rated,i +
Ns

∑
i=1

PWT_rated,i ≤
NB

∑
i=1

PLoad,i (19)

PFmin ≤ PFi ≤ PFmax i = 1, 2, . . . , Ns (20)

Ii ≤ Imax,i i = 1, 2, . . . , NT (21)

where Vmax and Vmin are the upper and lower voltage limits, respectively. PLoad represents
the real load. NT defines the number of lines. Imax,i is the maximum allowable current limit
of the line i. PFmin and PFmax are the minimum and maximum of the WT power factor,
respectively. The power factor of the PV farms should be equal to one.

2.2.2. Equality Constraints

PS(h) +
Ns

∑
i=1

PPV,i(h) +
Ns

∑
i=1

PWT,i(h) =
NT

∑
i=1

PLoss,i(h) +
NB

∑
i=1

PLoad,i(h) (22)

QS(h) +
Ns

∑
i=1

QWT,i(h) =
NT

∑
i=1

QLoss,i(h) +
NB

∑
i=1

QLoad,i(h) (23)

where QS(h) and PS(h) are the hourly reactive and real powers of the main network, respectively.

3. Modeling the Systems
3.1. PV System

The power output of a PV system can be determined using the following formula:

Tc(h) = Ta(h) +
I(h)
800

· (NOCT − 20) (24)

PPV(h) = APV · ηPV(h) · I(h) (25)

The total area used by the PV array, labeled as APV in (m2), is multiplied by a number
representing the efficiency of conversion of the PV panels, ηPV , to get the output produced
by the PV, expressed as PPV (kW). The temperature of the cell is expressed in degrees
Celsius as Tc. The temperature outside in degrees Celsius is represented by Ta. I is the solar
insolation in (kW/m2). The instantaneous efficiency of PV panels ηPV is obtained using the
following equation [38]:

ηPV(h) = ηr · ηt

×
[
1 − γ · (Ta(h)− Tr)− γ · I(h) ·

(
NOCT−20

800

)
· (1 − ηr · ηt)

] (26)

where ηt is the effectiveness of the maximum power point tracking device, and ηr is
the PV panels’ reference efficiency. It also takes into account the temperature coeffi-
cient of efficiency γ, which for silicon cells, normally ranges from 0.004 to 0.006 per (◦C).
Notable operating cell temperature NOCT in (◦C), reference temperature Tr in (◦C) for PV
cells, and ambient temperature Ta in (◦C) are also considered.
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3.2. WT System

The WT energy output (PWT) can be determined using the following formula:

PWT(W) =


0 f or W < Wi and W > Wo

Prated_WT

(
W−Wi
Wr−Wi

)
f or (Wi ≤ W ≤ Wr)

Prated_WT f or (Wr < W ≤ Wo)

(27)

The used wind turbine has a rated power of 250 kW, a rated velocity Wr of 15 m/s, a
cut-out speed Wo of 25 m/s, and a cut-in speed Wi of 2.5 m/s [39].

3.3. Demand Side Response

The power fluctuations in the distribution system can vary significantly on a daily
basis, resulting in substantial differences between the minimum and maximum energy
consumption. Demand Side Response is a viable approach to modifying customers’ con-
sumption patterns. In essence, DSR entails altering the power consumption of electric utility
customers to align it more effectively with the system’s supply. In other words, demand
response programs focus on adjusting the demand for power rather than manipulating the
supply [40,41].

In this research, the real-time pricing (RTP) program is employed as the demand-side
response program due to its widespread and practical application. RTP is considered
one of the most common and beneficial DSR programs, and its implementation in a real
distribution system is relatively straightforward. As a result, the outcomes of this study
closely align with the performance of an actual distribution system [42,43].

4. Representing the Uncertainties

The uncertainty in the parameters is depicted in the following manner:

4.1. A Probabilistic Representation of Solar Irradiance

The variations in sun irradiance have been modeled using the Beta PDF in the follow-
ing way [44,45]:

fb(G) =

{
Γ(φ+τ)

Γ(φ)Γ(τ)
s(φ−1)

(
1 − G)(τ−1) 0 ≤ G ≤ 1; φ, τ ≥ 0

0 otherwise
(28)

where µ represents the mean value derived from past data and σ is the standard deviation.
The following equations can be used to determine τ and φ [46,47]:

τ = (1 − µ)×
(

µ × (1 + µ)

σ2 − 1
)

(29)

φ =
µ × τ

1 − µ
(30)

4.2. A Probabilistic Representation of Wind Speed

To represent the uncertainty of wind speed, the following is an explanation of how the
Weibull PDF is applied [48,49]:

F(W) =

(
k
c

)(
W
c

)k−1
exp

[
−
(

W
c

)k
]

(31)

where W stands for the speed of the wind. The Weibull PDF scale and parameters for shape
are represented by the c and k, respectively.
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4.3. A Probabilistic Representation of Load Demand

The normal PDF can be used to model the uncertainty in load demand as follows. [47]:

fn(L) =
1

σL
√

2π
× exp

[
− (L − µL)

2

2σ2
L

]
(32)

where the loading’s mean value is represented by µL and the standard deviation is repre-
sented by σL.

4.4. The Probabilistic Representation of Price

The price of electricity is a highly important random characteristic in a power system
since it is an uncertain value derived from the grid. Equation (33) illustrates how the normal
PDF, based on its mean value µP and standard deviation σP, can be used to simulate the
PDF of the price of electricity [50,51]:

f (P) =
1

σP
√

2π
exp

[
− (P − µP)

2

2σP2

]
(33)

4.5. The Probabilistic Representation of Temperature

Since the temperature outside is constantly changing, it is considered an erratic vari-
able, and its uncertainty is expressed as follows using the normal probability distribution:

f (T) =
1

σT
√

2π
exp

[
− (T − µT )2

2σT2

]
(34)

where the mean temperature is represented by µT and the standard deviation by σT .
Monte Carlo simulations were used to generate 800 data points for solar irradiance,

temperature, wind speed, load, and price, using the parameters of the probability density
function (PDF) of each variable determined from the collected data [52]. However, to reduce
the computational burden of the simulation, a data-based reduction method followed by
conditional control was used to reduce the number of cases to a more manageable size
(12 cases) [53,54]. Figure 2 shows generated scenarios of these parameters at 12:00. A.M.
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Figure 2. The scenarios generated by MCS at 12:00 A.M. for (a) loading, (b) temperature, (c) solar
irradiance, (d) price, and (e) wind speed.

