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Abstract: The prevailing method for handling municipal solid waste (MSW) is incineration, a critical
process that demands safe, stable, and eco-conscious operation. While grate-typed furnaces offer
operational flexibility, they often generate pollution during unstable operating conditions. Moreover,
fluctuations in the physical and chemical characteristics of MSW contribute to variable combustion
statuses, accelerating internal furnace wear and ash accumulation. Tackling the challenges of pollu-
tion, wear, and efficiency in the MSW incineration (MSWI) process necessitates the automatic online
recognition of combustion status. This article introduces a novel online recognition method using
deep forest classification (DFC) based on convolutional multi-layer feature fusion. The method entails
several key steps: initial collection and analysis of flame image modeling data and construction
of an offline model utilizing LeNet-5 and DFC. Here, LeNet-5 trains to extract deep features from
flame images, while an adaptive selection fusion method on multi-layer features selects the most
effective fused deep features. Subsequently, these fused deep features feed into DFC, constructing
an offline recognition model for identifying combustion status. Finally, embedding this recognition
system into an existing MSWI process data monitoring system enables online flame video recognition.
Experimental results show remarkable accuracies: 93.80% and 95.08% for left and right grate furnace
offline samples, respectively. When implemented in an online flame video recognition platform, it
aptly meets recognition demands.

Keywords: municipal solid waste incineration; combustion status; LeNet-5 network; deep forest
classification; online flame video identification

1. Introduction

Municipal solid waste incineration (MSWI) serves as a sustainable approach method
for effectively managing the challenges posed by municipal solid waste (MSW) in terms
of environmental sustainability [1]. Through high-temperature combustion, it transforms
MSW into ash and heat energy, playing a pivotal role in tackling the escalating environ-
mental issues associated with MSW treatment [2]. It also mitigates, to a certain extent, the
negative impacts of conventional landfilling and composting practices on the environment.
However, with the increasing emphasis on environmental sustainability, there is a height-
ened focus on the feasibility and long-term consequences of MSWI. Potential challenges
arise in the MSWI process, including the release of harmful gases that can compromise air
and water quality, posing a substantial threat to environmental sustainability [3]. Conse-
quently, it is imperative to implement effective control measures in the design and operation
of incineration facilities to reduce emissions and minimize their impact on the environment
and human health. In the pursuit of sustainability, MSWI must strike a delicate balance
encompassing economic, social, and environmental considerations.
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MSWI has gained widespread global recognition owing to its substantial benefits in
terms of harm reduction, minimization, and resource utilization [4,5]. A variety of incin-
erators exist for MSW, such as grate-type, bed-type, and fluidized bed incinerators. The
predominant method for the MSWI process typically employs grate-type incinerators. [6].
Compared to other furnace types, grate-based ones are known for their characteristics of
flexibility and easy operation. However, their energy efficiency is low, and their pollutant-
emission rate is high under unstable running status [7]. Technological innovation emerges
as a key element in achieving this equilibrium, fostering the green and standardized man-
agement of MSW through techniques [8,9]. This will propel MSW management toward a
more sustainable trajectory. Thus, much more advanced technologies, such as machining
learning and artificial intelligence based on vision, are needed to overcome these prob-
lems [10]. Due to its high heterogeneity, MSW poses challenges in maintaining combustion
stability, potentially resulting in issues such as coking, ash accumulation, and corrosion
inside the furnace. Therefore, making timely and accurate judgments on combustion status
becomes necessary [11].

Presently, the observation of waste incinerator combustion status primarily relies on
visual assessments by experts. They combine visual observations with flame conditions
from on-site observation holes to adjust key parameters, ensuring combustion stability [12].
However, this method faces several challenges: (1) the lack a unified judgment standard
leads to inconsistent results, susceptible to subjective variations; (2) prolonged on-site
image observation induces visual fatigue in workers, impacting their health; (3) multiple
interrelated key regulatory parameters significantly impact combustion efficiency, mak-
ing accurate individual control by operators extremely challenging, potentially causing
unstable control processes. Relying solely on manual methods for identifying combus-
tion status is no longer adequate to meet production requirements. To enhance on-site
detection automation, reduce subjective influences stemming from human factors, decrease
labor intensity, and improve detection efficiency, employing online flame video recognition
technology based on artificial intelligence is crucial [13].

When it comes to recognizing combustion status through flame-image analysis in the
MSWI process, several studies exist, each focusing on different furnace types. Miyamoto
et al. [14] conducted research on the “AI-VISION” system, integrating combustion-image
processing, neural networks for discerning combustion status, and online learning methods
for optimizing neural networks. Their system manipulated operating values in fluidized
bed incinerators. Zhou [15] developed a combustion status diagnosis model based on
neural networks utilizing geometric features and grayscale information from flame im-
ages, validated through ten-fold cross-validation experiments. Guo et al. [16] presented a
combustion status-recognition method employing mixed data augmentation and a deep
convolutional generative adversarial network (DCGAN) to obtain flame images under
diverse conditions. Huang et al. [12] extracted key parameters like grayscale mean, flame
area ratio, high-temperature ratio, and flame front to characterize and evaluate combus-
tion status. Meanwhile, Zhang et al. [17] extracted 19 feature vectors encompassing color,
shape, and texture of flame images, constructing an echo state network recognition model.
These findings emphasize the necessity for further research and validation of combustion
status identification methods tailored to different MSWI plants. In the field of combustion
status recognition based on flame videos, researchers have proposed diverse solutions
for similarly complex industrial processes. Chen et al. [18] utilized typical video blocks
of rotary kiln flame combustion as model training samples. They extracted texture and
motion features from these blocks and inputted them into a support vector machine (SVM)
to construct a flame status-recognition model, though with relatively unstable recognition
performance. Li et al. [19] employed a convolutional recurrent neural network (CRNN)
with spatiotemporal relationships from rotary kiln flame image sequences to predict com-
bustion status. Wu et al. [20] initially used a convolutional neural network (CNN) to extract
spatial features from electric melting magnesia furnace video signals. Then, they applied a
recurrent neural network (RNN) to extract temporal features, achieving automatic labeling
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of abnormal conditions using weighted median filtering. These studies indicated that
flame video recognition is founded upon analyzing sequences of flame images. Thus,
achieving video recognition of combustion status in the MSWI process should commence
with constructing an offline recognition model based on flame images.

The offline modeling process for flame-image recognition typically comprises two
stages: feature extraction and image recognition. Some researchers have focused on manual
feature extraction methods to derive flame features. For instance, Zhang et al. [21] extracted
multiple feature vectors encompassing color, shape, and texture features from flame images,
utilizing these as inputs to the bilinear convolutional neural network (BCNN) for flame-
image recognition. Wu et al. [22] initially segmented the pertinent region in the flame
image and, subsequently, employed extracted color, texture, and rectangularity features for
flame recognition. Another approach by Wu et al. [23] assessed image quality by modeling
texture, structure, and naturalness, using the resulting image quality score as the input for
the visual recognition model. However, the ability of the extracted feature parameters in the
aforementioned studies to accurately represent combustion status relies partly on image-
processing techniques, such as image segmentation algorithms, and partly on manual
expertise. Consequently, this approach has significant limitations and inherent instability.

