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Abstract: Wuhan experienced a noticeable enhancement in air quality from January to April 2020
due to the epidemic lockdown. The improvement was a combined result of anthropogenic emission
reduction and meteorological variability. Environmental policymakers are often concerned about
the impact of industrial production and human activities on improvements in environmental sus-
tainability. This study split and quantified the impact of anthropogenic emissions on the pollution
level changes of six major air pollutants (CO, SO2, NO2, O3, PM10, and PM2.5) for the first half year
of 2019 to 2021 in Wuhan with an improved meteorological normalization algorithm. The results
show sharp decreases in anthropogenic pollutant loads during 2020, except for O3, with the ranking
of NO2 > PM10 > SO2 > CO > PM2.5. The decrease in NO2 emissions caused by humans was more
than 50% compared to 2019. The low NO2 led to a decrease in O3 consumption, resulting in high
O3 concentrations from February to April 2020 during the city lockdown. Moreover, except O3,
the impact of anthropogenic and weather influences on air pollution exhibited opposing effects;
that is, meteorology tended to aggravate pollution, while human intervention was conducive to
improving air quality, and human factors played the dominant role. Of all six pollutants, O3 is the
one that is relatively least subject to anthropogenic emissions. Although concentrations of SO2, NO2,
PM10, and PM2.5 rebounded in 2021, none of them were able to return to their pre-lockdown levels,
suggesting the epidemic’s continuous inhibition of people’s activities. Compared with 2019 and 2021,
the atmospheric oxidation capacity and secondary aerosol formation showed an overall decreasing
trend during 2020. This study provides a reference for assessing the effectiveness of anthropogenic
emission reduction policies.

Keywords: pollution control; urban environment; human factors; anthropogenic emission;
environmental sustainability

1. Introduction

With the fast progress of industry and urbanization, substantial quantities of human-
made pollutants, such as CO, SO2, NO2, O3, and PM, have led to the deterioration of air
quality in China, causing great harm to public health and, hence, arousing wide concern
for sustainable development [1]. Wuhan is one of the most populous cities in central China,
where air quality is affected by a combination of natural (e.g., terrain and meteorology)
and man-made factors (e.g., industrial and vehicle emissions) [2,3]. When examining
trends in different pollutant species, it could prove difficult to distinguish whether a
change in pollutant concentration is due to weather or a modification in emission source.
The observed alterations in pollutants might be influenced by meteorological fluctuations
rather than emission-induced disturbances, which can result in an inaccurate evaluation
of the efficacy of emission reduction policy for urban sustainability if meteorology is not
regulated or considered [4,5].
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From 2019 to 2021, Wuhan experienced a pre-epidemic, an epidemic lockdown, and a
post-epidemic recovery period. This uncommon episode became an extreme intervention
incident, presenting a valuable opportunity to gain a deeper understanding of the anthro-
pogenic effects governing pollutant trends and urban environmental change in Wuhan [6–9].
Lu et al. [10] employed WRF-CMAQ to model the impact of both meteorological factors
and human activities on the levels of PM2.5 in various cities throughout China from January
to March 2020. They highlighted that a combination of better weather conditions and a
significant decrease in pollutant emissions contributed to the reduction of PM2.5 levels in
Wuhan, which was higher than the national average. However, Zhou et al. [11] argued that
the decline in simulated PM2.5 levels in Wuhan during the epidemic was attributed to the
decrease in anthropogenic emissions, whereas meteorology aggravated PM2.5 pollution.
The contradictory simulations can be attributed to the high level of uncertainty in the
meteorological initial fields and emission inventories used in the models. To validate these
simulations, it is also necessary to verify them by observations. In addition to model-based
research, Mateusz et al. [12] explored the use of big data-driven machine learning tech-
niques for analyzing the pandemic’s spatiotemporal patterns of air pollution in Poland and
revealed a distinct clustering pattern of PM10.