Figure 3 illustrates specific scenarios selected for Monte Carlo simulations of a power system
over a 24 h period after data reduction. The figure provides a unique insight into the probabilistic
analysis of the system, where the data have been refined to enhance simulation efficiency and
present an accurate depiction of potential scenarios throughout the specified period.
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Figure 3. Data-reduced scenarios for Monte Carlo simulations of a power system over 24 h for
(a) loading, (b) temperature, (c) solar irradiance, (d) price, and (e) wind speed.

5. Walrus Optimization Algorithm (WaOA)

WaOA is a bio-inspired algorithm that uses the behavior of walruses to search for
food. By randomly initializing the population of walruses and then moving them around
according to their fitness values, WaOA can effectively explore the search space and find
better solutions [55].
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5.1. Feeding Strategy

The position of each walrus is updated by moving towards the strongest walrus, which
is the best solution found so far. The mathematical representation of updating the walruses’
positions is structured around their feeding behavior, guided by the dominant member of
the group, as described by Equations (35) and (36).

xP1
i,j = xi,j + randi,j ·

(
SWj − Ii,j · xi,j

)
(35)

Xi =

{
XP1

i , FP1
i < Fi,

Xi, else,
(36)

In the first phase of WaOA, new positions xP1
i,j for each walrus ith are generated based

on the feeding strategy. The jth dimension of the new position is xP1
i,j . After evaluating the

function of objective FP1
i at this new location, xi,j represents the location of particle i in

dimension j. Meanwhile, Xi is a vector that encompasses the position across all dimensions.
randi,j introduces randomness by generating numbers between 0 and 1. The best solution
so far SWj acts as the strongest walrus that guides movement. To boost exploration, Ii,j are
integers of 1 or 2 chosen randomly. Ii,j = 2 causes broader jumps versus 1 for normal steps.
This expands the search space, helping to escape local optima and find new promising
areas. In summary, the first phase updates positions via a randomized process biased
towards the best solution so far. Occasional large steps enhance global exploration to avoid
getting trapped.

5.2. Migration

The position of each walrus is updated by migrating toward the position of another
randomly selected walrus. WaOA utilizes this migration procedure to steer the walruses
throughout the exploration of the search space, aiding them in identifying favorable regions
within it. This behavioral mechanism is formally expressed through Equations (37) and (38).

xP2
i,j =

xi,j + randi,j ·
(

xk,j − Ii,j · xi,j

)
, Fk < Fi,

xi,j + randi,j ·
(

xi,j − xk,j

)
, else,

(37)

Xi =

{
XP2

i , FP2
i < Fi,

Xi, else,
(38)

Here, xP2
i,j represents the newly generated position of the ith walrus derived from the

second phase. xP2
i,j signifies its position on the jth dimension. FP2

i corresponds to its objective
function value. Xk, where k ∈ {1, 2, . . . , N} and k ̸= i, represents the position of the
selected walrus to which the ith walrus is migrated. xk,j is the position of the kth walrus on
the jth dimension, and Fk indicates its objective function value.

5.3. Escaping Predators

WaOA uses the natural behavior of walruses to improve its ability to find food. By
simulating the way walruses shift their positions in response to threats, WaOA can more
effectively explore the search space and find better solutions. In the algorithm, a virtual
neighborhood is established around each walrus, where new positions are randomly
generated within this range using Equations (39) and (40). If the objective function improves
with this novel location, it substitutes the old one, as outlined in Equation (41). This
behavior simulation within WaOA enhances its efficacy in local search and adaptation to
the problem’s landscape.

xP3
i,j = xi,j +

(
lbt

local,j +
(

ubt
local,j − rand · lbt

local,j

))
(39)
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Local bounds :

 lbt
local,j =

lbj
t ,

ubt
local,j =

ubj
t ,

(40)

Xi =

{
XP3

i , FP3
i < Fi,

Xi, else,
(41)

In this context, xP3
i,j refers to the newly created position of the ith walrus using the

third phase. xP3
i,j designates its location on the jth dimension. FP3

i stands for its objective
function value. t represents the iteration cycle. lbj and ubj symbolize the lower and
upper limits of the jth variable, respectively. Additionally, lbt

local,j and ubt
local,j denote the

locally permitted lower and upper bounds for the jth variable, respectively, which simulate
localized exploration within the vicinity of potential solutions.

6. Improved Walrus Optimization Algorithm (I-WaOA)

I-WaOA employs three strategies. The initial approach uses the Cauchy mutation,
followed by the second method grounded in the fitness-distance balance (FDB) concept.
The final strategy is the Quasi-Oppositional-Based Learning (QOBL) method.

6.1. The Cauchy Mutation (CM)

CM is a powerful technique that can be used to improve the efficiency of algorithm
optimization. It has been shown to be effective in escaping from local optima and finding
better solutions to problems [29,56,57]. In the proposed algorithm, CM is used to generate
new solutions that are more likely to be better than the current solutions. The mathematical
representation of CM is as follows:

Xt+1
i = Xt

i + α ⊗ Cauchy (µ, σ)⊗
(
Xt

i − Xbest
)

(42)

F(x) =
1
π

arctan
(

2(x − µ)

σ

)
+

1
2

(43)

where ⊗ represent entrywise multiplication, α denotes to the step size, Cauchy (µ, σ) rep-
resent Cauchy distribution with mean µ and standard deviation σ, F(x) is cumulative
distribution function of the Cauchy distribution function, and σ and µ are the scale param-
eters and the location, with values selected to be 4.5 and 0.8, respectively [58].