Feature extraction methods based on deep learning offer the capability to autonomously
learn representative features from flame images. Han et al. [24] utilized flame images
to train the convolutional sparse autoencoder (CSAE), resulting in a feature extractor
adept at extracting deep features. Visualization of these features demonstrated clear
discriminability across various combustion statuses. Similarly, Liu et al. [25] applied
deep learning to industrial combustion processes, employing a multi-layered deep belief
network (DBN) to extract nonlinear features. This approach yielded descriptive insights
into flame physical properties, outperforming traditional principal component analysis
(PCA). These studies validated the immense potential of deep networks in combustion
status recognition. LeNet-5, a convolutional neural network devised by LeCun et al. in
1998, gained prominence in handwritten digit recognition, showcasing commendable
recognition results [26]. Roy et al. [27] utilized LeNet-5 to extract deep features from
forest fire images, offering insights for developing early-stage forest fire detection systems
by controlling model complexity through L2 regularization. He et al. [28] enhanced the
model by augmenting the layer count of the LeNet-5 network and incorporating a dropout
layer, achieving heightened recognition accuracy. Li et al. [29] merged low-level and high-
level features extracted from the LeNet-5 structure, leveraging the first two pooling layers
and fully connected layers as SoftMax inputs for micro expression recognition, yielding
robust results on a public expression database. LeNet-5’s capability to capture local image
features based on local receptive fields, reduce network training parameters through shared
weights, and maintain a simple network structure is noteworthy. Despite being an early
convolutional neural network with shallow layers, LeNet-5 finds extensive use in image-
processing tasks like license plate recognition and face detection. These studies show
LeNet-5’s broad application prospects in image recognition. Its characteristic structure
excels in extracting deep features, making it a promising choice for MSWI flame combustion
status recognition in this study.

Drawing inspiration from deep neural network models, the deep forest classification
(DFC) algorithm introduced by Zhou et al. [30] comprises two primary components: a
multi-grained scan and a cascaded forest (CF). The former transforms raw data features,
while the latter constructs prediction models using these transformed features [31,32].
The multi-grained scan bolsters CF training, augmenting its effectiveness. Cao et al. [33]
integrated a rotating forest into the cascaded layer to enhance DFC’s discriminative ability
for hyperspectral features. Their work also leveraged spatial information from adjacent
pixels, refining hyperspectral image classification. Zheng et al. [34] tackled challenges in
leaf classification, specifically addressing the lack of large-scale professional datasets and
expert knowledge annotations. They utilized generative adversarial networks for image
feature extraction and a designed fuzzy random forest as CF’s base learner, achieving



Sustainability 2023, 15, 16473 4 of 26

superior recognition performance compared to existing techniques. Sun et al. [35] applied
DFC to chest computer tomography (CT) scan image recognition for coronavirus disease-19
(COVID-19). Extracting features from specific image locations, they employed DFC to
learn high-level representations, resulting in commendable recognition performance. Addi-
tionally, Nie et al. [36] proposed an online multi-view deep forest architecture for remote
sensing image data. DFCs offer advantages over DNNs, such as fewer hyperparameters, in-
terpretability, and automatic adjustment of model complexity [37]. Moreover, they perform
well with smaller image data samples, effectively resolving challenges in constructing DNN
recognition models. However, it is noteworthy that the multi-grained scan module of DFC
can be time-consuming and inefficient in acquiring diverse scaled deep features. These
studies collectively imply that DFC, combined with CNN-based deep feature extraction
algorithms, can effectively tackle the limitations posed by limited flame-image datasets in
the MSWI process.

In summary, achieving online recognition of combustion video status in the MSWI
process entails addressing several key factors: (1) effectively extracting deep features from
flame images despite limited sample size; (2) maximizing the utilization of these extracted
deep features to build a recognition model that meets on-site recognition requirements;
(3) advancing toward online video recognition by leveraging flame-image recognition.
Hence, this article proposes an online video recognition method rooted in convolutional
multi-layer feature fusion and DFC. This method involves (1) training the LeNet-5 network
using flame images collected on-site to extract deep flame features; (2) employing an
adaptive fusion method based on LeNet-5 multi-layer features to select and use fused
features as flame representations; (3) utilizing the extracted deep fusion features in DFC to
construct an offline recognition model for determining combustion status based on flame
images; and (4) integrating the offline recognition algorithm into the developed MSWI
flame video combustion status-recognition platform to achieve real-time online recognition.

The existing research highlights prevalent applications of online flame video recog-
nition in areas like rotary kilns and electric magnesium melting furnaces. Surprisingly,
there is a dearth of studies regarding online flame video recognition in the MSWI field.
Consequently, this article aims to explore an online recognition method tailored to the
unique characteristics of flame videos in MSWI. The primary innovations of this method
encompass (1) proposing a fusion technique that combines flame depth feature extraction
and adaptive selection based on LeNet-5; (2) integrating deep fusion features with the DFC
algorithm to construct a combustion status-recognition model specifically designed for the
MSWI process; and (3) developing a practical online combustion status-recognition plat-
form based on flame video for MSWI. These advancements signify the potential practical
value of this technology within the MSWI field.

2. Flame-Image Analysis of the MSWI Process for Online Recognition
2.1. Description of Flame Image in the Furnace

Figure 1 shows the process flow of grate-type MSWI in Beijing.
The MSWI process includes six stages: solid waste storage and transportation, solid

waste combustion, use of a heat recovery boiler, steam electric power generation, flue gas
cleaning, and flue gas emission. Initially, MSWs undergo collection and transportation via
vehicles to the MSWI plant, where they undergo fermentation and dehydration to attain a
high calorific value. Subsequently, these wastes are elevated and deposited into the feed
hopper of the incinerator. Within this phase, the feeder pushes MSWs into the incinerator,
traversing through various stages: drying, burning 1, burning 2, and burnout. The flue
gas generated by combustion is then directed by the induced draft fan into the waste
heat recovery system, generating high-temperature steam through heat exchange with
liquid water in the boiler drum. Exiting the boiler outlet, the flue gas proceeds successively
through the reactor and bag filter. Ultimately, the induced draft fan discharges the flue gas
from the stack into the environment after the removal of acidic gases, particles, and active
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carbon adsorbates. This emission phase marks the presence of components such as HCl,
SO2, NOx, dioxins, and other substances [38].
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Figure 1. Process flow of an MSWI plant in Beijing.

From the solid waste combustion stages depicted in Figure 1, industrial cameras
are positioned at oblique upper positions on the end of grates to capture real-time flame
video streams. These videos are then transmitted via coaxial cables to the supervisory
control room of the distributed control system (DCS). In this study, video acquisition cards
are utilized to store these streams on the data acquisition computer for offline modeling.
Typically, field experts assess the combustion status of municipal solid waste (MSW),
and the corresponding manipulation strategy controls the MSWI process. Consequently,
combustion status serves as key feedback information for achieving intelligent control of
the MSWI process.