Meteorological normalization provides a new perspective to quantifying anthropogenic
effects on sustainable management of air quality based on observations rather than models
and is used to explain the cause of regional haze [5,13]. In general, meteorological normaliza-
tion employs a machine learning algorithm (MLA) to predict pollutant concentrations under
a normalized meteorological condition, and their changes are regarded as anthropogenic
contributions. Qu et al. [14] obtained a meteorologically normalized distribution of PM2.5
based on an MLA of a boosted regression tree. Their results show that the adoption of
policies aimed at reducing emissions between 2014 and 2019 led to a 60% reduction in the
yearly average concentration of anthropogenic PM2.5 in the Beijing–Tianjin–Hebei area [15].
Huang et al. [8] investigated the variations in the chemical constituents of PM2.5 on an
hourly basis in Wuhan during the first month of lockdown and compared the results to
the same timeframe in 2019, using a meteorological normalization algorithm proposed by
Grange and Carslaw [5] and positive definite factorization theories. Their findings show
that the decrease in anthropogenic emissions accounted for 92% of the overall reduction
in PM2.5 levels during the initial month of the lockdown, with meteorology contributing
the remaining 8%. They also discovered that the considerable rise in atmospheric oxidation
rates, which was responsible for the drop in primary aerosol concentrations, was also re-
sponsible for an increase in secondary aerosol formation. This partly explains why regional
haze pollution events still occurred during the lockdown period [9].

The aforementioned studies have made significant strides in evaluating the effects of
anthropogenic emission reductions on the enhancement of air quality during the lockdown.
The epidemic has changed the behavior patterns of the public [16,17]. Therefore, policy-
makers are concerned about the impact of anthropogenic activity in the post-lockdown
period, an aspect that has not been adequately addressed in current research. In addition,
most studies focus on PM2.5, while other pollutants, such as O3 and NO2, have not been
sufficiently analyzed. To this end, based on long-term observation, the present study
examines the contributions of anthropogenic and meteorological factors to the levels of six
major pollutants in Wuhan before, during, and after the lockdown period (from January to
May 2019, 2020, and 2021) by applying the meteorological normalization with an MLA of a
parameter self-optimized boosted regression tree. Moreover, the atmospheric oxidation
capacity and secondary aerosol generation are also investigated to reveal the association
between primary emissions and secondary pollution. This investigation could serve as
a point of reference for governmental organizations to conduct a more comprehensive
evaluation of the efficacy of pollution control policies.
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2. Materials and Methods
2.1. Data

Wuhan, situated between 113◦41′–115◦05′ E and 29◦58′–31◦22′ N, is the largest city
in Central China. As of 2019, the city boasts a permanent population of 11.212 million.
The landforms in Wuhan are characterized by platforms and plains with low elevations
and gentle slopes (Figure 1). The Yangtze River, the third-largest river in the world,
flows through the city. Wuhan has the largest freshwater area in China, accounting for
approximately a quarter of its total area. The city has a humid subtropical monsoon
climate with ample sunshine. The annual average temperature ranges from approximately
15.8 ◦C to 17.5 ◦C, and the annual rainfall exceeds 1150 mm. The annual average wind
speed in Wuhan is about 2.7 m/s. During summer, southerly and southeasterly winds
prevail, while northerly and northeasterly winds dominate in winter [1].
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Figure 1. The map of the sampling location (the red cross) in Wuhan, Hubei Province, China. Wuhan
is a 10-million-population industrial city in central China, where ambient air quality is strongly
influenced by meteorological variations and anthropogenic emissions.

The data utilized in this study was gathered from an observatory situated on the
rooftop of the Hubei Ecological and Environmental Monitoring Center in Wuhan, Hubei
Province of China, positioned approximately 16 m above the ground level (114.37◦ E,
30.53◦ N). The air quality here is mainly affected by emissions from industry, traffic,
construction, etc. Various devices are used for sampling different data. Specifically,
CO concentrations were obtained by a correlated infrared absorption analyzer (TAPI
300E, Teledyne API, San Diego, CA, USA). A Casella ML9841B chemiluminescent trace
NO-NO2-NOx analyzer (Casella Measurement Ltd., Bedford, UK) was utilized to measure
NO2 levels. O3 and SO2 levels were measured using a TEI 49i UV photometric ozone
analyzer (Thermo Fisher Scientific, Franklin, MA, USA) and a Casella ML9850B pulsed
UV fluorescence SO2 analyzer (Casella Measurement Ltd., Bedford, UK), respectively.
An oscillating balance analyzer with two separate inlets (model TH-2000Z, Wuhan Tian-
hong Environmental Protection Industry Co., Ltd., Wuhan, China) was used to measure
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PM10 and PM2.5 levels. The SO4
2− and NO3