6.2. The Fitness-Distance Balance (FDB)

One way to choose the ideal optimization solution from the pool of available options
is to use the FDB selection method. It works by measuring the value of the strength of each
candidate solution and its distance from the optimal solution. The difference between two
solutions is calculated by taking the absolute value. The FDB method then selects candidate
solutions with their highest fitness values and shortest distances to the optimal solution.
This helps the algorithm focus on candidate solutions that are good and search the search
area around the optimal solution [59–62].

DSi =

√(
x1

i − Best 1
)2

+
(

x2
i − Best 2

)2
+ · · ·+

(
xd

i − Best d
)2

(44)

Then, build the fitness and distance value vectors in the following manner:

DS = [DS1, DS2, · · · , DSn] (45)

F = [F1, F2, · · · , Fn] (46)



Sustainability 2023, 15, 16707 14 of 32

After that, the fitness and distance values may be adjusted in the manner shown below:

normDSi =
DSi − min(DS)

max(DS)− min(DS)
(47)

normFi =
Fi − min(F)

max(F)− min(F)
(48)

where the fitness vectors and distance’s minimum and maximum are represented by the
terms min and max, respectively. The FDB score is determined using the formula below:

FDBscore i = α ∗ (1 − normFi) + (1 − α) ∗ normDSi (49)

In which
α = 0.5 ∗

(
1 + t

Tmax

)
(50)

6.3. The Quasi-Opposite Based Learning (QOBL)

QOBL is a highly effective method designed to identify specific regions within a
population that are likely to yield optimal solutions. By strategically employing the QOBL
selection and promptly assigning it a collision count, the algorithm expedites the pro-
cess, leading to improved efficiency in the context of meta-heuristic algorithms [63–68].
The following is an illustration of QOBL.

for i = 1 : No. Populations
for j = 1 : No. Dimensions

xo
i,j = Lbj + Ubj − xi,j

Ci,j =
(

Lbj + Ubj

)
/2

if
(

xi,j < Ci,j

)
xqo

i,j = Ci,j +
(

xo
i,j − Ci,j

)
× rand

else
xqo

i,j = Ci,j +
(

Ci,j − xo
i,j

)
× rand

end
end

end

The Improved Walrus Optimization Algorithm represents an enhanced iteration of the
WaOA algorithm, integrating three key strategies to elevate its performance. The utilization
of Cauchy mutation, a more assertive operator than in the original WaOA, enables I-WaOA
to break free from local optima, fostering exploration across new regions of the search
space. The incorporation of Fitness-Distance Balance ensures a harmonized equilibrium
between exploration and exploitation capabilities, preventing entrapment in local optima
and facilitating the discovery of the global optimal solution. Additionally, the Quasi-
Oppositional-Based Learning method empowers I-WaOA to navigate uncharted territories
within the search space, contributing to its proficiency in locating the global optimal
solution. The I-WaOA algorithm was developed to examine the weaknesses of the basic
WaOA algorithm, such as its susceptibility to getting trapped in local optima and its
potential for performance improvement.

The I-WaOA for the optimal operation solution is shown in Figure 4. Figure 5 shows
the process for solving the stochastic OOP of a DN.
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Figure 5. Steps for addressing the integration of RESs with DSR and system uncertainties for
determining the optimal operation of a distribution grid.

7. Results of Simulation

The performance of the proposed Improved Walrus Optimization Algorithm (I-WaOA)
for solving the IEEE 118-bus system optimization problem was evaluated by comparing it
against several established optimization algorithms. These included Chernobyl disaster
optimizer (CDO) [69], Artificial hummingbird algorithm (AHA) [70], Dandelion Optimizer
(DO) [71], Harmony Search (HS) [72], Artificial rabbits optimization (ARO) [73], Sand Cat
swarm optimization (SCSO) [74], Zebra optimization algorithm (ZOA) [75], and standard
walruses behavior (WaOA) [55]. All the algorithms were executed using MATLAB R2019b
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on a computer with 6 GB of RAM and an Intel i7 CPU running at 2.5 GHz. The comparative
analysis aimed to assess the performance of the proposed I-WaOA against current state-of-the-
art optimization techniques. The different cases that were studied are presented here:

7.1. Testing the I-WaOA Technique on a Set of Commonly Used Test Functions

In this study, we employ the proposed I-WaOA method to evaluate 23 classic functions
shown in Tables 2–4 [76–78]. To ensure consistency, the parameters for all situations are set
based on Table 5, and the results are recorded after running the experiment 30 times.

Table 2. Unimodal functions.

Fmin Range Function

0 [−100, 100] f1(k) = ∑n
j=1 k2

j

0 [−10, 10] f2(k) = ∑n
j=1

∣∣∣kj

∣∣∣+ n
∏
j=1

∣∣∣kj

∣∣∣
0 [−100, 100] f3(k) = ∑n

j=1

(
∑

j
i−1 ki

)2

0 [−100, 100] f4(k) = maxj

∣∣∣kj

∣∣∣, 1 ≤ j ≤ n

0 [−30, 30] f5(k) = ∑n−1
j=1

[
100

(
kj+1 − k2

j

)2
+

(
kj − 1

)2
]

0 [−100, 100] f6(k) = ∑n−1
j=1

([
kj + 0.5

])2

0 [−1.28, 1.28] f7(k) = ∑n
j=1 jk4

j + random(0, 1)

Table 3. Multimodal functions.