2.2. Combustion Status Analysis of MSWI Process

Figure 2 illustrates the correspondence between the layout of the furnace grate within
the incinerator and the captured flame image.
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In Figure 2a, the interior screen of the right-side furnace clearly displays the layout,
featuring the dry grate, combustion grates 1 and 2, the burning grate, and the steps be-
tween these grates. This provides a clear means to determine the flame-burning position by
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aligning the furnace-grate image. Before making the classification of combustion status, our
preliminary investigation focused on abnormal combustion phenomena within biomass
grate furnace combustion. Huang [15] defined layered combustion deviation status while
studying diagnostic methods for the MSWI process, highlighting lateral and longitudinal
deviations in the flame’s spatial distribution. In the field of biomass grate furnace combus-
tion, Duffy [39] and other researchers [40] identified a phenomenon termed “channeling.”
This occurs when the bed inside the combustion chamber is uneven or at the junction
with the furnace’s boundary wall. Channeling disrupts the uniformity of the secondary
air blown in from beneath the grate, exacerbating bed irregularities. This article classifies
MSWI flame images into four distinct combustion statuses: normal, deviation, channeling,
and smoldering. This classification draws from the observed on-site flame combustion con-
ditions in the studied MSWI process and the analysis of abnormal disturbance phenomena
in grate furnace combustion, using knowledge from on-site experts and research scholars.
Following the effective classification, corresponding adjustments to control strategies will
be initiated, based on the obtained results. Such initiatives, focused on artificial intelligence
(AI) vision, will be a focal point for future research endeavors.

Four typical flame combustion statuses are as follows.
In Figure 3, the red arrow’s direction represents the flame’s orientation, while the

arrow’s length corresponds to the flame’s height. The blue line signifies the combustion
line, while the red line outlines the outer flame’s edge. Figure 3a showcases a typical
instance of channeling burning, characterized by localized, bright, divergent jets due to
short-term material scarcity. The flame distribution indicates local channeling, particularly
bright areas, and divergence. Additionally, the combustion line appears scattered in both
the dry and combustion sections. Figure 3b presents a typical example of smoldering,
reflecting poor MSW combustion status with substantial blackened areas in the furnace.
The combustion line appears star-shaped. Figure 3c displays a typical case of partial
burning, attributed to uneven material layer distribution, resulting in a dispersed yet bright
flame. The combustion line assumes a curved distribution. Figure 3d depicts a typical
example of normal burning, showcasing a favorable MSW combustion status. The flame
remains stable, bright, and concentrated, while the combustion line maintains a straight
distribution. Efforts are underway to simulate on-site expert identification methods by
monitoring flame videos. With a focus on synchronous on-site monitoring of the left and
right grates, there is a desire to establish a laboratory platform capable of real-time playback
of flame videos. This platform aims to identify combustion statuses using an online model,
facilitating the translation of laboratory research findings to industrial applications.

Sustainability 2023, 15, 16473 7 of 28 
 

flame videos. This platform aims to identify combustion statuses using an online model, 

facilitating the translation of laboratory research findings to industrial applications. 

 
(a) (b) (c) (d) 

Figure 3. Typical flame combustion status of MSWI process: (a) channeling burning, (b) smoldering, 

(c) partial burning, (d) normal burning. (The red line represents the upper edge of the flame, the 

blue line represents the lower edge of the flame, and the red arrow represents the direction of the 

flame). 

Absolutely, simulating the on-site experts’ identification method via flame video 

monitoring is imperative. The aim is to realize the synchronous monitoring mode of both 

the left and right grates on site. Establishing a laboratory platform capable of real-time 

playback of flame videos and deploying an online model to identify combustion statuses 

are important. This platform will serve as invaluable support in seamlessly transferring 

the research findings from laboratory investigations to industrial sites. 

3. Materials and Methods 

3.1. Materials 

The plant has a capacity of 628.8 tons per day (t/d) for managing municipal solid 

waste. The dimensions of the grate measure 11 m in length and 12.9 m in width. The pri-

mary airflow within the system is 67,500 cubic meters per hour (m3/h) at a temperature of 

200 °C. The primary air is introduced into the bed through four separate sections of the 

grate, with each section contributing varying proportions of the total airflow: 24.31%, 

43.35%, 19.27%, and 13.07%, respectively. 

To capture flame videos, industrial cameras are strategically positioned at the end of 

the grates to enable real-time monitoring of combustion status. These cameras facilitate 

the transmission of MSWI flame videos via a coaxial cable. Subsequently, the videos are 

acquired and stored utilizing video acquisition cards. The onsite collection equipment 

configuration is illustrated in Figure 4. 

 

Figure 3. Typical flame combustion status of MSWI process: (a) channeling burning, (b) smoldering,
(c) partial burning, (d) normal burning. (The red line represents the upper edge of the flame, the blue
line represents the lower edge of the flame, and the red arrow represents the direction of the flame).

Absolutely, simulating the on-site experts’ identification method via flame video
monitoring is imperative. The aim is to realize the synchronous monitoring mode of both
the left and right grates on site. Establishing a laboratory platform capable of real-time
playback of flame videos and deploying an online model to identify combustion statuses
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are important. This platform will serve as invaluable support in seamlessly transferring the
research findings from laboratory investigations to industrial sites.

3. Materials and Methods
3.1. Materials

The plant has a capacity of 628.8 tons per day (t/d) for managing municipal solid
waste. The dimensions of the grate measure 11 m in length and 12.9 m in width. The
primary airflow within the system is 67,500 cubic meters per hour (m3/h) at a temperature
of 200 ◦C. The primary air is introduced into the bed through four separate sections of
the grate, with each section contributing varying proportions of the total airflow: 24.31%,
43.35%, 19.27%, and 13.07%, respectively.

To capture flame videos, industrial cameras are strategically positioned at the end of
the grates to enable real-time monitoring of combustion status. These cameras facilitate
the transmission of MSWI flame videos via a coaxial cable. Subsequently, the videos are
acquired and stored utilizing video acquisition cards. The onsite collection equipment
configuration is illustrated in Figure 4.
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screening process, we identified and isolated 54 h and 49 min of typical combustion status
video clips for the left grate and 44 h and 45 min for the right grate. These carefully chosen
video clips were then sampled to create a database of image frames representing typical
combustion statuses. This image database served as the foundation for training the offline
model. Subsequently, for the online recognition test, we utilized a distinct 2.5-h flame video
collected on 21 September 2021. Notably, this particular video was not used in the offline
modeling process.