− ions used in the secondary aerosol genera-
tion analysis were obtained from a MARGA (Monitor for AeRosols and GAses) online ion
analyzer (model: ADI 2080, Metrohm, Auckland, New Zealand) developed by the Energy
Research Center in the Netherlands. In addition to the pollutants, various meteorological
parameters, including wind speed (WS, m/s), wind direction (WD, ◦), temperature (T, ◦C),
relative humidity (RH, %), and atmospheric pressure (P, hPa), were concurrently obtained
through on-site measurements. The collection equipment consisted of temperature and
humidity sensors, rain gauges, wind speed sensors, wind direction sensors, and other
devices. The Hubei Ecological Environment Monitoring Center Station was responsible
for data collection and preliminary quality control. Only data that satisfied the quality
standards stipulated by the local environmental agency were utilized in this study.

A total of 10,895 samples from 1 January to 31 May for three consecutive years (2019,
2020, and 2021) were collected finally. Each sample encompassed 13 observed parameters,
with a temporal resolution of 1 h. These parameters included mass concentrations of six
pollutants (CO, SO2, NO2, O3, PM2.5, and PM10), five meteorological parameters (WS, WD,
T, RH, and P), as well as two secondary inorganic water-soluble ions (SO4

2− and NO3
−,

µg/m3). We used three times standard deviation as a constraint to filter abnormally large
data. Then, for the original missing or filtered missing records, the average strategy with a
3-day sliding window was applied, resulting in a record missing rate of less than 5%.

2.2. Meteorological Normalization by a Self-Optimized Boosted Regression Tree Model

Quantifying the anthropogenic effect on air pollution has been a long-term challenge in
terms of the covarying meteorological influence. Here, we apply a meteorological normaliza-
tion technique to separate the man-made influence from the meteorological effect [5,13,18].
By utilizing temporal and meteorological variables as inputs, the MLA regression model is
constructed to respectively forecast the concentrations of six pollutants. The meteorologically
normalized pollution concentrations are obtained by averaging the predicted concentrations
for each observation with resampled meteorological variable values.

The random forest model is frequently utilized for MLA regression, necessitating the
manual predefinition of model parameters, such as the learning rate and maximum tree
split. To ensure the accuracy and calculation efficiency of the regression model over a large
volume of input samples, this research adopts a parameter self-optimized boosted regression
tree named as the boosted least squares integrated regression tree model (LSBoost). The
fundamental idea of LSBoost is to gradually enhance the predictive power of the model by
iteratively adding weak learners to form a strong learner. Boosting begins with a constant
prediction and grows a sequence of trees. With each subsequent step, a new tree is progres-
sively added to the model, resulting in an increasingly accurate prediction [19]. The whole
process is realized by the following 3 steps, which have also been summarized in Figure 2:

Firstly, data preparation for a regression model is performed on all observation sam-
ples. We obtain input vectors of Xi (I = 1, . . ., N, N = 10895) containing 4 temporal (Times,
including Julian day, day of the year (DOY), day of the month (DOM), and weekday) and
5 meteorological variables (METs, including WS, WD, T, RH, and P), and the respective
6 output variables of Yij (j = 1, 2, 3, 4, 5, 6, indicating concentrations of 6 key pollutants).

Secondly, regression models are trained with 4 Times and 5 METs variables to predict
6 pollutant concentrations, respectively. In our algorithm, the regression tree in the weak
learners uses the agent node to compensate for the regression bias caused by some missing
data. The model found optimal hyperparameters (Number of weak trees, Learning rate,
and Maximum splits) automatically using Bayesian optimization. The trained LSBoost
models are also employed to assess the importance of predictors and partial dependence
for 6 pollutants. Table 1 illustrates the self-learning model parameters and performance
metrics, with a training R2 value exceeding 0.98 when the training and test sets are identical.
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Figure 2. The diagram of the analysis model and meteorological normalization. Each data record
Xi (I = 1, . . ., N; here, N = 10,895) contains 4 temporal (Times, including Julian day, DOY, DOM,
and weekday), 5 meteorological variables (METs, including WS, WD, T, RH, and P), and 6 pollutant
variables Yij (j = 1, 2, 3, 4, 5, 6). Xi

(1~1000) and Yij
(1~1000) are the renewed input vectors with random

meteorology and corresponding predictions, which are repeated 1000 times.

Table 1. Parameters of the boosted regression tree model obtained by parametric self-optimization
algorithm for six pollution covariates.