Fmin Range Function

−12.56 [−500, 500] f8(k) = ∑n
j=1 −kj sin

(√∣∣∣kj

∣∣∣)
0 [−5.12, 5.12] f9(k) = ∑n

j=1

[
k2

j − 10 cos
(

2πkj

)
+ 10

]
0 [−32, 32] f10(k) = −20exp

(
−0.2

√
1
n ∑n

j=1 k2
j

)
− exp

(
1
n ∑n

j=1 cos
(

2πkj

)
+ 20 + e

)
0 [−600, 600] f11(k) = 1

4000 ∑n
j=1 k2

j −
n
∏
j=1

cos
(

k j√
j

)
+ 1

0
0

[−50, 50]
[−50, 50]

f12(k) = π
n

{
10sin(πz1) + ∑n−1

j=1

(
zj − 1

)2[
1 + 10sin2

(
πzj+1

)]
+ (zn − 1)2

}
+∑n

j=1 u
(

kj, 10, 100, 4
)

f13(k) = 0.1
{

sin2(3πk1) + ∑n
j=1

(
kj − 1

)2[
1 + sin2

(
3πkj + 1

)]
+ (kn − 1)2

[
1 + sin2(2πkn)

]}
+∑n

j=1 u
(

kj, 5, 100, 4
)

u(kj, v, s, h) =


s
(

kj − v
)h

kj > v
0 − v < kj < v

s
(
−kj − v

)h
kj < −v

Table 4. Fixed-dimension multimodal benchmark functions.

Fmin Range Function

1 [−65.536, 65.536] f14(k) =
(

1
500 + ∑25

i=1
1

i+∑2
j=1(k j−aji)

6

)−1

0.00030 [−5, 5] f15(k) = ∑11
j=1

[
aj −

k j

(
b2

j +bjk2

)
b2

j +bjk3+k4

]2
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Table 4. Cont.

Fmin Range Function

−1.0316 [−5, 5] f16(k) = 4k2
1 − 2.1k4

1 +
1
3 k6

1 + k1k2 − 4k2
2 + 4k4

2
0.398 [−5, 5] f17(k) =

(
k2 − 5.1

4π2 k2
1 +

5
π k1 − 6

)2
+ 10

(
1 − 1

8π

)
cos k1 + 10

3 [−2, 2]
f18(k) =

[
1 + (k1 + k2 + 1)2

(
19 − 14k1 + 3k2

1 − 14k2 + 6k1k2 + 3k2
2

]
∗[

30 + (2k1 − 3k2)
2
(

18 − 32k1 + 12k2
1 + 48k2 − 36k1k2 + 27k2

2

]
−3.86 [1, 3] f19(k) = −∑4

j=1 cj exp
(
−∑3

i=1 aji

(
ki − pji

)2
)

−3.32 [0, 1] f20(k) = −∑4
j=1 cj exp

(
−∑6

i=1 aji

(
ki − pji

)2
)

−10.153 [0, 10] f21(k) = −∑5
j=1

[(
k − aj

)(
k − aj

)T
+ cj

]−1

−10.402 [0, 10] f22(k) = −∑7
j=1

[(
k − aj

)(
k − aj

)T
+ cj

]−1

−10.536 [0, 10] f23(k) = −∑10
j=1

[(
k − aj

)(
k − aj

)T
+ cj

]−1

Table 5. The parameters selected for the optimization algorithms.

Algorithm Parameter Value

SCSO [74]

Phases control range (R)
Sensitivity range (rg)

Populations
Maximum iteration

[−2rg, 2rg]
[2, 0]

30
300

AHA [70]
Migration coefficient

Populations
Maximum iteration

2n
30

300

DO [71]

α
k

Populations
Maximum iteration

[0, 1]
[0, 1]

30
300

CDO [69]
r

Populations
Maximum iteration

[0, 1]
30

300

HS [72]

HMCR
PAR

Populations
Maximum iteration

0.95
0.45
30

300

ZOA [75] Populations
Maximum iteration

30
300

ARO [73] Populations
Maximum iteration

30
300

WaOA [55] Populations
Maximum iteration

30
300

I-WaOA Populations
Maximum iteration

30
300

7.1.1. Statistical Results Analysis

This section presents a comparative analysis of the proposed I-WaOA with other opti-
mization methods, including SCSO, AHA, DO, HS, CDO, ZOA, ARO, and the conventional
WaOA. Statistical results, as shown in Table 6, encompass the mean, worst, SD, and best
among all algorithm approaches.
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Table 6. Statistical findings of various optimization algorithms on the standard functions.

Fun. I-WaOA WaOA SCSO AHA DO HS CDO ZOA ARO

F1
Best 0 1.69 × 10−172 6.03 × 10−74 4.44 × 10−91 0.000265 2519.226 5.30 × 10−85 1.41 × 10−152 7.05 × 10−37

Average 0 2.66 × 10−168 3.76 × 10−65 2.46 × 10−82 0.000975 3492.24 4.54 × 10−80 1.53 × 10−148 8.87 × 10−31

Worst 0 2.46 × 10−167 2.81 × 10−64 1.83 × 10−81 0.001716 4462.583 2.87 × 10−79 5.97 × 10−148 8.86 × 10−30

SD 0 0 9.05 × 10−65 5.88 × 10−82 0.000597 566.3726 9.20 × 10−80 2.39 × 10−148 2.80 × 10−30

F2
Best 2.64 × 10−196 4.70 × 10−90 2.92 × 10−40 8.08 × 10−50 0.007229 10.28939 7.61 × 10−43 3.37 × 10−81 3.69 × 10−22

Average 1.36 × 10−189 8.26 × 10−86 3.26 × 10−36 1.18 × 10−42 0.013546 13.19099 4.73 × 10−41 6.18 × 10−78 1.08 × 10−18

Worst 2.70 × 10−188 6.79 × 10−85 2.40 × 10−35 1.32 × 10−41 0.020851 16.2306 3.79 × 10−40 7.16 × 10−77 9.32 × 10−18

SD 0 1.55 × 10−85 5.95 × 10−36 3.63 × 10−42 0.003821 1.883619 9.14 × 10−41 1.70 × 10−77 2.40 × 10−18

F3
Best 3.16 × 10−317 1.01 × 10−133 2.68 × 10−65 1.72 × 10−92 19.86247 21433.18 1.75 × 10−71 4.66 × 10−104 1.62 × 10−30

Average 2.20 × 10−304 6.13 × 10−123 4.46 × 10−59 2.10 × 10−73 126.9791 35753.52 5.28 × 10−59 1.97 × 10−88 1.98 × 10−24

