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Abstract: Understanding regional as well as temporal variations in probability rainfall is essential for
addressing climate change-related hydrological issues. Few studies have conducted spatial analyses
on probability rainfall using up-to-date rainfall data, which is crucial to comprehend regional rainfall
variations for effective flood management and hydraulic structure design. In this study, we analyzed
the spatiotemporal variations of probability rainfall factors in South Korea using 61 rainfall stations
and four rainfall periods (years) (recent-10, 2011–2020; recent-20, 2001–2020; recent-30, 1991–2020;
recent-40, 1981–2020). We mapped probability rainfall information, including probability rainfall
intensities (20, 30, and 40 mm/h), return periods (10, 20, 50, and 100 years), rainfall durations (1,
2, 6, and 24 h), and rainfall depth. Results revealed wide variations in the northern and southwest
inland regions based on rainfall periods. Decadal annual rainfall analysis revealed that the north
and southwest inland regions indicated lower recent decadal rainfall than that in previous decades,
while decadal annual rainfall in the southeast inland region remained constant. The generated
spatial and temporal distribution maps offer valuable insights for comprehending the variation in
probability rainfall factors across different time periods in South Korea, with practical implications
for the planning and design of hydraulic structures.

Keywords: annual rainfall trend; correlation; probability rainfall factors; rainfall frequency analysis;
spatiotemporal variations; South Korea

1. Introduction

South Korea conducts rainfall frequency analysis to inform the design and safety
evaluation of hydraulic structures. In contrast to the United States, Australia, and the
United Kingdom, which rely on flood frequency analysis guidelines and design flood
calculation systems that directly utilize observed discharge data, South Korea employs
probability rainfall and the rainfall–runoff relationship for flood estimation. This deviation
arises from the limited availability and distortion of flood data in South Korea [1]. Existing
frequency analysis assumes that the statistical characteristics of rainfall data remain constant
over time. Nevertheless, numerous studies suggest that this assumption is problematic,
particularly given the expectation of more intense and frequent rainfall events due to
climate change [2–7].
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Climate changes have profoundly influenced precipitation patterns and altered hydro-
logical processes [8]. Precipitation plays a pivotal role in hydrological processes, and its
variability contributes to the increased frequency and intensity of extreme events, including
severe flooding, droughts, and changes in water availability [9,10]. These precipitation
variations also impact the risk and reliability of hydraulic structures [11]. Therefore, the
variability of extreme precipitation events has garnered significant attention [12–17]. South
Korea has been more affected by climate change than the global average [18]. In particular,
recent abnormal climate conditions and climate change have led to increased fluctua-
tions in annual rainfall and rainfall intensity, resulting in a rising frequency of floods and
droughts [19]. Severe droughts persisted from 2013 to 2015, with annual precipitation levels
that were 35–50% below normal [20]. From June to August 2020, large-scale torrential rain-
fall events occurred throughout the country, marking the longest rainy season since 1973 in
the central region and resulting in 46 fatalities [21]. Accordingly, studies on climate change
in South Korea have been conducted [22–26], and several studies in South Korea have ex-
plored the effects of climate change on probability rainfall. Jang et al. [27], Kwon et al. [28],
and Lee et al. [29] have proposed methods to calculate probability rainfall for specific years
by considering the upward trend in rainfall and comparing it with existing methodologies.
Ahn et al. [30] and Oh et al. [31] have investigated the dynamic characteristics of proba-
bility rainfall, showing that it increases when examining data variability and trends. To
comprehend precipitation variations under climate change, it is crucial to conduct both
temporal and spatial analyses. The impact of climate change varies geographically [32–38],
leading to regional disparities in changes in the probability rainfall. These changes are
essential for planning and assessing hydraulic structures. Therefore, to develop regional
strategies to address hydrological problems caused by climate change, it is imperative to
comprehend regional changes in probability rainfall through spatial analysis.

Unfortunately, most studies that spatially analyzed the effect of climate change have
assessed daily or extreme precipitation [8,32–35], and thus, the spatial analysis of probability
rainfall are scarce. In addition, there is a dearth of research on the change in probability
rainfall using up-to-date rainfall data [27–31]. In this study, we focused on spatiotemporal
changes in the probability rainfall of South Korea using the latest rainfall data. To analyze
this change, the 1981–2020 rainfall data from 61 stations were divided into four periods
(2011–2020, 2001–2020, 1991–2020, 1981–2020), and the probability rainfall results for these
periods were mapped. Additionally, to understand the change in probability rainfall more
stereologically, the rainfall intensity and duration were mapped for each period.

2. Materials and Methods
2.1. Rainfall Data

This study utilized hourly rainfall data from 61 stations in South Korea, as shown
in Figure 1. For analyzing changes in rainfall patterns over time due to climate change,
61 stations with over 40 years of recorded data were selected from 102 Automated Synoptic
Observing System (ASOS) stations. The ASOS rainfall data were obtained from the National
Meteorological Data Center of the Korea Meteorological Administration.
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2.2. Estimation of Probability Rainfall

The probability rainfall was determined through a frequency analysis of rainfall data
as depicted in Figure 3.