3.2. Methods

The proposed strategy is shown in Figure 5.
Figure 5 shows that the method is mainly includes three steps: data collection and

analysis, offline modeling, and online recognition. The detailed information about these
steps is as follows.
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3.2.1. Data Collection and Analysis

Initially, leveraging domain expert knowledge and operational experience, the dura-
tions of typical combustion statuses within the four categories—normal, partial burning,
runaway burning, and smoldering—are identified based on comprehensive insights into
the global information of the flame. Subsequently, adhering to the specifications outlined
by research experts, the sampling frequency is determined, enabling the extraction of a
series of combustion flame images. These images serve as the foundation for construct-
ing the offline training model. Finally, employing a DFC based on MATLAB code as the
classification tool, automatic classification of typical combustion images is achieved. This
classification process relies on the recorded duration information corresponding to the
various typical combustion statuses, facilitating the effective categorization of these images.

3.2.2. Offline Modeling

The functions of each module in the offline modeling stage are as follows.

(1) Deep feature extraction module based on LeNet-5: This module is dedicated to prepro-
cessing the training samples sourced from the library of typical combustion images.
Subsequently, the LeNet-5 network undergoes training to extract profound features
from flame images. The trained LeNet-5 network’s output features from each layer
are intelligently selected and fused adaptively, culminating in the extraction of deep
fusion features inherent in flame images.

(2) Construction of recognition model based on cascaded forest: This module employs the
extracted deep fusion features of flame images as the primary input for the cascaded
forest. The aim is to construct a combustion status-recognition model. Through this
process, the system derives the combustion status-recognition results, enabling the
identification and classification of different combustion statuses.

Deep Feature Extraction Based on LeNet-5

Function description
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Before inputting the flame-image dataset {In}N
n=1 into LeNet-5 [12], it needs to be

preprocessed to meet the network input requirements. The preprocessing operation used
here is to first adjust the size of the original color flame image In to 32× 32, and then
perform grayscale processing. The expression is as follows:

IPre
n = fGray( fScale(In)), n = 1, · · · , N (1)

where fScale represents the image scaling operation and fGray represents the image grayscale
processing.

Then, the preprocessed image IPre
n is input into the LeNet-5 network to train the ability

of network to extract depth features from flame images. Figure 6 shows the model structure
of LeNet-5.
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As shown in Figure 6, the network mainly consists of convolutional layer 1, pooling
layer 1, convolutional layer 2, pooling layer 2, fully connected layer 1, fully connected layer
2, and the output layer.

(1) Convolutional layer 1

The convolutional layer comprises numerous convolutional kernels, and the area
covered by each kernel on the input feature map is termed the receptive field. These kernels
slide across the feature map with a specific step size, facilitating localized perception within
their respective receptive fields. Simultaneously, every local region of the feature map
shares convolutional kernel weights and bias parameters, fostering parameter sharing
across the network for efficient computation.

Figure 7 is a schematic diagram of the convolution process. When the convolution
kernel covers the upper left corner of the input feature map, the calculation process of the
upper left corner elements z11 of the output feature map is as follows:

z11 = a11 × k11 + a12 × k12 + a21 × k21 + a22 × k22 (2)

Figure 7. Schematic diagram of convolution process.

Afterwards, the convolution kernel slides in steps of layer 1 on the input feature map
to obtain the remaining elements of the output feature map, and the convolution process is
denoted as ∗.
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For the convolutional layer 1 of the LeNet5 network, the input is IPre
n , the convolutional

kernel is K1 with size 5 × 5 × 6, and the output net activation graph is Z1,n with size
28× 28× 6. The calculation expression for Z1,n is as follows:

Z1,j,n = (IPre
n ∗K1,j + b1,j), j = 1, 2, . . . 6 (3)

Then, the output feature map of convolution layer 1 A1,n is obtained by inputting Z1,n
into the Tanh activation function, and its calculation expression is as follows:

A1,n = ftanh(Z1,n) =
eZ1,n − e−Z1,n

eZ1,n + e−Z1,n
(4)

where ftanh(·) represents the Tanh activation function.

(2) Pooling layer 1

The pooling layer, also known as the downsampling layer, is used to reduce overfitting
in the network by sparsely processing the feature maps. The pooling kernel of the pooling
layer only consists of a framework and does not have specific parameters. Similar to the
convolutional layer, the pooling kernel slides over the input feature maps with a certain
stride and performs either max pooling or average pooling on the feature maps. Max
pooling takes the maximum feature value within the pooling region, while average pooling
calculates the average value of the feature maps within the pooling region. Compared to
max pooling, average pooling helps to preserve the overall trend of the flame image and
retain more background information, which is important for flame images. In this case,
average pooling is used, and its calculation expression is as follows:

A2,n = mean(A1,n, K2) (5)

where mean(·) represents the mean function of the matrix, K2 (2× 2× 6) is the pooling
kernel used to determine the size of the mean matrix, and A2,n (size 14× 14× 6) is the
pooling layer output feature map.

(3) Convolutional layer 2

When the input feature map is multi-channel, the schematic diagram of the convolu-
tion process is shown in Figure 8.
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As shown in Figure 7, the number of channels in the convolutional kernel is the
same as the number of channels in the input feature map. The number of output feature
map channels is the same as the number of convolutional kernels. The multi-channel
convolution result is the sum of the convolution operations performed on each channel
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of the input feature map and each channel of the convolution kernel. The multi-channel
convolution operation is denoted as ⊗.

For the convolutional layer 2 of the LeNet5 network, the input is A2,n, the convolutional
kernel is K3 with size 5× 5× 6× 16, and the output net activation graph is Z2,n with size
10× 10× 16. The calculation expression for Z2,n is as follows:

Z2,m,n = (A2,n ⊗K3,m) + b2,m, m = 1, 2, . . . 16 (6)

Then, Z2,n is input into the Tanh activation function ftanh(·) to obtain the output
feature map A3,n of convolution layer 2, which is calculated as follows:

A3,n = ftanh(Z2,n) (7)

(4) Pooling layer 2

Consistent with pooling layer 1, average pooling is used here. Its calculation expression
is as follows:

A4,n = mean(A3,n, K4) (8)

where K4 (2× 2× 16) is the pooling core and A4,n (5× 5× 16) is the pooling layer output
feature map.