Responses Number of
Weak Learners Learning Rate Max. Number

of Splits R2

SO2 498 0.326 43 0.998
NO2 491 0.285 96 0.990
CO 465 0.104 407 0.983
O3 459 0.097 104 0.989

PM2.5 177 0.118 272 0.998
PM10 165 0.183 604 0.999

Thirdly, the anthropogenic contribution is quantified through meteorological normal-
ization. The renewed meteorological quintuplet is randomly selected from all meteoro-
logical observations, but the 4 Times parameters of each input vector are kept unchanged.
The above well-trained models are used to predict 6 pollutant concentrations, respectively,
with the renewed input vector. The above process is repeated 1000 times. The average
of the 1000 predictions is termed the normalized pollution level (Ŷij), as it represents the
pollutant under a statistically average meteorological condition [16]. Ŷij can be used to de-
note the anthropogenic effect [8,20]. The difference between observations and normalized
concentrations can be considered as the meteorology-induced contribution.
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2.3. Atmospheric Oxidation and Aerosol Secondary Generation Capability

Studies [8] have reported an increase in the production of secondary aerosols, specifi-
cally sulfate, and nitrate, during the lockdown period. To analyze atmospheric oxidation
and secondary aerosol production before and after the city lockdown, the total concentra-
tion of O3 and NO2 (referred to as Ox) was utilized to characterize atmospheric oxidation
capacity [8]. Moreover, as CO primarily arises from anthropogenic primary emissions, the
PM2.5/CO ratio can serve as an indicator of secondary aerosol formation [9]. Additionally,
the conversion rate of gaseous NO2 and SO2 to solid NO3

− and SO4
2−, the primary sources

of secondary inorganic aerosols, can be quantified by the nitrogen oxidation rate (NOR)
and sulfur oxidation rate (SOR), respectively. These rates are defined as follows [21–23]:

SOR =
SO2−

4
SO2−

4 +SO2 , (1)

NOR =
NO−3

NO−3 + NO2
, (2)

where SO2−
4 , SO2, NO−3 , NO2 are the molar concentrations of SO4

2−, NO3
−, SO2, and NO2.

According to previous studies [24], the SOR(NOR) in primary pollutants is typically below
0.10. Higher values suggest more oxidation of precursor gases and significant production
of nitrates and sulfates.

3. Results and Discussion
3.1. Meteorology Importance on Pollutants Based on LSBoost

The LSBoost model is employed to assess the relative importance and the potential
factors associated with the six key pollutants. Larger importance indicates that the predictor
contributes more significantly to the response variable. The importance of meteorology
parameters (Julian day, DOY, DOM, weekday, WD, WS, T, RH, Phpa) for the learning of
pollutant variables and their linear correlation are shown in Figure 3.
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As seen in Figure 3a–e, the most important meteorological factors for NO2, CO, and
O3 are WD, WS, T, and RH. The prevailing winds dominate the dispersal and transport
of gaseous pollutants. Higher wind speeds can help dilute pollutants and displace them
over longer distances, leading to lower pollutant concentrations. Atmospheric chemi-
cal reactions, including photochemical reactions and aqueous phase reactions stimulated
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by moisture, are important factors influencing the formation of particulate matter [25].
Optimal conditions for photochemical synthesis involve high temperature and low humid-
ity, which can lead to increased rates of synthesis and higher concentrations of NO2 and
CO [26,27]. High concentrations of O3 frequently occur in hot, dry, inactive environments,
which are beneficial to O3 generation and persistence [27]. PM2.5 and SO2 are less influ-
enced by meteorological conditions when compared to NO2, CO, and O3. Their changes
tend to exhibit a stronger temporal and seasonal periodicity as they are more influenced by
time variables [20]. It can also be seen from Figure 3f that SO2 has a strong negative correla-
tion with RH. NO2 and PM2.5 show a weak negative correlation with meteorological factors.
CO has a negative correlation with wind speed and temperature and a positive correlation
with surface pressure. And O3 has a more significant positive correlation with tempera-
ture and a negative correlation with RH, which implies the promotion of O3 secondary
production by active photochemical reactions under such meteorology environments.