Sustainability 2023, 15, 16646 4 of 19Sustainability 2023, 15, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 3. Frequency analysis procedure for probability rainfall estimation [39]. 

The annual maximum rainfall data series used for frequency analysis must exhibit 
independence. An independence test was performed as a preliminary check, employing 
three test methods: Anderson Correlation Test, Run Test, and Spearman’s Rank Correla-
tion Coefficient Test. The results confirmed data independence by station, thus allowing 
for the application of the Gumbel distribution, a recommended probability distribution 
for all stations of the Korea Meteorological Administration, according to the Korean De-
sign Rainfall Maps [40], for hydrological analysis. To estimate the probability distribution 
parameters, the probability-weighted moment method proposed by Greenwood [41] was 
used. This method yields relatively stable results even when the sample data are distorted 
by assigning smaller weights to lower values and larger weights to higher values. To de-
termine the possibility of using the probability distribution, this study applied goodness-
of-fit tests. Four goodness-of-fit tests were conducted for a significance level of α = 0.05, 
including the chi-square (C-S) test, Kolmogorov–Smirnov (K-S) test, Cramér–von Mises 
(CVM) test, and Probability Plot Correlation Coefficient (PPCC) test. These four tests 
quantitatively assess the fit between the data and the theoretical probability distribution 
based on the significance level. It was confirmed that the Gumbel distribution was suitable 
as it passed at least two of these test methods at all stations (Appendix A, Tables A1 and 
A2). The probability density function (PDF) of the Gumbel distribution is as follows: 𝑓 𝑥 = 1𝜎 𝑒𝑥𝑝 − 𝑥 − 𝜇𝜎 − 𝑒𝑥𝑝 − 𝑥 − 𝜇𝜎  (1) 

where σ is a scale parameter, and μ is a location parameter. The cumulative probability 
density function (CDF) is the integral of PDF and has a probability value between 0 and 
1. The CDF of the Gumbel distribution is as follows: 𝐹 𝑥 = 𝑒𝑥𝑝 − 𝑒𝑥𝑝 − 𝑥 − 𝜇𝜎  (2) 

The probability rainfall corresponding to the return period was obtained from the 
PDF. The frequency factor 𝐾  formula is an expression of the relationship between a PDF 
and the return period. The probability rainfall is estimated using the frequency factor 𝐾  
and basic statistical values (mean and variance) of the probability distribution. In this 
study, we obtained the frequency factor for the 10-, 20-, 50-, and 100-year return periods. 
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The annual maximum rainfall data series used for frequency analysis must exhibit
independence. An independence test was performed as a preliminary check, employing
three test methods: Anderson Correlation Test, Run Test, and Spearman’s Rank Correlation
Coefficient Test. The results confirmed data independence by station, thus allowing for
the application of the Gumbel distribution, a recommended probability distribution for
all stations of the Korea Meteorological Administration, according to the Korean Design
Rainfall Maps [40], for hydrological analysis. To estimate the probability distribution
parameters, the probability-weighted moment method proposed by Greenwood [41] was
used. This method yields relatively stable results even when the sample data are distorted
by assigning smaller weights to lower values and larger weights to higher values. To
determine the possibility of using the probability distribution, this study applied goodness-
of-fit tests. Four goodness-of-fit tests were conducted for a significance level of α = 0.05,
including the chi-square (C-S) test, Kolmogorov–Smirnov (K-S) test, Cramér–von Mises
(CVM) test, and Probability Plot Correlation Coefficient (PPCC) test. These four tests
quantitatively assess the fit between the data and the theoretical probability distribution
based on the significance level. It was confirmed that the Gumbel distribution was suitable
as it passed at least two of these test methods at all stations (Appendix A, Tables A1 and A2).
The probability density function (PDF) of the Gumbel distribution is as follows:

f (x) =
1
σ

exp
[
− x − µ

σ
− exp

(
− x − µ

σ

)]
(1)

where σ is a scale parameter, and µ is a location parameter. The cumulative probability
density function (CDF) is the integral of PDF and has a probability value between 0 and 1.
The CDF of the Gumbel distribution is as follows:

F(x) = exp
[
−exp

(
− x − µ

σ

)]
(2)

The probability rainfall corresponding to the return period was obtained from the
PDF. The frequency factor KT formula is an expression of the relationship between a PDF
and the return period. The probability rainfall is estimated using the frequency factor KT
and basic statistical values (mean and variance) of the probability distribution. In this
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study, we obtained the frequency factor for the 10-, 20-, 50-, and 100-year return periods.
The probability rainfall for durations of 1, 2, 6, and 24 h was determined for each return
period. The frequency factor formula of the Gumbel distribution and probability rainfall
function [42] are as follows:

KT = −
√

6
π

{
0.5772 + ln

[
ln
(

T
T − 1

)]}
(3)

xT = x + sKT (4)

where x and s are the mean and standard deviation of x for each duration.