Worst 2.00 × 10−303 5.76 × 10−122 4.39 × 10−58 2.10 × 10−72 283.6619 49787.79 5.28 × 10−58 1.97 × 10−87 1.83 × 10−23

SD 0 1.81 × 10−122 1.39 × 10−58 6.63 × 10−73 85.14181 8923.102 1.67 × 10−58 6.22 × 10−88 5.73 × 10−24

F4
Best 3.27 × 10−176 1.51 × 10−82 5.90 × 10−35 1.07 × 10−43 0.820293 34.00865 6.41 × 10−40 6.48 × 10−71 2.28 × 10−16

Average 1.05 × 10−168 1.40 × 10−79 1.20 × 10−29 4.83 × 10−39 3.545085 41.78794 5.54 × 10−38 1.14 × 10−68 9.42 × 10−14

Worst 9.88 × 10−168 1.34 × 10−78 1.19 × 10−28 3.04 × 10−38 6.640496 45.66198 2.52 × 10−37 8.04 × 10−68 7.15 × 10−13

SD 0 4.22 × 10−79 3.75 × 10−29 9.54 × 10−39 1.935587 3.361813 7.92 × 10−38 2.58 × 10−68 2.22 × 10−13

F5
Best 0 0 2.72 × 101 2.66 × 101 25.51494 1565934 2.78 × 101 2.83 × 101 1.76 × 10−1

Average 0 0 2.84 × 101 2.74 × 101 29.92931 2104121 2.82 × 101 2.86 × 101 1.50
Worst 0 0 2.88 × 101 2.87 × 101 45.20891 3043646 2.87 × 101 2.89 × 101 6.61
SD 0 0 5.40 × 10−1 6.14 × 10−1 5.543385 420298.4 2.84 × 10−1 1.82 × 10−1 2.42

F6
Best 0 0 1.49 3.43 × 10−2 0.000109 2850.629 7.50 2.44 2.07 × 10−3

Average 0 0 2.19 3.26 × 10−1 0.000235 3806.061 7.50 2.99 1.85 × 10−2

Worst 0 0 3.07 6.58 × 10−1 0.000602 4724.147 7.50 3.72 4.01 × 10−2

SD 0 0 6.00 2.37 × 10−1 0.000138 607.6398 0 4.79 × 10−1 1.27 × 10−2

F7
Best 9.92 × 10−7 2.86 × 10−6 8.83 × 10−7 9.48 × 10−5 0.018263 0.925058 9.82 × 10−6 2.62 × 10−5 2.06 × 10−4

Average 5.88 × 10−5 6.65 × 10−5 5.40 × 10−4 4.65 × 10−4 0.04415 1.261838 2.01 × 10−4 1.39 × 10−4 9.75 × 10−4

Worst 1.53 × 10−4 1.86 × 10−4 6.53 × 10−3 1.16 × 10−3 0.098175 1.897037 4.58 × 10−4 3.49 × 10−4 1.92 × 10−3

SD 4.31 × 10−5 5.29 × 10−5 1.44 × 10−3 3.00 × 10−4 0.024073 0.268522 1.51 × 10−4 9.20 × 10−5 4.80 × 10−4

F8
Best −1.26 × 10+4 −9.02 × 10+3 −7.41 × 10+3 −1.12 × 104 −8685.03 −11610.1 −4.72 × 103 −7.26 × 103 −1.05 × 104

Average −1.26 × 104 −8.34 × 103 −6.43 × 103 −1.03 × 104 −7626.41 −11407.5 −3.71 × 103 −6.59 × 103 −9.49 × 103

Worst −1.26 × 104 −7.52 × 103 −4.99 × 103 −8.99 × 103 −6129.31 −11106.4 −2.86 × 103 −5.85 × 103 −8.00 × 103

SD 7.52 × 10−10 5.03 × 102 8.17 × 102 5.93 × 102 765.964 144.0269 5.46 × 102 5.75 × 102 6.43 × 102

F9
Best 0 0 0 0 21.06603 50.57476 0 0 0
Average 0 0 0 0 40.21929 60.92757 9.60 × 101 0 0
Worst 0 0 0 0 59.40942 71.63848 2.58 × 102 0 0
SD 0 0 0 0 15.38431 6.732379 1.24 × 102 0 0

F10
Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.003418 9.380315 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16

Average 8.88 × 10−16 2.66 × 10−15 8.88 × 10−16 8.88 × 10−16 0.006712 11.32595 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16

Worst 8.88 × 10−16 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 0.00951 12.76612 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16

SD 0 1.87 × 10−15 0 0 0.00188 0.95227 0 0 0

F11
Best 0 0 0 0 0.000995 27.86147 0 0 0
Average 0 0 0 0 0.016851 32.78121 1.61 × 10−3 0 0
Worst 0 0 0 0 0.044359 47.68918 1.61 × 10−2 0 0
SD 0 0 0 0 0.013777 6.341414 5.08 × 10−3 0 0

F12
Best 1.57 × 10−32 1.57 × 10−32 4.72 × 10−2 2.13 × 10−3 6.11 × 10−6 176966.7 1.11 1.38 × 10−1 2.74 × 10−4

Average 1.57 × 10−32 1.57 × 10−32 1.27 × 10−1 1.22 × 10−2 0.324104 352773.6 1.44 2.38 × 10−1 2.23 × 10−3

Worst 1.57 × 10−32 1.57 × 10−32 3.54 × 10−1 2.28 × 10−2 2.799928 621526.7 1.67 3.64 × 10−1 8.00 × 10−3

SD 2.88 × 10−48 2.88 × 10−48 8.71 × 10−2 6.39 × 10−3 0.876357 142951.5 2.90 × 10−01 7.64 × 10−2 2.80 × 10−3

F13
Best 1.35 × 10−32 1.35 × 10−32 1.73 6.67 × 10−1 4.38 × 10−5 1360677 4.87 × 10−1 1.83 9.98 × 10−4