Air pollutants are influenced by both time and meteorological parameters, as shown
by the partial dependence of the predicted six target pollutants on these factors in Figure 4.
Figure 4a displays the distribution of PM2.5 based on Julian day. The average concentration
of PM2.5 exhibits a noticeable decrease in 2020, followed by a slight increase in 2021, relative
to 2019, during the first half-year intervals from January to May. PM2.5 levels in Wuhan
are higher during the winter months (DOY < 60 in Figure 4b), a phenomenon that can be
attributed to increased pollutant emissions resulting from coal combustion [28]. And PM2.5
has relatively high concentrations in the middle of the month and on weekdays, which
aligns with the results reported by Sun et al. [29]. Furthermore, the concentration of PM2.5
exhibits a dependence on wind direction and speed. Pollutants are easily transported from
the north to Wuhan, driven by prevailing winds with WD < 100◦. The static weather charac-
terized by low wind speed (WS < 4 m/s) would further exacerbate pollution by promoting
the local accumulation of pollutants. In addition, PM2.5 increases approximately linearly
with increasing temperature as a result of strong photochemical reactions that convert more
gaseous precursors into solid particles [30]. With other variables being identical, PM2.5
increases with RH and reaches the maximum concentration when RH is larger than 85% but
without precipitation because increasing RH will change the thermodynamic equilibrium
of gaseous precursors more to enter the aerosol phase state [31].
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3.2. Changes in Pollutant Concentrations after Meteorological Normalization
3.2.1. Time Series of Six Pollutants after Meteorological Normalization

The daily variation of PM2.5 concentrations before (in blue lines) and after (in thickened
orange lines) meteorological normalization from January to May for the three years is shown
in Figure 5. Before the lockdown year, there was a peak in anthropogenic PM2.5 emissions
during the week of the Chinese Lunar New Year holiday in 2019, followed by a rapid
decrease after the holiday. However, on 23 January 2020, which was also Chinese Lunar
New Year’s Eve, the COVID-19 lockdown in Wuhan led to a significant reduction in PM2.5
levels. Despite the city being unlocked on 8 April 2020, anthropogenic PM2.5 concentrations
remained relatively low for a long period. Comparably, in 2021, PM2.5 concentrations
showed a slight increase after Lunar New Year’s Eve but remained at a low level because
the government encouraged residents to stay at home during the Spring Festival, resulting
in human activities not returning to the pre-lockdown level.
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centrations from 1 January to 31 May over the three years: (a) 2019, (b) 2020, (c) 2021. The red shaded
area represents the model standard deviation range. The green vertical lines indicate Chinese Lunar
New Year’s Eve. The first and second green lines in Panel (b) mark the beginning and the end of the
city lockdown in Wuhan.

Annual variations of six pollutants after meteorological normalization are shown in
Table 2 and Figure 6. Sharp decreases in anthropogenic pollutant concentrations can be
observed during the lockdown (except for O3), with the ranking of NO2 > PM10 > SO2
> CO > PM2.5. Of the four gaseous pollutants, the concentration of NO2 decreased by
52%, from 50.90 µg/m3 in 2019 to 24.43 µg/m3 in 2020, followed by SO2 with a decrease of
31% and CO by 22%. Coal combustion is the primary source of NOx, SO2, and PM emissions,
which are mainly produced by industrial activities such as power generation, cement and
steel production, oil refining, and industrial boiler manufacturing [32]. The lockdown
policy in the year 2020 required the shutting off of these plants, causing a significant
decrease in pollution levels of NO2, SO2, and PM. In addition, road traffic control during
the lockdown resulted in an additional constraint in NO2 emission [33], so the decrease in
NO2 concentrations is prominently higher than that of SO2. Since nitrogen oxides (NOx) are
the primary precursor of urban O3, the significant decrease in NOx during the lockdown
resulted in a reduction in O3 consumption through titration (NO + O3→NO2 + O2), leading
to an increase in O3 concentration [34–36].
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Table 2. Annual changes of six pollutants due to anthropogenic emissions (1 January to 31 May);
each value is mean ± standard deviation.

Species
2019
(Pre-)

(µg/m3)

2020
(Lockdown)

(µg/m3)

2021
(Post-)

(µg/m3)

2020
Relative to

2019

2021
Relative to

2020

SO2 9.30 ± 3.94 6.40 ± 2.11 8.15 ± 2.49 −31 ± 17% 27 ± 12%
NO2 50.90 ± 8.84 24.43 ± 10.82 27.03 ± 6.41 −52 ± 25% 11 ± 5%

CO* (mg/m3) 1.12 ± 0.30 0.87 ± 0.15 0.78 ± 0.21 −22 ± 7% −10 ± 3%
O3 44.67 ± 7.38 54.63 ± 6.40 56.78 ± 6.75 22 ± 5% 4 ± 0.6%

PM10 89.03 ± 21.61 55.85 ± 18.50 78.24 ± 26.39 −37 ± 15% 40 ± 19%
PM2.5 52.26 ± 15.85 40.90 ± 13.51 45.13 ± 13.72 −21 ± 10% 10 ± 5%
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Figure 6. Annual variation of six pollutants after meteorological normalization (CO*, the * represents
the concentration is in mg/m3).