2.3. Intensity–Duration–Frequency (IDF) Curves

Rainfall intensity was calculated by dividing the probability rainfall by the duration.
The IDF curve illustrates the relationship between rainfall intensity and duration for each
return period. The regression equation of the IDF curve is called the intensity formula,
which is used in various hydrological fields to plan infrastructure. In this study, the IDF pa-
rameters were estimated using the least-squares method, and the polynomial equation [43]
expressed in Equation (5) was adopted as the formula for rainfall intensity.

ln(I) = a + bln(t) + c(ln(t))2 + d(ln(t))3 + e(ln(t))4 + f (ln(t))5 + g(ln(t))6 (5)

where t is rainfall duration (hr), I is rainfall intensity (mm/h) according to rainfall duration,
and a to g are local parameters.

The process of calculating rainfall intensity and duration using Equation (5) is de-
scribed below in detail.

I. For the return period Tn (n = 10, 20, 50, and 100 years), the probability rainfall P
n

.
,i

corresponding to the duration ti (i = 1, 2, 6, and 24 h) is obtained. For example,
when the return period is 50 years (T50), according to the duration 1 h (t1), 2 h
(t2), 6 h (t6), and 24 h (t24), the probability rainfalls (P50,1, P50,2, P50,6, and P50,24)
are calculated.

II. The rainfall intensity, In,i is calculated by dividing the probability rainfall by the

duration. For example, I50,2 = P50,2
t2

.
III. Determine parameters a, b, c, d, e, f , and g for each Tn by applying In,i and ti to a

polynomial equation. Since we consider four types of return period Tn (10, 20, 50,
and 100 years), we obtain four parameter sets of each return period in each station.

IV. To know the specific condition I for mapping, the required return period T∗ and
duration t∗ are fixed from a polynomial equation obtained in step III, and the
rainfall intensity I∗ is calculated.

V. In the same way as step IV, T∗∗, and I∗∗ are fixed, and t∗∗ is obtained.

2.4. Kriging for Spatial Analysis

Many studies have combined dynamic and statistical approaches to downscale and
perform the spatial interpolation of precipitation [34,44–47]. In this study, the probabil-
ity rainfall data were recorded for 61 stations, along with the latitude and longitudinal
coordinates of each station. We utilized ArcGIS 10.4 (ESRI) to map probability rainfall
information, including rainfall intensity and duration, for each return period to visualize
regional outcomes. The kriging interpolation tool in ArcGIS was used to create a raster
layer with a 1 km resolution, consistent with the resolution applied in previous studies in
South Korea [48–50]. The tool was used to weight the surrounding measured values and
estimate values in unmeasured locations using the ArcGIS kriging function [47].

3. Results

Figure 4 illustrates the spatial distribution of annual average rainfall depth across four
different rainfall period cases. Overall, the spatial distribution of annual rainfall depth
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appears similar in all four cases. However, Case 1 exhibits a distinct spatial pattern of
annual rainfall depth distribution in the northern regions compared to Cases 2, 3, and 4.
With the exception of the northern region, Case 1 closely aligns with the spatial distribution
of annual rainfall depth in the other cases.
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3.1. Spatial Distribution of Probability Rainfall with Consistent Rainfall Durations

Figures S1–S4 show the spatial distributions of probability rainfall based on constant
rainfall durations (1, 2, 6, and 24 h) depending on different rainfall periods (Cases 1–4) and
return periods (10, 20, 50, and 100 years). The deviation from the average of the probability
rainfall was calculated to effectively identify the spatial change by case. Figure 5 shows the
spatial distributions of probability rainfall anomalies averaged over four return periods.
These anomalies are presented based on different rainfall durations and rainfall datasets,
and each case is indicated in a different color. The bar chart on the map displays upward
when the anomaly is positive (probability rainfall is greater than average) and downward
when the anomaly is negative (probability rainfall is less than average). The larger the
anomaly value (larger the difference from the average) the longer the bar chart is displayed,
and the smaller the anomaly value (smaller the difference from the average) the shorter the
bar chart is displayed. The scale bar at the bottom right of each map is the attribute value for
chart symbols of that size. As shown in Figure 5, the scales of probability rainfall anomalies
for different rainfall durations are 23 mm, 36 mm, 61 mm, and 120 mm, respectively.
Generally, as rainfall durations increase, the scale of probability rainfall anomalies also
rises. Across all combinations of return periods and rainfall data periods in Figure 5, the
southeast inland region exhibits lower probability rainfall anomalies than other regions.
Conversely, the northwest, northeast, and south coast regions consistently show higher
probability rainfall anomalies than other regions. Notably, Jeju Island exhibits positive
probability rainfall anomalies across all cases, primarily due to its higher annual average
rainfall than that of the inland region (Figure 4).
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Overall, certain regions exhibit distinct patterns of probability rainfall anomalies based
on the rainfall dataset cases. Case 1, in particular, differs significantly from Cases 2, 3, and
4 in most regions, with coastal regions displaying notably contrasting patterns compared
to inland regions between Case 1 and Cases 2–4. This suggests that Case 1 of the rainfall
dataset characterizes significantly different patterns of probability rainfall anomalies from
Cases 2–4, particularly in coastal regions.
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3.2. Spatial Distribution of Probability Rainfall with Consistent Rainfall Frequencies