Average 1.35 × 10−32 1.35 × 10−32 2.29 2.20 0.006739 3046984 6.20 × 10−1 2.25 2.60 × 10−2

Worst 1.35 × 10−32 1.35 × 10−32 2.79 2.78 0.044155 6761426 7.69 × 10−1 2.71 1.42 × 10−1

SD 2.88 × 10−48 2.88 × 10−48 3.67 × 10−1 5.95 × 10−1 0.013908 1730831 1.01 × 10−1 2.84 × 10−1 4.17 × 10−2

F14
Best 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 0.998004 2.02 9.98 × 10−1 9.98 × 10−1

Average 9.98 × 10−1 9.98 × 10−1 2.97 1.20 1.196809 0.998012 1.23 × 101 3.27 1.20
Worst 9.98 × 10−1 9.98 × 10−1 1.08 × 10−1 2.98 1.992031 0.998071 1.83 × 101 6.90 2.98
SD 7.40 × 10−17 0 2.91 6.27 × 10−1 0.419119 2.11 × 10−5 4.35 2.23 6.27 × 10−1
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Table 6. Cont.

F15
Best 3.07 × 10−4 3.07 × 10−4 3.08 × 10−4 3.07 × 10−4 3.14 × 10−4 0.000779 3.27 × 10−4 3.08 × 10−4 3.08 × 10−4

Average 3.07 × 10−4 3.07 × 10−4 5.62 × 10−4 3.08 × 10−4 0.002615 0.001969 3.57 × 10−4 2.44 × 10−3 4.04 × 10−4

Worst 3.07 × 10−4 3.07 × 10−4 1.38 × 10−3 3.10 × 10−4 0.020363 0.002977 4.08 × 10−4 2.11 × 10−2 7.7 × 10−4

SD 1.45 × 10−15 1.60 × 10−19 4.04 × 10−4 8.01 × 10−7 0.006241 8.55 × 10−4 2.88 × 10−5 6.55 × 10−3 1.56 × 10−4

F16
Best −1.030 −1.030 −1.030 −1.030 −1.030 −1.03162 −1.030 −1.030 −1.030
Average −1.030 −1.030 −1.030 −1.030 −1.03163 −1.03141 −1.030 −1.030 −1.030
Worst −1.030 −1.030 −1.030 −1.030 −1.03163 −1.03106 −1 −1.030 −1.030
SD 0 7.40 × 10−17 1.02 × 10−9 7.35 × 10−15 1.12 × 10−11 2.02 × 10−04 1.12 × 10−2 9.95 × 10−10 5.07 × 10−16

F17

Best 3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1 0.397918 3.9888 ×

10−1
3.9888 ×
10−1

3.9888 ×
10−1

Average 3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1 0.397887 0.398031 3.9888 ×

10−1
3.9888 ×
10−1

3.9888 ×
10−1

Worst 3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1

3.9888 ×
10−1 0.397887 0.398279 4.00 × 10−1 3.9888 ×

10−1
3.9888 ×
10−1

SD 0 0 6.43 × 10−8 0 2.12 × 10−10 1.05 × 10−4 5.27 × 10−4 1.62 × 10−8 0

F18
Best 3 3 3 3 3 3.000039 3 3 3
Average 3 3 3 3 3 3.00531 3.67 × 101 3 3
Worst 3 3 3 3 3 3.017819 8.41 × 101 3 3
SD 4.44 × 10−16 4.91 × 10−16 3.81 × 10−5 1.22 × 10−15 8.17 × 10−8 5.75 × 10−3 3.54 × 101 1.72 × 10−5 1.48 × 10−16

F19
Best −3.86 −3.86 −3.86 −3.86 −3.86 −3.86278 −3.86 −3.86 −3.86
Average −3.86 −3.86 −3.86 −3.86 −3.86278 −3.86274 −3.86 −3.86 −3.86
Worst −3.86 −3.86 −3.85 −3.86 −3.86278 −3.86265 −3.86 −3.86 −3.86
SD 9.36 × 10−16 8.63 × 10−16 2.49 × 10−3 7.40 × 10−16 1.41 × 10−7 4.33 × 10−5 1.81 × 10−3 1.32 × 10−3 6.94 × 10−16

F20
Best −3.32 −3.32 −3.32 −3.32 −3.32 −3.32197 −3.27 −3.32 −3.32
Average −3.27 −3.27 −3.24 −3.30 −3.28631 −3.27421 −3.19 −3.32 −3.27
Worst −3.20 −3.20 −3.02 −3.20 −3.20292 −3.20242 −3.08 −3.31 −3.20
SD 6.14 × 10−2 6.14 × 10−2 9.91 × 10−2 5.01 × 10−2 5.75 × 10−2 6.15 × 10−2 7.10 × 10−2 4.96 × 10−3 6.14 × 10−2

F21
Best −1.02 × 101 −1.02 × 101 −1.02 × 101 −1.02 × 101 −1.02 × 101 −10.15 −6.7 −1.02 × 101 −1.02 × 101

Average −1.02 × 101 −1.02 × 101 −5.59 −1.02 × 101 −4.91872 −4.90209 −4.99 −8.89 −9.40
Worst −1.02 × 101 −1.02 × 101 −2.63 −1.01 × 101 −2.63047 −2.62769 −3.63 −2.63 −2.63
SD 1.03 × 10−15 1.32 × 10−15 2.60 6.52 × 10−3 3.61 3.61 9.50 × 10−1 2.72 2.38

F22
Best −1.04 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101 −10.3979 −7.79 −1.04 × 101 −1.04 × 101

Average −1.04 × 101 −9.34 −5.29 −9.87 −5.91376 −6.21638 −5.47 −9.87 −8.97
Worst −1.04 × 101 −5.09 −1.84 −5.09 −2.75193 −2.7657 −2.26 −5.09 −2.77
SD 1.78 × 10−15 2.24 2.07 1.68 3.87 3.58 1.89 1.68 3.03

F23
Best −1.050 × 101 −1.050 × 101 −1.050 × 101 −1.050 × 101 −1.050 × 101 −10.5328 −8.36 −1.050 × 101 −1.050 × 101

Average −1.050 × 101 −9.45 −8.24 −1.050 × 101 −7.2443 −7.45963 −6.05 −8.91 −9.87

Worst −1.050 × 101 −5.13 −3.84 −1.050 ×
10+1 −1.85948 −2.42579 −3.22 −5.13 −3.84

SD 1.78 × 10−15 2.28 2.98 5.37 × 10−6 3.64 3.95 1.65 2.61 2.12

Table 6 shows that for the majority of the functions under study, the suggested I-WaOA
optimizer performs better than the others in terms of worst, best, and mean values. This
means that the I-WaOA optimizer was able to find better solutions on average, as well as
the best and worst solutions, than the other optimizers. All algorithms have a community
size of 30 and a maximum iteration of 300.