Table 2 and Figure 6 also show that the concentrations of most anthropogenic pollu-
tants rebounded in the post-lockdown year 2021, although they were still lower than before
the pandemic. Notice that the concentration of man-made CO continued to decline over
the observed three years. Fossil fuel consumption in the industrial and residential sectors
is the primary source of CO emissions [32]. The unrecovered anthropogenic pollution level
of CO indicates that industrial and residential processes remained depressed despite the
reopening of industrial plants and residents’ lives in 2021. In addition, taking pollution
levels in 2019 as a reference, PM10 decreased by 37% in 2020, which is 1.8 times greater
than that of PM2.5 (21%). It rose by 40% in 2021, which is four times greater than that of
PM2.5. Although PM2.5 and PM10 have many of the same sources of emissions, the change
in PM10 during the locked and post-locked periods is significantly greater than that of
PM2.5, primarily due to variations in road dust and construction activities [34].

Figure 7 shows the monthly variation of the human-associated six pollutants. SO2
concentration was higher in January and lower from February to May. The concentration
decreased during the epidemic year and recovered somewhat after the epidemic, especially
in March and April, which indicates activities of the burning of fossil fuel in stationary
industrial factories and industrial processes. The strict city lockdown and road traffic
controls implemented from 23 January to 8 April 2020 resulted in the lowest anthropogenic
NO2 concentration during February and March of that year.
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NO2 and O3 show opposite patterns of variation (Figure 7b,d). In the VOC-limited
regime (the concentration VOC/NOx is relatively low), as generally reported in the urban
area, low NO2 concentration leads to a low radical sink and would increase the chain reac-
tions to generate O3. As a result, lower NO2 concentrations in cities are often accompanied
by high O3 concentrations. Notice that the lowest NO2 in February 2020 did not correspond
to the highest O3 concentration. This is because the NOx concentration drops sharply,
making the VOC/NOx value large, and the O3 production enters the NOx-limited mode.
Thus, the O3 concentration decreases with decreasing NOx [36]. In addition, the rapid
reduction of PM (Figure 7e,f) suggests a decrease in the deposition of hydroperoxyl radicals,
which can accelerate O3 production and lead to high O3 concentrations from February to
April [37,38]. Atmospheric CO concentrations are highest in January (Figure 7c), mainly
due to vehicle cold starts and decreased fuel combustion efficiency during the winter [39].
Compared to the pre-lockdown and lockdown years, CO concentrations are lowest from
March to May in post-lockdown. This might come from further reducing incomplete
petrochemical combustion, home heating, waste incineration, and domestic cooking [40].

To further evaluate the relationship between the pollutants and anthropogenic emis-
sion sources, we introduced the emission source inventory data MEIC (Multi-resolution
Emission Inventory model for Climate and air pollution research) provided by the Tsinghua
University team (the data were last updated in 2020) [32,41]. This dataset gives a monthly
list of emission sources of pollutants from the five major departments, including agriculture,
industry, power, residential, and transportation, at the 0.25◦ grid in China. The Figure 8
bar chart shows the changes in five emission sources of four pollutants, SO2, NOx, PM10,
and PM2.5, in Wuhan from January to May 2019, with total emissions normalized to 1.
The two lines in each subplot represent the monthly change in total anthropogenic emis-
sions for 2019 and 2020. In general, the monthly changes in pollutants (Figure 7) are
consistent with the total emission source changes (2019 red and 2020 pale blue lines in
Figure 8) of the corresponding pollutants. The main anthropogenic emission sources of
SO2 and PM are residential and industrial sources. The decrease in anthropogenic pollu-
tants from January through April was primarily due to reductions in residential emissions.
The main sources of NOx are industrial and transportation. As a large number of people
stayed home for the New Year holidays in February 2019, this resulted in a low traffic
emission of NOx in February. Ultimately, the human emissions in 2020 are all lower than in
the same months in 2019. With the epidemic lockdown of Wuhan in February 2020, there is
a steeper decline in the February 2020 anthropogenic emissions, which is consistent with
the February folded point in Figure 7a,b,d,f).
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Figure 8. Monthly variation of five emission sources of four pollutants in Wuhan from January to
May in 2019: (a) SO2, (b) NOx, (c) PM10, (d) PM2.5. The lines in each subplot represent the total
anthropogenic emission changes of 2019 (red) and 2020 (pale blue).