Figures S5–S8 show the spatial distributions of the probability rainfall with constant
10-, 20-, 50-, and 100-year rainfall frequencies for different rainfall data periods (Cases
1–4) and rainfall durations (1, 2, 6, and 24 h). Figure 6 shows the spatial distributions of
probability rainfall anomalies averaged over four durations, with four rainfall frequencies
across different rainfall datasets. The scales of probability rainfall anomalies in Figure 6
are presented as 36 mm, 46 mm, 60 mm, and 70 mm, respectively. Notably, the scales of
probability rainfall anomalies differ distinctly with varying return periods.
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As shown in Figure 6, the northwest, northeast, and south coast regions exhibit
positive probability rainfall anomalies, while the southeast inland region consistently
displays negative probability rainfall anomalies. The spatial pattern of probability rainfall
anomalies in Case 1 differs from Cases 2–4, but Cases 2–4 exhibit similar spatial distribution
patterns among themselves. Specifically, Case 1 differs significantly from Cases 2–4 in the
northwest, northeast, and southwest inland regions, while the southeast inland region
demonstrates similar scales of probability rainfall anomalies across all rainfall periods.

3.3. Spatial Distribution of Probability Rainfall Intensity with Consistent Rainfall Durations

Figures S9–S12 show the spatial distributions of the probability rainfall intensity with
constant 10-, 20-, 50-, and 100-year return periods depending on four different rainfall
data periods (Cases 1–4) and four rainfall durations (1, 2, 6, and 24 h). Figure 7 shows
the spatial distributions of probability rainfall intensity anomalies averaged across four
return periods. These anomalies are presented for four rainfall durations and four different
rainfall data periods. In Figure 7, the scales of probability rainfall intensity anomalies were
large in short rainfall durations rather than long rainfall durations. For example, the scale
of probability rainfall intensity anomalies in 1 h duration was approximately 23 mm/h, but
about 5 mm/h for 24 h duration.
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The probability rainfall intensity anomalies in the northwest, northeast, and south
coast regions in Figure 7 are relatively higher than those in other regions. On the contrary,
the southeast inland region consistently represents large negative probability rainfall
anomalies across all rainfall periods. In 1-, 2-, and 6 h durations, Case 1 shows a different
magnitude of probability rainfall anomalies compared to Cases 2, 3, and 4. However, for
24 h durations, Case 1 presents a similar magnitude of probability rainfall anomalies with
other cases, in particular the south coast regions, indicating that longer duration provides a
similar magnitude of probability rainfall anomalies.

3.4. Spatial Distribution of Probability Rainfall Duration with Consistent Rainfall Intensities

Figures S13–S16 show the spatial distributions of rainfall durations with constant 10-,
20-, 50-, and 100-year rainfall frequencies depending on the rainfall intensity (20, 30, and
40 mm/h) and rainfall data records (Cases 1–4). Figure 8 shows the spatial distributions of
probability rainfall duration anomalies averaging four return periods. Spatial distributions
of these anomalies are presented for constant rainfall intensities and four rainfall datasets. In
Figure 8, the scale of probability rainfall duration anomalies is smaller as rainfall intensities
increase. For example, for 20 mm/h, the scale of probability rainfall duration anomalies
is about 5.1 h but is about 2.8 h for 40 mm/h. The low probability rainfall intensity of
20 mm/h in Figure 8a represents a greater spatial difference in rainfall duration anomalies
than the high probability rainfall intensity of 40 mm/h in Figure 8c. This indicates that
low rainfall intensity provides a large difference in the rainfall duration, and high rainfall
intensity represents a small difference in rainfall duration.
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In addition, the southwest inland and certain south coast regions exhibit distinct
patterns of rainfall duration anomalies in Case 1 compared to other cases. For example,
Case 1 portrays positive rainfall duration anomalies in the southwest inland region, whereas
Cases 2, 3, and 4 display negative rainfall duration anomalies. This indicates that the rainfall
patterns over the past 10 years (Case 1) differ from those observed over the past 20–40 years
(Cases 2, 3, and 4), particularly in the southwest inland and some south coast regions.

4. Discussion

This study mapped and compared probability rainfall, rainfall intensity, and rainfall
duration. Consistent with the rapid changes in rainfall volume and rainfall intensities over
the past ten years mentioned in several studies [19–21], our study results also confirmed
that the probability rainfall values change when data from the past 10 years are added. The
results for Case 1 (2011–2020) showed clear differences when compared to the other cases.
Figure 9 depicts the differences in probability rainfall anomalies of 24 h duration (Figure 5d)
for Case 1, Case 2 (2001–2020), and Case 3 (1991–2020) relative to Case 4 which is the entire
rainfall period (1981–2020). The difference between Case 1 and Case 4, indicated by a
red triangle, is noticeably larger than the other cases. These results underscore significant
differences in probability rainfall calculations when combining rainfall data for the last
10 years.