(5) Fully connected layer 1

The function of the fully connected layer is to map the learned features to the sam-
ple space. For the fully connected layer 1 of LeNet5, the processing process for A4,n is
as follows:

z3,n = (A4,n ⊗K5) + b3,n, n = 1, 2, . . . , 120 (9)

where the size of K5 is 5× 5× 16× 120 and the size of z3,n is 1× 120.
Then, z3,n is input into the Tanh activation function to obtain the output feature map

a5,n of fully connected layer 1, which is calculated as follows:

a5,n = ftanh(z3,n) (10)

(6) Fully connected layer 2

For the fully connected layer 2 of LeNet5, the processing process for a5,n is as follows:

z4,n = k6a5,n + b4 (11)

where the size of k6 and z4,n are 120× 4 and 1× 4.
Then, z4,n is input into the Tanh activation function to obtain the output a6,n of fully

connected layer 1, which is calculated as follows:

a6,n = ftanh(z4,n) (12)

(7) Output layer

Finally, the output of fully connected layer 2 a6,n is processed by Softmax to obtain the
probability values ŷn of the input image belonging to labels. The expression is as follows:

ŷt,n =
ea6,t,n

T
∑

i=1
ea6,i,n

, t = 1, 2, · · · , T (13)

where T = 4 represents the number of classes and e represents the base of the natural logarithm.
Parameter learning process
The parameters that need to be learned mainly include the weight matrices K1, K3,

K5, and k6 of convolution layer 1, convolution layer 2, fully connected layer 1, and fully
connected layer 2, as well as bias parameters b1, b2, b3, and b4.
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LeNet5 uses the gradient descent algorithm to calculate the backpropagation of errors,
and then uses the SGD algorithm to update the network parameters. When selecting the
loss function, the mean squared error (MSE) is widely used, due to its intuitive, easy-to-
compute, and smooth characteristics. So, the used loss function is the MSE loss, which is
expressed as:

C =
1
2
‖a6,n − yn‖

2
2 (14)

where ‖ · ‖2 represents the L2 norm.
The specific process of deriving network node gradients from backward to forward in

the backpropagation algorithm is as follows.

(1) Parameter updated for fully connected layer 2.

First, the error δ6 of the loss function on the z4,n output layer of fully connected layer 2
is calculated as follows:

δ6 =
∂C

∂z4,n
=

∂C
∂a6,n

· ∂a6,n

∂z4,n
= (a6,n − yn)� f ′(z4,n) (15)

where � represents the Hadmard product and the expression for f ′(z4,n) is

f ′(z4,n) = 1− (a6,n)
2 (16)

Then, δ6 is used to calculate the gradient of the loss function on the parameters of the layer:

∂C
∂k6

=
∂C

∂a6,n
· ∂a6,n

∂k6
= δ6(a5,n)

T (17)

∂C
∂b4

= δ6 (18)

Finally, the error δ6 is used to calculate the gradient of the loss function on the param-
eters of the layer:

∂C
∂k6

=
∂C

∂a6,n
· ∂a6,n

∂k6
= δ6(a5,n)

T (19)

∂C
∂b4

= δ6 (20)

(2) Parameter updated for fully connected layer 1.

First, the error recurrence formula between adjacent layers is used to find δ5:

δ5 = (k6)
Tδ6 � f ′(z3,n) = (k6)

Tδ6 � [1− (a5,n)
2] (21)

Then, the error is used to calculate the gradient of the loss function for the
layer parameters:

∂C
∂K5

=
∂C

∂a5,n
· ∂a5,n

∂K5
= δ5(A4,n)

T (22)

∂C
∂b3

= δ5 (23)

(3) There is no parameter update for pooling layer 2, but intermediate layer error δ4 needs
to be passed:

δ4 = (K5)
Tδ5 (24)

(4) Parameter updated for convolutional layer 2.
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First, the error recurrence formula is used between adjacent layers to find δ3:

δ3 = upsample(δ4)� f ′(z3,n) = upsample(δ4)� [1− (a5,n)
2] (25)

where upsample(·) represents the upsampling operation.
The specific processing process is as follows.
First, δ3 is restored to the size before pooling; then, due to average pooling, the

elements of δ3 are averaged and restored to the submatrix. Error δ3 is used to calculate the
gradient of the loss function on the parameters of this layer:

∂C
∂K3

= δ3 ∗A2,n (26)

∂C
∂b2

=
U

∑
u=1

V

∑
v=1

δu,v
3 (27)

(5) There is no parameter update for pooling layer 1, but intermediate layer error δ2 needs
to be passed:

δ2 = δ3 ∗ ROT180(K3) (28)

(6) Convolutional layer 1 parameter update.

The error recurrence formula between adjacent layers is used to calculate δ1:

δ1 = upsample(δ2)� f ′(z1,n) = upsample(δ2)� [1− (A1,n)
2] (29)

where δ1 is used to calculate the gradient of the loss function on the parameters of this layer:

∂C
∂K1

= δ1 ∗ IPre
n (30)

∂C
∂b1

=
U

∑
u=1

V

∑
v=1

δu,v
1 (31)

The SGD algorithm is used to update the parameter values, as shown:

θp = θp−1 − α∇p, p = 1, · · · , P (32)

where θp represents the network parameters at the p-th iteration, α is the learning rate,
P represents the total number of iterations of network training, and ∇p represents the
parameter gradient calculated during the p-th backpropagation.

After completing the training of the LeNet-5 network, it has the ability to extract depth
features from flame images. In order to increase the diversity and complementarity of
features and effectively characterize flame images, adaptive selection fusion processing
between multiple layers of features is performed on the output feature maps of each layer
of the LeNet-5 network. The specific steps are as follows:

Step (1): The output feature [s1
n, s2

n, s3
n, s4

n, s5
n, s6

n] of each layer is extracted and saved;
Step (2): [s1

n, s2
n, s3

n, s4
n, s5

n, s6
n] is flattened to obtain the one-dimensional vector form

[s1
n, s2

n, s3
n, s4

n, s5
n, s6

n] of each layer;
Step (3): The features of each layer in different combinations are combined

and concatenated;
Step (4): Each of the combined features is input into the recognition model to construct

different recognition models and the performances of each recognition model are compared;
Step (5): The feature combination corresponding to the best performance recognition

model is used as the final flame image deep fusion feature sFusion
n .
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Construction of Recognition Model Based on Deep Forest Classification (DFC)

To enhance the model’s performance, the DFC’s multi-granularity scanning mod-
ule [24] has been excluded, utilizing solely the CF module for constructing the combustion
status-recognition model. Within each CF layer, the base learners employed are RF and
CRF. The structural configuration of the recognition model based on the CF is depicted in
Figure 9.
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In the DFC model, each layer of CF contains 2 RFs and 2 CRFs for cascade learning.
The CF layer model is constructed in terms of stack ensemble. (sFusion

n )
N
n=1 is input into CF

to construct a recognition model. Except for the first CF layer, where (sFusion
n )

N
n=1 is directly

used as the input feature of each forest learner, subsequent CF layers need to concatenate
the class distribution vector output from the previous layer with (sFusion

n )
N
n=1 as the input

of this CF layer to effectively prevent overfitting of the stack strategy. The number of CF
layers is adaptively adjusted through cross validation.

RF Algorithm

RF is an ensemble model based on bagging method, which is constructed with decision
trees (DTs). It was proposed by Breiman et al. [41].