3.2.2. Impact Variations of Meteorology and Anthropogenic Emissions on Six Pollutants

To better distinguish and measure the impact of human and weather factors on the
annual variations of six pollutants, the changes in their observations (Obs) and predicted
anthropogenic emissions (EMI), as well as the concentration changes induced by human be-
ings (∆EMI) and meteorology (∆MET), are studied (Figure 9). Except for O3, anthropogenic
and meteorological effects play opposite roles in the variation of pollutants, denoted by
the orange and yellow bars. The EMIs (the orange lines) closely follow the changes in
observation values (the blue lines), indicating that human activities play quite a dominant
role in the changes in the local atmospheric environment.
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Figure 9. Separation of pollutant observations (Obs) into anthropogenic emissions (EMI) and me-
teorological variations (MET): (a) SO2, (b) NO2, (c) CO, (d) O3, (e) PM10, (f) PM2.5. The broken
lines represent the observation and EMI contributions, referred to the left y-axis. The stacked bars
represent the changes in EMI (orange) and MET (yellow) relative to the previous year, referred to the
right y-axis. The numbers on the bar represent the percentage of change.
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The city lockdown intervention has resulted in a significant reduction in pollutant
concentrations, offsetting the potential increase caused by weather conditions. As seen in
Figure 9a, the SO2 observations decreased by 2.53 µg/m3 in the lockdown of 2020 compared
to that of the pre-lockdown of 2019 (5.99 µg/m3 v.s. 8.53 µg/m3). The anthropogenic
emission reduction contributed 89% to the total decrease, while the meteorology enhanced
the concentration of SO2 by approximately 11% change. In the post-lockdown year of 2021,
the SO2 concentration increased by 0.99 µg/m3, with an increase of 70% in anthropogenic
emissions and a decrease of 30% due to weather alteration. A similar situation is shown
for NO2, PM10, and PM2.5 as well. For CO, the decrease in observation of lockdown year
is overwhelmingly anthropogenic (99% contribution), while in 2021, the concentration
increases very slightly as a result of a combination of attenuated anthropogenic decrease
and an enhanced promotion caused by weather conditions.

The increase in O3 concentration in the lockdown year results from both anthro-
pogenic (69%) and meteorological contributions (31%) lift, while the decrease in the post-
lockdown year is more contributed by meteorological conditions (−82%) (Figure 9d).
For O3, the contribution of meteorology to the changes is greater than that of other pollu-
tants, which suggests that the O3 variations are highly sensitive to changes in meteorol-
ogy [27]. The future control measures for O3 pollution prevention should be considered in
terms of both emission control and meteorological-related treatment.