Moon et al. [37] classified 61 observation stations in South Korea into 10 regions and
analyzed long-term precipitation data from 1980 to 2019. Precipitation variability exhibited
different characteristics by region, with a slight increase of 4–12% in Gyeongsang-do and
Jeju-do and a decrease of 2–9% in other regions. Zhou et al. [38] investigated changes
in extreme precipitation events for 146 cities from 1960 to 2014, considering both climate
change and urbanization. In the Jing-Jin-Ji (Beijing–Tianjin–Hebei) cluster, precipitation
for all cities showed a decreasing trend, while cities in the Yangtze cluster experienced an
increasing tendency. The impact of climate change differs regionally was also confirmed
by this study’s results. We conducted mapping to assess spatial and temporal changes,
revealing distinct regional effects. The difference in Case 1 compared to other rainfall
periods is particularly evident in the northern and southwest inland regions. On the
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contrary, the southeast inland region showed similar results across all rainfall periods.
The temporal and spatial effects of probability rainfall intensity and duration on the last
10 years of data were found to be similar to the probability rainfall results.
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Therefore, in this study, we selected nine stations representing three regions to inves-
tigate temporal rainfall characteristics, aiming to understand the temporal variations of
probability rainfall parameters such as return periods, rainfall intensity, and rainfall dura-
tion. These regions include Daegwallyeong, Ganghwa, and Seoul stations for the northern
region; Gwangju, Jeongeup, and Namwon stations for the southwest inland region; and
Daegu, Miryang, and Yeongcheon stations for the southeast inland region, as illustrated in
Figure 10.

Figure 11 shows the box plots of decadal annual rainfall in nine representative sta-
tions. This figure clearly shows that the mean and box plots for the most recent 10 years
(2011–2020) in Daegwallyeong, Ganghwa, Seoul, Gwangju, Jeongeup, and Namwon were
remarkably lower than front decadal (2001–2010) box plots. However, for Daegu, Miryang,
and Yeongcheon, the box plots for 2011–2020 closely resemble those of all other decades.
This observation is further quantified in Table 1, which presents the average decadal rain-
fall for 2001–2010 and 2011–2020 by station, along with the absolute difference between
these two averages. In the north and southwest inland regions, all absolute difference
values exceed 115 mm, whereas in the southeast inland region, these values are 15 mm or
less. The spatial patterns observed in the box plots for 2011–2020 compared to those for
1981–1990, 1991–2000, and 2001–2010 in Figure 11 align with the patterns characterizing
different (Daegwallyeong, Ganghwa, Seoul, Gwangju, Jeongeup, and Namwon) or consis-
tent (Daegu, Miryang, and Yeongcheon) probability rainfall factors across various rainfall
periods. Figure 11 suggests a strong correlation between spatial patterns of probability
rainfall, including return period, rainfall intensity, and rainfall duration, and changes in
annual rainfall [51].
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Table 1. Average decadal rainfall by station (2001–2010 and 2011–2020) and the absolute difference in
average decadal rainfall by period.

Region Station
Average Decadal

Rainfall (mm)
(2001–2010)

Average Decadal
Rainfall (mm)

(2011–2020)

Absolute Difference *,
(mm)

North
Daegwallyeong 1782.3 1329.1 453.2

Ganghwa 1345.2 1141.9 203.4
Seoul 1550.2 1274.2 275.9

Southwest inland
Gwangju 1482.4 1352.2 130.2
Jeongeup 1403.5 1290.1 113.4
Namwon 1455.7 1339.9 115.8

Southeast inland
Daegu 1088.0 1102.7 14.7

Miryang 1226.6 1214.5 12.1
Yeongcheon 1088.6 1075.6 13.0

* Absolute differences in average decadal rainfall for 2001–2010 and 2011–2020.

5. Conclusions

This study investigated the spatial distribution of probability rainfall, rainfall duration,
rainfall frequency, and rainfall intensity in South Korea. To investigate the temporal effect,
we applied four different rainfall data lengths: 2011–2020 (Case 1), 2001–2020 (Case 2),
1991–2020 (Case 3), and 1981–2020 (Case 4). The 61 rainfall stations were retrieved, and
the Gumbel distribution was applied to estimate the probability rainfall in each station.
Based on the results of this study, we mapped the combination of probability rainfall
factors. In addition, anomalies, which are deviations from the average value, were mapped
to compare changes in probability rainfall factors according to the rainfall data period
setting. We found that the southeast inland region exhibited lower probabilities of rainfall,
rainfall intensity, and duration compared to other areas, while the northeast, northwest,
and south coast regions displayed higher probabilities of rainfall and rainfall intensity.
Notably, we observed that as rainfall frequency decreased and duration increased, spatial
differences in rainfall intensity and probability became more pronounced. In essence, the
scales of probability rainfall and rainfall intensity increased with higher frequency and
shorter duration, respectively.