7.1.2. Convergence Curve Analysis

The I-WaOA algorithm’s convergence graphs and those of other previously published
techniques, including AHA, SCSO, DO, HS, CDO, ZOA, ARO, and standard WaOA, can be
observed in Figure 6.

The proposed I-WaOA algorithm was shown to be more accurate and faster than other
algorithms based on convergence curves. The proposed modifications to the WaOA algorithm
enhance both the exploration and exploitation phases of the algorithm, which allows it to
converge to an optimal solution more quickly than the traditional WaOA algorithm.
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7.1.3. Analysis Using Boxplots

Boxplot graphs effectively display data distribution patterns in four equal groups,
enabling examination of data distribution features. Figure 7 shows the boxplots for the
proposed I-WaOA method and other published optimization techniques. The boxplots for
I-WaOA visibly display a smaller spread compared to the other optimization techniques.
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7.2. Applying the Suggested Approach to Solve the IEEE 118 Distribution Network’s Optimal
Operating Problem

In this section, we implement the I-WaOA approach to address the OOP and ascertain
the optimal placement of three systems composed of one PV unit rating and one WT in each
system within the IEEE 118 distribution network. The configuration, depicted in Figure 8,
encompasses 118 buses and 117 branches. Pertinent data are provided in [79]. Meteorologi-
cal information, including wind speed and solar radiation, along with temperature data, is
sourced from [7,80], respectively. To verify the suggested I-WaOA algorithm’s effectiveness,
we conduct a comparative analysis between its results and those obtained from the original
method. For a meaningful and unbiased comparison, the population size and maximum
iteration count of the suggested methods are fixed at 25 and 60, respectively. Table 7 lists
the operational restrictions together with the RESs price variables.
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Table 7. The limitations and the coefficients of expenses.

Parameter Value

WT cost [81]
The investment cost (UWT) 1400 USD/kW

The maintenance and operation costs (UO&M
WT ) 0.01 USD/kWh

The interest rate (βWT) 10%
The lifetime (NPWT) 20

PV cost [82]
The investment cost (UPV ) 770 USD/kW

The maintenance and operation costs (UO&M
PV ) 0.01 USD/kWh

The interest rate (βPV ) 10%
The lifetime (NPPV ) 20
Cost coefficients [83]

The energy loss cost (ULoss ) 0.06 USD/kWh
Constraints of grid and generators

Voltage boundaries [84] 0.9 p.u ≤ V ≤ 1.1 p.u
Area sizes 0 ≤ area ≤ 89057 m2

WT sizes 0 ≤ WT ≤ 90 turbines
Power factor of the PV 1
Power factor of the WT 0.7 ≤ PF ≤ 1

The methodology presented in Section 4 took into account a variety of uncertainties,
encompassing variations in electricity price, wind speed, temperature, solar irradiation, and
load. Figure 9 shows the anticipated day-ahead load demand, market energy purchasing
prices, wind speed, irradiance, and temperature patterns.

The results obtained from conducting case studies on the 118 bus system are presented
in Table 8. This table provides information about the impact of integrating PVs and WTs
both with and without Demand Side Response on the system. Overall, it offers insights
into how PVs, WTs, and DSR can enhance the operation of distribution grids that utilize
energy sources.

Table 8. The IEEE 118 distribution network’s energy management results.

Item Without RESs and DSR
With RESs Only With RESs and DSR

WAOA I-WAOA WAOA I-WAOA

Energy losses (kWh) 1.9613 × 104 1.8894 × 104 1.4501 × 104 7.8651 × 103 7.8020 × 103

Purchased power from
the grid (kW) 4.5347 × 105 1.2795 × 105 1.3920 × 105 3.8089 × 104 5.8284 × 104

Optimal location of
systems

-
2 104 38 66
67 68 36 31
7 35 69 26

Optimal area of the solar
modules (m2)

-
3.2911 × 103 4.8552 × 103 5.4034 × 104 1.1217 × 104

7.0174 × 103 9.9422 × 103 7.4928 × 103 7.7015 × 104

4.2454 × 103 5.1878 × 103 1.5157 × 104 4242

Optimal-size WTs (kW) -
1000 8500 2000 6250
9250 6500 5750 1500

10250 4250 2250 250

Optimal PF of WTs -
0.8850 0.8378 0.7524 0.7566
0.8477 0.8428 0.7000 0.7351
0.8271 0.7156 0.7000 0.7113

Total annual energy loss
cost (USD) 4.2952 × 105 4.1378 × 105 3.1758 × 105 1.7225 × 105 1.7086 × 105

Total annual purchased
energy cost (USD) 3.8377 × 107 1.2646 × 107 1.3344 × 107 1.8089 × 103 4.6348 × 104

Total annual RESs cost
(USD) - 4.7564 × 106 4.5683 × 106 3.4428 × 106 3.2565 × 106

TVD(p.u) 98.6633 66.1004 49.9790 35.7749 36.0990

TVSI(p.u) 2.4440 × 103 2.5926 × 103 2.6965 × 103 2.7358 × 103 2.7245 × 103

Total annual cost (USD) 3.8806 × 107 1.7817 × 107 1.8230 × 107 3.6169 × 106 3.4737 × 106

Best MOF - 0.3971 0.3616 0.1373 0.1363
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Figure 9. Displays of (a) the loading, (b) the solar irradiance, (c) temperature, (d) wind speed,
and (e) market price for purchasing energy.