Bootstrap is used to randomly sample training set
.
S = {(si, yi), i = 1, 2, · · · I}. The

generation process of RF training subset G can be described as follows:

{(gc,Mc
, yc)i

1}
I
i=1 = fGini( fBootstrap(

.
S, G), Rc) (33)

where {(gc,Mc
, yc)i

1}
I
i=1 represents the c-th training subset, fGini(·) represents a random

subspace function, fBootstrap(·) represents the bootstrap function, and r = 1, · · · , Rc, Rc

represents the number of features selected for the c-th training subset in the forest, Rc << R.
By using the above function C times, the training set of RF can be obtained:

.
S
C

}
⇒



{(g1,R1
, y1)

i
1}

I

i=1
· · ·

{(gc,Rc
, yc)

i
1}

I

i=1
· · ·

{(g1,RC
, yC)

i
1}

I

i=1

(34)

where C represents the number of bootstraps and the number of DT in RF.
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DTs are constructed in the RF model using the training subsets. The process is de-

scribed using {(gc,Mc
, yc)i

1}
I
i=1 as an example. Based on the Gini index criterion, the best

segmentation feature number Rc
sel and segmentation point s is found:

(Rc
sel, s) = argmin[

yc
PLeft

yc Gini(yc
PLeft

) +
yc

PRight

yc Gini(yc
PRight

)] (35)

Gini(·) =
Cp

∑
cp=1

pcP(1− pcp) = 1−
Cp

∑
cP=1

pcP
2 (36)

s.t.


PLeft > θForest
PRight > θForest
Gini(y c

PLeft
) > 0

Gini(y c
PRight

) > 0

where cP represents class cP in dataset label y, cP ∈ 1, · · · , CP; pcP represents the proportion
of cP to the total number of labels; Gini(·) represents the Gini index; θForest represents the
threshold for the number of samples contained in the leaf node; yc

PLeft
and yc

PRight
represent

the label values corresponding to the samples divided into left and right nodes in the c-th
training subset, respectively.

Based on the above criteria, the optimal variable number and segmentation point
value are found by first traversing all input features. The input feature space is divided
into left and right regions. Then, the above process is repeated for each region until the
number of samples contained in the leaf node is less than θForest, or the Gini index of the
samples in the leaf node is 0. Finally, the input feature space is divided into Q regions. To
construct a classification tree model, the following functions is defined:

Γc(·) =
Q

∑
q=1

pq
c Λ(pc,Rc ∈ Gq) (37)

where
pq

c = [p1, · · · , pcp , · · · , pCp ]
T(yc

NRq
∈ Gq, NGq ≤ θForest) (38)

where NGq represents the number of training samples contained in region Gq; yc
NRq

repre-

sents the label vector corresponding to the sample features in region Gq; pq
c represents the

predicted result of the final output of Gq; and to indicate the function Λ(·), when pc,Rc ∈ Gq,
Λ(·) = 1, otherwise Λ(·)= 0.

The RF model obtained by repeating the above step C times:

FRF(·) = arg(max
cP

1
C

C

∑
c=1

Γc(·)) (39)

CRF Algorithm

The difference between CRF and RF is that the former randomly selects the value of
a certain feature as a splitting node in the complete feature space, while the latter selects
the splitting node in the bootstrap random feature subspace through Gini coefficients.
Correspondingly, the CRF model is represented as FCRF(·).

Output of DFC

Each layer of CF uses 2 FRF(·) and 2 FCRF(·) for cascade learning. The stack ensemble
method is used to construct the CF model. For input sFusion

n , the last layer of CF will output
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the 4Cp-dimensional class distribution vector Resn = [rRF
1 , rRF

2 , rCRF
1 , rCRF

2 ]. The average and
maximum criteria are used to obtain the recognition result ŷn,

ŷn = max[
1
4
× Resn] (40)

For feature (sFusion
n )

N
n=1, the final combustion status-recognition result (ŷn)

N
n=1 can

be obtained.
In the recognition module, the number of decision trees C (we denote it as Tree_Number

later) and the minimum number of leaf nodes θForest (we denote it as Mini_Samples later)
in each forest need to be determined, while other parameters remain default.

3.2.3. Online Recognition

In the online recognition stage for combustion status, the process begins with cap-
turing flame videos, which are then subjected to image preprocessing. Following this,
the preprocessed images undergo deep feature extraction through the LeNet-5 network.
Subsequently, the output features from the intermediate layers of LeNet-5 are intelligently
fused, based on an adaptive selection fusion mechanism. These fused features serve as the
input for the DFC model, facilitating the recognition of combustion statuses. Ultimately,
this sequence culminates in obtaining the online recognition result.

The schematic diagram of on-site layout of the online identification is shown in
Figure 10.
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4. Results and Discussion
4.1. Data Collection and Analysis Results

The flame-image dataset utilized in this experiment originates from an MSWI plant
located in Beijing. To ensure comprehensive coverage despite the limited field of view of
industrial cameras, each end of the left and right grates onsite is equipped with a dedicated
camera for flame video collection. The process of handling the collected videos involves
initially selecting typical combustion status segments within the flame videos. Upon
collection of flame videos from both the left and right grates onsite, the initial step involves
the removal of fragments depicting unclear combustion statuses. Following this, the
remaining video segments are classified according to the combustion status classification
standard illustrated in Figure 2. These classified video segments are subsequently sampled
at a consistent rate of 1 frame per minute utilizing a MATLAB program, resulting in the
extraction of flame-image frames. Consequently, the total count of typical combustion
status images obtained from the left and right furnace bars is 3289 and 2685, respectively.
For a detailed breakdown of each typical combustion status, please refer to Table 1.

Table 1. Flame-image dataset.

Grate Amount Normal Partial Channeling Smoldering Size

Left 3289 655 1176 1044 414 720 × 576

Right 2685 564 1002 534 585 720 × 576
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4.2. Offline Modeling Results
4.2.1. Evaluation Indices

Table 2 shows the confusion matrix of the classification results.

Table 2. Confusion matrix of classification result.

True Situation
Prediction Result

Positive Negative

Positive TP FN

Negative FP TN

In Table 2, the directional columns within the confusion matrix denote the prediction
outcomes, whereas the directional rows signify the actual results. By analyzing the confu-
sion matrix, it becomes evident where the model tends to misclassify during predictions.
To assess the model’s performance, evaluation indices such as accuracy, precision, and
recall are employed. They are calculated as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
(41)

Precision =
TP

TP + FP
(42)

Recall =
TP

TP + FN
(43)

4.2.2. Result of Method Comparison

The training, validation and testing datasets are divided according to the ratio of 2:1:1
of the samples. In order to verify the superiority of the proposed method, it is compared
with the classical CNN method. The settings of parameter are shown in the Table 3.

Table 3. Settings of CNNs parameter.

Methods
Settings of Parameter

Epochs Learning_Rate Batch_Size

VGGnet 74 0.01 64

Mobilenet 90 0.045 64

Densenet 90 0.1 16

EfficientNet 90 0.256 64

LeNet-5 (Left) 28 0.01 100

LeNet-5 (Right) 39 0.01 100

Regnet 90 0.1 64

The parameters of DFC are set as follows: Tree_Number = 30, Mini_Samples = 5. At
the same time, the cascade layer is set to adaptively adjust using cross-validation results.

Tables 4 and 5, respectively, show the experimental results of the recognition models
constructed by each method based on left- and right-grate flame images.