For temporal analysis, Case 1 exhibited different results than other cases (Cases 2–4),
showing that the spatial rainfall pattern of the recent 10 years differed from that of the
past 40 years. This suggests that climate change has influenced the recent 10-year rainfall
pattern in South Korea. In summary, our study underscores the divergence between recent
and historical rainfall data in terms of spatial distribution. Furthermore, it confirms a strong
correlation between annual rainfall and the temporal patterns of probability rainfall, rainfall
intensity, rainfall durations, and return periods. The spatial and temporal distribution maps
generated in this study are expected to serve as valuable resources for comprehending the
spatial variations of probability rainfall variables, encompassing rainfall intensity, duration,
and frequency, across various timeframes in South Korea. Finally, the spatial distribution
maps provide important information for identifying flood-prone areas and establishing
standards for the management and design of hydraulic structures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su152416646/s1, Figure S1. Spatial distribution of the 1 h rainfall
probability based on different return periods and observed rainfall periods; Figure S2. Spatial
distribution of the 2 h rainfall probability based on different return periods and observed rainfall
periods; Figure S3. Spatial distribution of the 6 h rainfall probability based on different return periods
and observed rainfall periods; Figure S4. Spatial distribution of the 24 h rainfall probability based
on different return periods and observed rainfall periods; Figure S5. Spatial distribution of the
10 year return period based on different durations and observed rainfall periods; Figure S6. Spatial
distribution of the 20 year return period based on different durations and observed rainfall periods;
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Figure S7. Spatial distribution of the 50 year return period based on different durations and observed
rainfall periods; Figure S8. Spatial distribution of the 100 year return period based on different
durations and observed rainfall periods; Figure S9. Spatial distribution of the rainfall intensity for a
10 year return period based on different durations and observed rainfall periods; Figure S10. Spatial
distribution of the rainfall intensity for a 20 year return period based on different durations and
observed rainfall periods; Figure S11. Spatial distribution of the rainfall intensity for a 50 year return
period based on different durations and observed rainfall periods; Figure S12. Spatial distribution of
the rainfall intensity for a 100 year return period based on different durations and observed rainfall
periods; Figure S13. Spatial distribution of the rainfall duration for a 10 year return period based
on different intensities and observed rainfall periods; Figure S14. Spatial distribution of the rainfall
duration for a 20 year return period based on different intensities and observed rainfall periods;
Figure S15. Spatial distribution of the rainfall duration for a 50 year return period based on different
intensities and observed rainfall periods; Figure S16. Spatial distribution of the rainfall duration for a
100 year return period based on different intensities and observed rainfall periods.
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Appendix A

Table A1. Numbers given to 61 stations.

No. Station No. Station No. Station

1 Sokcho 21 Gwangju 41 Buyeo
2 Daegwallyeong 22 Busan 42 Geumsan
3 Chuncheon 23 Tongyeong 43 Buan
4 Gangneung 24 Mokpo 44 Imsil
5 Seoul 25 Yeosu 45 Jeongeup
6 Incheon 26 Wando 46 Namwon
7 Wonju 27 Suncheon 47 Jangheung
8 Suwon 28 Jeju 48 Haenam
9 Chungju 29 Seongsan 49 Goheung
10 Seosan 30 Seogwipo 50 Yeongju
11 Uljin 31 Jinju 51 Mungyeong
12 Cheongju 32 Ganghwa 52 Yeongdeok
13 Daejeon 33 Yangpyeong 53 Uiseong
14 Chupungnyeong 34 Icheon 54 Gumi
15 Andong 35 Inje 55 Yeongcheon
16 Pohang 36 Hongcheon 56 Geochang
17 Gunsan 37 Jecheon 57 Hapcheon
18 Daegu 38 Boeun 58 Miryang
19 Jeonju 39 Cheonan 59 Sancheong
20 Ulsan 40 Boryeong 60 Geoje

61 Namhae
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Table A2. Goodness-of-fit test results for Gumbel distribution for different durations and stations.

C-S Test
(Critical Value: 7.810)

K-S Test
(Critical Value: 0.210)

CVM Test
(Critical Value: 0.461)

PPCC Test
(Critical Value: 0.960)