The primary goal of this study was to optimize expenses while enhancing the performance
of the system by incorporating renewable energy resources and Demand Side Response into an
electrical DN. The findings indicated that the proposed I-WaOA algorithm proved effective in
reducing costs, improving voltage stability, and minimizing voltage deviations. In the scenario
where no RESs were integrated into the DN, the total annual cost amounted to 3.8806 × 107

USD. However, by using the suggested I-WaOA algorithm and strategically allocating RES, this
cost is significantly decreased to 1.8230 × 107 USD, resulting in a reduction in voltage deviations
from 98.6633 per unit (p.u.) to 49.9790 p.u. Moreover, there was an enhancement in Voltage
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Stability Index, increasing from 2.4440 × 103 p.u. to 2.6965 × 103 p.u. The best places for the
systems in the DN are 35, 68, and 104, respectively. The WTs ratings are 4250 kW, 6500 kW, and
8500 kW, respectively; in contrast, the solar modules’ comparable areas are 5.1878 × 103 m2,
9.9422 × 103 m2, and 4.8552 × 103 m2.

In a case involving the integration of RESs with DSR, there was a reduction in total
annual costs to 3.4737 × 106 USD along with a decrease in voltage deviations to 36.0990 p.u.
while witnessing an increase in VSI to 2.7245 × 103 p.u. The best places for the systems in
the DN are 26, 31, and 66, respectively. The WTs ratings are 250 kW, 1500 kW, and 6250 kW,
respectively; in contrast, the solar modules’ comparable areas are 4242 m2, 7.7015 × 104 m2,
and 1.1217 × 104 m2.

The study of the most efficient integration of RESs with DSR in the IEEE 118-bus
distribution network has resulted in the presentation of voltage profiles for all cases.
Figures 10–12 provide a detailed look at the impact of integrating these systems on the
overall voltage performance of the DN. The figures allow for a comparison of the voltage
profiles before and after integration, providing insights into changes in voltage stability
and overall system performance.
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Figure 12. Voltage results after integration of RESs with DSR.

Figures 10–12 demonstrate that integrating various technologies and system con-
figurations can significantly impact voltage stability and overall distribution network
performance. The observed improvements in voltage profiles provide valuable insights
into the effectiveness of integrated approaches and can help identify the most suitable case
for specific network conditions.

The power produced by the PV units and WT is depicted in Figure 13 in the case of
only RESs and Figure 14 in the case of RESs with DSR.
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The variation in power output for both WT and PV units is visually demonstrated in
Figures 13 and 14. These figures highlight how the power yields of these units experience
continuous fluctuations due to variations in wind speed and irradiance.

Figure 15 visually demonstrates the convergence of the IEEE 118-bus system.
This figure showcases the convergence curve for cases: (a) after integrating RESs only
and (b) after integrating RESs with DSR.
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Figure 15. Convergence curve of the IEEE 118-bus system benchmark cases: (a) after integration of
RESs only and (b) after integration of RESs with DSR.

The outcomes presented in Figure 15 demonstrate that the I-WaOA model exhibits
a faster convergence rate and attains higher solution quality compared to the WaOA
model. Specifically, for the scenarios involving RESs only and RESs with DSR, the I-WaOA
algorithm converged to solutions of 0.3616 and 0.1363, respectively. Conversely, the same
scenarios led the WaOA algorithm to converge at 0.3971 and 0.1373, respectively. In terms
of solution quality, the I-WaOA algorithm yielded lower objective function values for all
two scenarios. The objective function value serves as an indicator of how effectively the
solution aligns with the optimization criteria, with a lower value signifying a superior
solution. It should be highlighted here that the initial iteration process and the results of
other algorithms are better. However, the result of the proposed algorithm is the best at the
end of the iteration process compared to the other techniques. This is due to the Cauchy
mutation, which increases the exploration process of the I-WaOA during the initial iteration
process. Furthermore, these algorithms suffer from premature convergence.

8. Conclusions

This research offers an Improved Walrus Optimization Algorithm (I-WaOA) to solve the
challenging Optimal Operation Problem (OOP) in distribution networks with high penetration
of renewable generation. The uncertainties in load demand, wind and solar power generation,
and energy prices pose significant challenges for optimal planning and operation. To tackle
this, the I-WaOA incorporates the Quasi-Oppositional-Based Learning, the Cauchy mutation,
and Fitness-Distance balance schemes to enhance optimization performance. The proposed
approach is demonstrated on the IEEE 118-bus distribution network by optimizing three key
objectives: minimizing the total system cost, reducing voltage deviations, and improving voltage
stability under uncertainties. The optimal allocation and sizing of wind, solar PV, and DSR
are simultaneously determined as part of the OOP solution. Monte Carlo simulations and
probability density functions are used to model uncertainties in wind speed, load, solar irradi-
ance, solar energy prices, and temperature. Results show that integrating optimally placed and
sized renewable generation with DSR leads to significant improvements in all three objectives
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compared to the base case, despite uncertainties. The I-WaOA algorithm outperforms the
classical Walrus Optimization Algorithm approach for the complex Optimal Operation Problem.
This underscores the advantages of the proposed modifications in handling increased variability
and optimizing for high renewable penetration. In conclusion, the paper provides an effective
framework for stochastic optimal operation solutions, considering renewable uncertainties.
The analysis against the original WaOA method highlights I-WaOA’s superior performance, re-
ducing total costs from 3.8377 × 107 USD to 3.4737 × 106 USD, decreasing TVD from 98.6633 p.u.
to 36.0990 p.u., and increasing TVSI from 2.444 × 103 p.u. to 2.7245 × 103 p.u. compared to the
base case. The Improved Walrus Optimization Algorithm can handle the growing complexity
of modern power grids with large-scale renewable integration.
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