From the comparative experimental results presented above, it is evident that, despite
being the most fundamental network, LeNet-5 outperforms other CNN models in flame
combustion status recognition with fewer training epochs. Interestingly, even without a
multi-granularity scanning module, the recognition model constructed with DFC manages
to achieve commendable recognition results. Building upon this insight, this study extracts
depth features from flame images using LeNet-5 and dynamically selects and merges the



Sustainability 2023, 15, 16473 18 of 26

intermediate layer features as input for constructing a recognition model with DFC. The
experimental findings demonstrate a substantial enhancement in recognition performance
when compared to the original recognition models employing LeNet-5 and DFC. This shows
LeNet-5’s proficiency in effectively extracting deep flame-image features. Additionally,
the adaptive selection and fusion of features from each intermediate layer exhibit stronger
complementarity. Consequently, upon integrating with DFC, the model’s recognition
efficacy using adaptive selection features has a remarkable improvement.

Table 4. Comparative experimental results of left grate.

Methods
Evaluation Index

Accuracy Precision Recall

VGGnet 0.36893 0.09223 0.25

Mobilenet 0.81553 0.80217 0.75971

Densenet 0.83252 0.85054 0.78825

EfficientNet 0.55097 0.6452 0.60138

Regnet 0.7185 0.7124 0.7248

LeNet-5 0.8990 0.8986 0.8929

DFC 0.8832 0.8576 0.9022

Ours 0.9380 0.9182 0.9507

Table 5. Comparative experimental results of right grate.

Methods
Evaluation Index

Accuracy Precision Recall

VGGnet 0.36418 0.09104 0.25

Mobilenet 0.77313 0.80396 0.75911

Densenet 0.87164 0.86668 0.88562

EfficientNet 0.77313 0.77245 0.77835

Regnet 0.8269 0.8211 0.8295

LeNet-5 0.9151 0.9122 0.9149

DFC 0.8942 0.8848 0.9001

Ours 0.9508 0.9456 0.9541

4.2.3. Results of Offline Recognition

As shown in Figure 11, the training process of the left- and right-grate flame images is
based on LeNet-5.

As illustrated in Figure 11, the loss curve exhibits an initial decrease followed by a
gradual stabilization, indicating convergence. Similarly, the accuracy curve displays an
initial ascent followed by a steady level, affirming that the models have converged and
possess a robust capability to extract deep features from flame images.

Following the training of the LeNet-5 network, the extracted intermediate layer fea-
tures undergo an adaptive selection and fusion process. Subsequently, these fused features
are utilized as inputs for constructing a recognition model within the DFC framework.
The comparison among various recognition models yields the ultimate multi-layer feature
adaptive selection fusion outcomes. The fusion recognition results for each layer of the left-
and right-grate flame images are detailed in Tables 6 and 7, respectively.

Table 6 shows that for the flame image of the left grate, the best recognition result
can be achieved by fusing the depth features of the flame image extracted from layers 4–6.
Table 7 shows that for the flame image of the right grate, the best recognition result can
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be achieved by fusing the depth features of the flame image extracted from layers 3–6.
The results in multi-layer feature adaptive selection of the left grate and the right grate
indicate that there are certain differences in the quality of left- and right-grate flame images.
Therefore, it is necessary to construct recognition models based on left- and right-grate
flame images separately.
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Table 6. Fusion results of multilayer feature adaptive selection for left grate.

Layers
Evaluation Index

Accuracy Precision Recall

1–6 0.8917 0.8694 0.9174

2–6 0.9124 0.8894 0.9265

3–6 0.9039 0.8800 0.9238

4–6 0.9380 0.9182 0.9507

5–6 0.9112 0.8942 0.9143

5 0.8966 0.8743 0.9006

Table 7. Fusion results of multilayer feature adaptive selection for right grate.

Layers
Evaluation Index

Accuracy Precision Recall

1–6 0.9121 0.9028 0.9263

2–6 0.9359 0.9279 0.9470

3–6 0.9508 0.9456 0.9541

4–6 0.9329 0.9305 0.9322

5–6 0.9091 0.9111 0.9050

5 0.8972 0.8967 0.8950

4.2.4. Sensitivity Analysis of Hyperparametric

Taking the model built by the left grate as an example, the sensitivity analysis of
Tree_Number and Mini_Samples are shown in Figures 12 and 13.

As shown in Figure 12, the model performance gradually improves with the increase
in Tree_Number. When the Tree_Number increases from 1 to 10, the model performance
improves significantly. Afterwards, with the continuous increase in Tree_Number, the
model performance slight fluctuates within a certain range.
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As shown in Figure 13, with the increase in Mini_Samples, the performance of the
recognition model gradually decreases.

4.3. Online Recognition Results

This article designs an MSWI process data monitoring system based on MATLAB
APP designer. In the system, process data are directly displayed on the interface through
corresponding tags, and flame video is used to recognize the combustion status by using
the offline modeled recognition model. The recognition results are displayed above the
flame video. The sampling frequency of process data is once per second. The sampling
frequency of video can be set, with the unit being minutes. Figure 14 shows the online
identification results of flames in different combustion status for the designed system.

Figure 14 illustrates the system devised in this article, capable of visually presenting
process data and flame videos. It successfully accomplishes the recognition of online flame
videos utilizing the designed recognition algorithm. This system effectively eliminates
the instability in recognition stemming from manual experience, laying the foundation for
advanced research in intelligent control.

From Figure 14, it is evident that the software not only presents the current combustion
status-recognition results of the flame video but also assigns a probability value. This addi-
tional detail is reasonable, due to the complexity of onsite combustion status, where distinct
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boundaries between the four categories of combustion status might not always be clear. In
situations involving transitional or coupled phases of different combustion statuses, the
probability representation mode is employed. This approach enables operators in practical
MSWI plants to judge the confidence level of recognition results, providing a valuable
reference for adjusting control strategies. It offers operators a clearer understanding of the
degree of coupling within the current combustion status. Furthermore, this enhances the
need for a dynamic recognition method based on contextual image correlation in future
advancements.
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The hardware configuration used for building the model included an Intel® CoreTM

i9-11900K CPU, 32 GB of RAM (Santa Clara, CA, USA), and an NVIDIA GeForce RTX3060Ti
GPU (Santa Clara, CA, USA). The integrated development environment was MATLAB
2021b. The time required for the trained offline recognition model to analyze and recognize
a flame image averaged approximately 0.174 s. During the online recognition process,
flame images were sampled every minute to assess their combustion status. Given the
relatively slow change in combustion status, this recognition speed effectively met the
requirements for real-time online recognition.

4.4. Comprehensive Analysis

For the method proposed in this article, there are some limitations in each stage, as follows.