Duration

1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h
1 7.100 7.100 3.200 2.900 0.115 0.130 0.087 0.084 0.089 0.076 0.070 0.050 0.987 0.986 0.983 0.980
2 4.400 4.400 4.400 1.700 0.076 0.097 0.147 0.103 0.045 0.045 0.132 0.068 0.987 0.984 0.950 0.935
3 4.700 1.100 3.200 3.200 0.110 0.073 0.060 0.108 0.132 0.055 0.041 0.062 0.967 0.972 0.989 0.984
4 6.800 12.800 20.300 6.200 0.125 0.151 0.154 0.124 0.147 0.217 0.250 0.103 0.972 0.975 0.948 0.885
5 1.585 3.049 7.732 10.073 0.085 0.061 0.101 0.162 0.075 0.035 0.056 0.176 0.983 0.990 0.990 0.979
6 2.600 1.700 7.400 4.400 0.119 0.056 0.139 0.102 0.075 0.028 0.115 0.065 0.991 0.983 0.984 0.993
7 1.100 8.000 2.900 1.100 0.081 0.110 0.122 0.072 0.075 0.106 0.085 0.026 0.990 0.970 0.980 0.996
8 2.600 2.300 9.800 4.400 0.064 0.092 0.145 0.086 0.021 0.043 0.220 0.067 0.997 0.988 0.949 0.982
9 0.800 2.300 2.300 3.200 0.057 0.098 0.105 0.112 0.031 0.042 0.062 0.078 0.993 0.982 0.988 0.984
10 2.000 0.500 1.700 6.500 0.075 0.105 0.061 0.080 0.040 0.045 0.041 0.058 0.988 0.989 0.979 0.980
11 7.400 4.700 9.500 3.500 0.104 0.125 0.190 0.092 0.110 0.092 0.314 0.075 0.910 0.914 0.843 0.914
12 4.400 1.400 9.200 6.800 0.106 0.069 0.140 0.106 0.118 0.033 0.183 0.074 0.977 0.982 0.951 0.983
13 4.400 2.000 3.800 1.700 0.122 0.076 0.083 0.086 0.118 0.038 0.056 0.056 0.951 0.990 0.988 0.986
14 9.800 0.800 0.500 1.700 0.083 0.109 0.090 0.097 0.100 0.073 0.025 0.042 0.973 0.989 0.993 0.993
15 2.300 5.300 1.400 2.600 0.115 0.093 0.081 0.069 0.110 0.057 0.057 0.047 0.979 0.990 0.934 0.985
16 4.100 2.900 2.000 7.700 0.116 0.095 0.112 0.153 0.103 0.091 0.138 0.227 0.979 0.962 0.910 0.928
17 7.400 4.400 16.100 7.700 0.105 0.164 0.131 0.140 0.088 0.131 0.177 0.140 0.988 0.975 0.966 0.979
18 0.500 4.400 2.600 2.900 0.073 0.109 0.056 0.071 0.031 0.067 0.037 0.043 0.986 0.975 0.990 0.982
19 0.800 1.700 6.500 0.500 0.078 0.075 0.093 0.065 0.028 0.044 0.072 0.035 0.995 0.978 0.984 0.986
20 2.900 1.100 1.700 3.200 0.079 0.085 0.077 0.078 0.031 0.038 0.052 0.045 0.989 0.970 0.990 0.973
21 2.000 5.300 10.100 9.800 0.065 0.100 0.137 0.138 0.018 0.073 0.096 0.126 0.995 0.970 0.970 0.953
22 3.800 0.800 2.600 7.700 0.094 0.062 0.095 0.107 0.076 0.022 0.067 0.089 0.978 0.986 0.985 0.977
23 1.400 1.700 5.300 4.700 0.072 0.063 0.081 0.125 0.039 0.033 0.057 0.094 0.992 0.991 0.971 0.974
24 2.900 8.000 2.300 5.600 0.103 0.101 0.117 0.150 0.103 0.098 0.058 0.115 0.980 0.980 0.991 0.922
25 12.200 3.200 8.000 3.200 0.110 0.073 0.124 0.094 0.121 0.058 0.057 0.059 0.978 0.972 0.984 0.989
26 5.000 7.700 2.900 8.900 0.083 0.107 0.116 0.163 0.041 0.078 0.103 0.298 0.991 0.980 0.980 0.958
27 5.900 2.300 7.400 3.200 0.106 0.109 0.097 0.079 0.063 0.071 0.073 0.059 0.931 0.984 0.991 0.981
28 5.300 0.800 2.000 0.800 0.116 0.066 0.085 0.047 0.049 0.031 0.067 0.016 0.990 0.986 0.984 0.994
29 2.000 5.300 5.600 8.900 0.064 0.095 0.089 0.109 0.044 0.064 0.062 0.091 0.980 0.966 0.973 0.976
30 4.400 1.700 1.100 1.700 0.106 0.074 0.071 0.040 0.063 0.051 0.022 0.021 0.976 0.963 0.996 0.990
31 4.400 1.400 6.200 5.000 0.121 0.077 0.110 0.096 0.149 0.034 0.087 0.054 0.966 0.983 0.978 0.991
32 4.700 4.100 4.100 2.300 0.086 0.123 0.070 0.075 0.046 0.074 0.034 0.041 0.982 0.967 0.944 0.967
33 3.500 5.600 4.100 1.400 0.098 0.086 0.070 0.103 0.071 0.087 0.060 0.067 0.988 0.981 0.972 0.984
34 2.000 7.700 2.300 4.100 0.059 0.082 0.086 0.123 0.043 0.059 0.045 0.060 0.987 0.987 0.982 0.991
35 5.300 2.900 2.000 1.700 0.154 0.096 0.083 0.058 0.149 0.093 0.036 0.032 0.973 0.958 0.992 0.986
36 9.500 3.800 2.600 2.900 0.123 0.081 0.065 0.075 0.099 0.038 0.055 0.041 0.988 0.985 0.974 0.991
37 1.100 4.700 4.100 1.100 0.074 0.057 0.068 0.075 0.029 0.029 0.040 0.042 0.988 0.995 0.992 0.986
38 0.200 2.600 2.600 5.000 0.073 0.097 0.142 0.130 0.027 0.045 0.155 0.097 0.988 0.926 0.911 0.973
39 4.400 4.100 2.000 2.300 0.080 0.071 0.081 0.070 0.049 0.036 0.046 0.040 0.984 0.990 0.991 0.994
40 1.700 0.800 2.000 5.600 0.106 0.068 0.081 0.110 0.064 0.029 0.043 0.114 0.989 0.978 0.982 0.981
41 4.400 3.500 4.100 4.400 0.086 0.131 0.136 0.108 0.052 0.116 0.101 0.093 0.965 0.944 0.906 0.892
42 5.300 2.600 3.200 4.400 0.122 0.076 0.078 0.079 0.118 0.047 0.042 0.100 0.976 0.977 0.982 0.968
43 8.300 4.700 5.900 3.800 0.121 0.099 0.098 0.098 0.074 0.083 0.061 0.048 0.987 0.982 0.990 0.991
44 7.100 1.700 0.500 8.600 0.135 0.084 0.067 0.089 0.166 0.068 0.029 0.077 0.965 0.979 0.993 0.976
45 2.300 2.900 3.200 3.500 0.095 0.111 0.114 0.121 0.056 0.090 0.110 0.088 0.984 0.974 0.972 0.946
46 5.900 2.900 2.600 4.700 0.109 0.101 0.054 0.086 0.106 0.095 0.033 0.049 0.981 0.969 0.992 0.970
47 2.600 2.600 6.800 6.200 0.088 0.074 0.081 0.173 0.030 0.038 0.055 0.182 0.988 0.993 0.977 0.898
48 5.900 2.900 0.800 2.600 0.156 0.085 0.101 0.094 0.102 0.036 0.040 0.091 0.983 0.987 0.991 0.960
49 2.300 1.700 0.800 4.700 0.089 0.077 0.121 0.121 0.064 0.042 0.063 0.127 0.989 0.987 0.987 0.959
50 1.400 0.200 1.400 0.800 0.053 0.062 0.073 0.057 0.024 0.039 0.036 0.023 0.996 0.986 0.987 0.985
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Table A2. Cont.