3.2.3. Analysis of Atmospheric Oxidation and Aerosol Secondary Generation

Whether the reduction of gas pollutants in lockdown enhances atmospheric oxidation
and secondary aerosol production is of interest to researchers to explain pollutant formation
and evolution for sustainable urban environments. To verify the variations of secondary
aerosol formation and atmospheric oxidation, the ratio changes in Ox, PM2.5/CO, NOR, and
SOR for 2020/2019 and 2021/2019 are analyzed. Ox represents the ability of atmospheric
oxidation to generate secondary gases NO2 and O3. Among them, urban NO2 is mainly
produced by the atmospheric oxidation of NO emitted from vehicle exhaust. The formation
of near-surface O3 through photochemical reactions is dependent on the emissions of NOx
and VOCs [36]. PM2.5/CO represents the strength of secondary generation relative to initial
emissions, while SOR and NOR represent the generation of secondary sulfate and nitrate.
Figure 10a shows that the Ox (O3 + NO2) atmospheric oxidation capacity is weaker in
the lockdown year than the pre-lockdown year (Ox2020/2019 < 1), except for a few hours
around 17:00. This is mainly caused by the unnatural drop of NO2 (Figure 10b), and O3
concentrations are elevated due to O3–VOC–NOx relationships [42,43]. The concentration
of Ox decreases even more during the post-lockdown period (below the 1:1 line), which is
the joint result of a large retreat of O3 and a small recovery of NO2. In addition, the Ox ratio
shows a clear trend of diurnal variation. It decreases to low levels between midnight and
around 7:00 a.m. LT, after which it starts to rise and reaches its maximum at approximately
5:00 p.m. LT. The lower morning concentrations may be attributed to the depositional
loss of Ox under stable atmospheric conditions in the early morning hours. The afternoon
peak in Ox concentration is likely due to the accumulation of local photochemical reactions
under weak solar radiation [44].
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The PM2.5/CO ratio can serve as an index of secondary formation versus primary emis-
sion because CO is primarily emitted through primary sources, while PM2.5 is a mixture of
primary and secondary aerosols [9]. Figure 10b shows that the PM2.5/CO ratio in the lock-
down year is moderately smaller than in the pre-lockdown year (PM2.5/CO(2020/2019) < 1).
In post-lockdown, the secondary formation ratio is larger than in lockdown (above the
1:1 line) but is not recovered to the pre-lockdown level (PM2.5/CO(2021/2019) varies around
the value of 1), which is only slightly higher in 8:00–10:00 a.m. LT, 6:00–9:00 p.m. LT.
This indicates that the atmospheric secondary formation in post-lockdown is weakly higher
than in pre-lockdown during rush hours and lower at other hours.

For SOR and NOR (Figure 10c,d), SOR2020/2019 is smaller than 1 during the daytime
(8:00 a.m.–8:00 p.m. LT) and larger than 1 at night (8:00 p.m.–8:00 a.m. LT), indicating a
higher sulfate generation efficiency at night and lower efficiency in the daytime in 2020.
The primary cause of the lower SOR during the day is the substantial reduction in SO2
precursor gas emissions that occurred during the lockdown year. The increased SO2
to sulfate conversion throughout the night is probably due to nocturnal aqueous-phase
chemical processes [45]. In the lockdown year 2020, during most hours of the day, the
NOR is slightly higher than pre-lockdown levels, except for a few hours around midnight.
This deviation may be attributed to photochemical reactions occurring under the conditions
of high O3 concentrations and solar radiation [44]. In contrast, the 2021/2019 ratios for
both NOR and SOR are higher than 1 and are also higher than that of 2020/2019 (above the
1:1 line), indicating the stronger sulfate and nitrate formation in the post-lockdown year.

4. Conclusions

To quantify the pollutant changes due to anthropogenic emissions contributing to
sustainable urban development, this study separated the observed pollutant concentrations
into meteorological and anthropogenic emissions and analyzed their changes from 2019 to
2021 (1 January to 31 May). The main findings are summarized as follows:

1. The peak of anthropogenic pollutants in the Chinese Lunar New Year festival was
significantly reduced in 2020 due to the lockdown and remained at low levels during
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the same period in post-lockdown year 2021. Sharp decreases in anthropogenic
pollutants can be observed during lockdown (except for O3), and the rankings are
NO2 > PM10 > SO2 > CO > PM2.5.

2. The pre- and post-lockdown years exhibit large monthly variations in all six pollutants,
whereas the lockdown period shows a small monthly fluctuation in these pollutants.
The lowest anthropogenic NO2 concentration appears in February and March during
the lockdown, which is a clear indication of the severe city closure and road traffic
controls. The lower concentration of NO2 led to a low efficiency of O3 consumption
and brought about high concentrations of O3 from February to April 2020.

3. Anthropogenic and meteorological factors have opposing effects on the variation
of pollutants, but anthropogenic factors appear to be dominant. The significant
reduction in human activities has led to a sharp decrease in pollutant concentrations
and has counteracted any potential increase caused by weather conditions. Of all six
pollutants, O3 is the one that is relatively least subject to anthropogenic emissions.

4. The atmospheric oxidation capacity of Ox, the PM2.5/CO ratio, and SOR in the lock-
down year were lower than pre-lockdown levels, while NOR increased slightly for
most hours of the day, attributed to the relatively high O3 and sharply low NO2. In the
post-epidemic year, the PM2.5/CO secondary production and the generation of sulfate
and nitrate were stronger than in the pre-lockdown period, while Ox was weakened,
which was the joint result of a large retreat of O3 and a small recovery of NO2.
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