(1) In the data collection and analysis stage, the selection of typical video clips was metic-
ulously performed through expert labeling, excluding videos with severe combustion
status coupling. Consequently, some unclear videos were not utilized in this study. In
future research, these video clips might undergo denoising techniques before expert
labeling is applied. Furthermore, the sampled video frames contain visual representa-
tions of various process data. For instance, Wang [42] utilized CCD radiation energy
images to reconstruct the temperature distribution within the incineration system.
Similarly, He et al. [43] measured flame radiation spectra to acquire temperature and
emission rates of the burning flames, and Xie et al. [44] predicted calorific value by
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employing Yolov5 to identify waste types in images. Subsequent efforts will focus on
integrating these images with the corresponding process data.

(2) In the offline modeling phase, the CNN-based feature extraction predominantly em-
phasizes local flame image features, potentially neglecting key global features es-
sential for comprehensively observing complex combustion status within the MSWI
process. In our prior investigations, we explored a combustion status-recognition
technique employing Vision Transformer-IDFC [45], leveraging the transformer’s self-
attention mechanism to extract significant global features from flame images, resulting
in commendable recognition outcomes. Consequently, addressing the identification of
complementary features and the elimination of redundant ones becomes necessary,
accomplished by employing feature selection methods that aim for maximal correla-
tion and minimal redundancy. Additionally, optimizing classifier hyperparameters
concurrently with those used in feature engineering can improve the generalization
performance of the recognition model. To tackle this challenge, we aim to employ
intelligent optimization algorithms inspired by biological intelligence, like genetic
algorithms, differential evolution, and particle swarm optimization. Nevertheless,
these approaches may introduce computational complexities with long running times.
As a remedy, optimization using proxy models will be employed to address this
new challenge.

(3) In the online recognition phase, we capture flame video frames at regular intervals
and employ offline constructed recognition model for identification. The obtained
recognition results are then fed back into the online recognition system, displaying
them on the desktop. However, this process inherently employs a single-image
identification method, lacking consideration for the temporal relationships and causal
changes between image sequences over time. Flame videos, as a form of streaming
data, encapsulate both spatial information within frames and temporal information
between frames. Regrettably, the current recognition system neglects this temporal
dimension. Techniques from other domains specializing in stream image mining
and analysis, such as active learning with expert input [46], real-time video stream
analytics [47], and streaming deep neural networks (DNN) [48], can be integrated.
This enhancement would facilitate applications in the actual MSWI process, paving
the way for intelligent control based on AI vision.

5. Conclusions

In response to the practical need for reducing emissions and energy consumption in
the treatment of MSW using a grate furnace within the MSWI process, we developed an
online combustion status-recognition method. Based on a database of flame images depict-
ing typical combustion statuses, our approach involves utilizing convolutional multi-layer
feature fusion and DFC. Initially, a LeNet-5 network undergoes training to extract deep fea-
tures from flame images across various typical combustion statuses. These extracted deep
features are selectively fused using a multi-layer feature adaptive selection method, form-
ing a comprehensive representation of flame combustion status. Subsequently, the fused
depth features are fed into the DFC to establish an offline recognition model. Ultimately,
this model facilitates the realization of online flame video recognition.

This study presents several notable advantages: (1) Advanced combination: It marks
the first time of successfully combining LeNet-5 and DFC, applied specifically to the field
of MSWI combustion status recognition. (2) High recognition accuracy: The constructed
combustion status-recognition model exhibits superior accuracy in identifying various
combustion statuses. (3) Online application validation: The application of the offline
recognition model to online recognition systems demonstrates practical value and real-
world applicability. (4) Real MSWI plant data: The research is based on actual MSWI plant
flame data, offering important practical insights and guidance for implementation.

The study’s limitations are apparent in two areas: (1) Incomplete representation: The
considered combustion statuses might not encompass all the varied conditions observed



Sustainability 2023, 15, 16473 23 of 26

on site. Future work should involve supplementing these statuses based on expert insights
to develop corresponding recognition models. (2) Qualitative analysis only: The current
recognition model predominantly performs qualitative analysis of the flame’s combustion
status. There is a vital need to make quantitative analyses using flame data to assess factors
like material layer thickness.

The flame combustion status online recognition system plays a pivotal role in boosting
operational efficiency and reducing pollutant emissions within the MSWI process. This
cutting-edge technology enables real-time monitoring of incineration flames, ensuring a
consistently efficient and stable combustion process. Based on the software of the flame
online-recognition system, precise control strategies can be employed to fine-tune combus-
tion parameters, thus minimizing the release of harmful gases significantly and enhancing
resource utilization efficiency. This intelligent-control approach contributes significantly to
realizing the sustainability objectives of MSW management by combining incineration tech-
nology with environmental sustainability protection, steering the MSWI process toward a
more eco-friendly direction.
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Nomenclature
Symbols Meaning
I Flame image
y Corresponding labels of flame-image dataset
N Number of flame-image datasets
n Index of flame image
IPre Preprocessed image
fScale Image scaling operation
fGray Image grayscale processing
j Index of channel numbers in feature maps
J Number of feature map channels
K Convolutional kernel
k Elements in convolutional kernel
b Bias
b Bias element
A Output feature maps of convolutional and pooling layers
a Fully connected layer output feature map
a Output elements in feature maps
mean(·) Matrix mean function
∗ Convolutional operation
ftanh(·) Tanh activation function
ŷn Output of LeNet-5
e The base of natural logarithms
T Number of categories
down(·) Downsampling function
Z Net activation of convolutional layers
z Net activation of fully connected layers
z Elements in output feature maps
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∂ Taking partial derivative
δ Network middle-layer error
C Loss function
‖ · ‖2 L2-norm
� Hadmard product
upsample(·) Upsampling operation
ROT180(·) Flip matrix 180 degrees
U, V Width and height of δ

θ General term for network parameters
α Learning rate
P Total number of iterations for network training
∇p Parameter gradient calculated during the p-th backpropagation
S Layer 1–4 output feature map of LeNet-5
s Output feature flattening for each layer
sFusion Deep fusion features of flame images
Tree_Number The number of decision trees in the CF layer forest
Mini_Samples Minimum sample size of leaf nodes
ŷTrain Offline recognition results
fDFC(·) DFC model
ŷ Online recognition results
TP True positive example
FP False positive example
TN True negative example
FN False negative example
.
S Training set of RF
G Training subset of RF
c Index of RF training subset
Rc Number of features selected by the c-th training subset in the forest
C Count of bootstrap
Rsel Number of best segmentation feature
s The cut
Gini(·) Index of Gini
θForest Threshold of the number of samples contained in leaf nodes
yPLeft

Label values corresponding to samples divided into left nodes in the training subset
yPRight

Label values corresponding to samples divided into right nodes in the training subset

θForest Threshold of leaf node
Q Number of input feature space partition regions
cP Class cP in dataset label y.
pcP The proportion of class cP to the total number of labels
Γc(·) Classification tree model
NGq Number of training samples included in region Gq

yj
NRq

Label vectors corresponding to sample features in region Gq

pq
c Prediction results of the final output of region Gq

Λ(·) Indicator function
FRF(·) RF model
FCRF(·) CRF model
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