C-S Test
(Critical Value: 7.810)

K-S Test
(Critical Value: 0.210)

CVM Test
(Critical Value: 0.461)

PPCC Test
(Critical Value: 0.960)

Duration

1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h 1 h 2 h 6 h 24 h
51 4.100 5.300 3.800 2.300 0.089 0.108 0.072 0.077 0.114 0.164 0.036 0.042 0.978 0.978 0.993 0.990
52 1.100 4.400 6.200 5.600 0.075 0.126 0.164 0.129 0.045 0.108 0.251 0.209 0.994 0.976 0.954 0.965
53 3.200 7.400 1.400 3.500 0.057 0.131 0.066 0.097 0.037 0.143 0.036 0.096 0.987 0.975 0.988 0.962
54 4.400 8.000 4.400 1.400 0.133 0.087 0.124 0.069 0.123 0.059 0.092 0.027 0.977 0.984 0.987 0.981
55 8.600 4.400 5.900 0.800 0.114 0.077 0.104 0.091 0.064 0.051 0.085 0.063 0.980 0.995 0.988 0.977
56 1.100 3.200 2.600 3.500 0.068 0.076 0.105 0.096 0.058 0.050 0.052 0.081 0.983 0.993 0.989 0.984
57 2.300 3.500 3.200 6.800 0.074 0.078 0.074 0.093 0.052 0.067 0.038 0.105 0.985 0.976 0.988 0.970
58 2.000 2.900 5.000 3.200 0.071 0.083 0.072 0.068 0.064 0.062 0.038 0.035 0.985 0.987 0.988 0.986
59 1.100 3.200 5.000 3.500 0.056 0.073 0.120 0.077 0.023 0.039 0.145 0.076 0.992 0.991 0.968 0.983
60 5.300 4.700 0.500 7.700 0.082 0.070 0.045 0.135 0.075 0.047 0.029 0.142 0.981 0.984 0.993 0.965
61 3.500 0.800 1.400 4.400 0.077 0.129 0.081 0.093 0.049 0.080 0.042 0.068 0.986 0.988 0.990 0.989

Note: The stations are indicated on the far left of the table with numbers specified in Table A1. The critical value
of each goodness-of-fit test result at the 5% significance level of the Gumbel distribution is shown in parentheses.
Statistically insignificant values are highlighted in bold letters on a red background.
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