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Abstract: The prevailing method for handling municipal solid waste (MSW) is incineration, a critical 

process that demands safe, stable, and eco-conscious operation. While grate-typed furnaces offer 

operational flexibility, they often generate pollution during unstable operating conditions. Moreo-

ver, fluctuations in the physical and chemical characteristics of MSW contribute to variable combus-

tion statuses, accelerating internal furnace wear and ash accumulation. Tackling the challenges of 

pollution, wear, and efficiency in the MSW incineration (MSWI) process necessitates the automatic 

online recognition of combustion status. This article introduces a novel online recognition method 

using deep forest classification (DFC) based on convolutional multi-layer feature fusion. The 

method entails several key steps: initial collection and analysis of flame image modeling data and 

construction of an offline model utilizing LeNet-5 and DFC. Here, LeNet-5 trains to extract deep 

features from flame images, while an adaptive selection fusion method on multi-layer features se-

lects the most effective fused deep features. Subsequently, these fused deep features feed into DFC, 

constructing an offline recognition model for identifying combustion status. Finally, embedding this 

recognition system into an existing MSWI process data monitoring system enables online flame 

video recognition. Experimental results show remarkable accuracies: 93.80% and 95.08% for left and 

right grate furnace offline samples, respectively. When implemented in an online flame video recog-

nition platform, it aptly meets recognition demands. 

Keywords: municipal solid waste incineration; combustion status; LeNet-5 network; deep forest 

classification; online flame video identification 

 

1. Introduction 

Municipal solid waste incineration (MSWI) serves as a sustainable approach method 

for effectively managing the challenges posed by municipal solid waste (MSW) in terms 

of environmental sustainability [1]. Through high-temperature combustion, it transforms 

MSW into ash and heat energy, playing a pivotal role in tackling the escalating environ-

mental issues associated with MSW treatment [2]. It also mitigates, to a certain extent, the 

negative impacts of conventional landfilling and composting practices on the environ-

ment. However, with the increasing emphasis on environmental sustainability, there is a 

heightened focus on the feasibility and long-term consequences of MSWI. Potential chal-

lenges arise in the MSWI process, including the release of harmful gases that can compro-

mise air and water quality, posing a substantial threat to environmental sustainability [3]. 

Consequently, it is imperative to implement effective control measures in the design and 

operation of incineration facilities to reduce emissions and minimize their impact on the 

environment and human health. In the pursuit of sustainability, MSWI must strike a del-

icate balance encompassing economic, social, and environmental considerations. 
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MSWI has gained widespread global recognition owing to its substantial benefits in 

terms of harm reduction, minimization, and resource utilization [4,5]. A variety of incin-

erators exist for MSW, such as grate-type, bed-type, and fluidized bed incinerators. The 

predominant method for the MSWI process typically employs grate-type incinerators. [6]. 

Compared to other furnace types, grate-based ones are known for their characteristics of 

flexibility and easy operation. However, their energy efficiency is low, and their pollutant-

emission rate is high under unstable running status [7]. Technological innovation emerges 

as a key element in achieving this equilibrium, fostering the green and standardized man-

agement of MSW through techniques [8,9]. This will propel MSW management toward a 

more sustainable trajectory. Thus, much more advanced technologies, such as machining 

learning and artificial intelligence based on vision, are needed to overcome these problems 

[10]. Due to its high heterogeneity, MSW poses challenges in maintaining combustion sta-

bility, potentially resulting in issues such as coking, ash accumulation, and corrosion in-

side the furnace. Therefore, making timely and accurate judgments on combustion status 

becomes necessary [11]. 

Presently, the observation of waste incinerator combustion status primarily relies on 

visual assessments by experts. They combine visual observations with flame conditions 

from on-site observation holes to adjust key parameters, ensuring combustion stability 

[12]. However, this method faces several challenges: (1) the lack a unified judgment stand-

ard leads to inconsistent results, susceptible to subjective variations; (2) prolonged on-site 

image observation induces visual fatigue in workers, impacting their health; (3) multiple 

interrelated key regulatory parameters significantly impact combustion efficiency, mak-

ing accurate individual control by operators extremely challenging, potentially causing 

unstable control processes. Relying solely on manual methods for identifying combustion 

status is no longer adequate to meet production requirements. To enhance on-site detec-

tion automation, reduce subjective influences stemming from human factors, decrease la-

bor intensity, and improve detection efficiency, employing online flame video recognition 

technology based on artificial intelligence is crucial [13]. 

When it comes to recognizing combustion status through flame-image analysis in the 

MSWI process, several studies exist, each focusing on different furnace types. Miyamoto 

et al. [14] conducted research on the “AI-VISION” system, integrating combustion-image 

processing, neural networks for discerning combustion status, and online learning meth-

ods for optimizing neural networks. Their system manipulated operating values in fluid-

ized bed incinerators. Zhou [15] developed a combustion status diagnosis model based on 

neural networks utilizing geometric features and grayscale information from flame im-

ages, validated through ten-fold cross-validation experiments. Guo et al. [16] presented a 

combustion status-recognition method employing mixed data augmentation and a deep 

convolutional generative adversarial network (DCGAN) to obtain flame images under di-

verse conditions. Huang et al. [12] extracted key parameters like grayscale mean, flame 

area ratio, high-temperature ratio, and flame front to characterize and evaluate combus-

tion status. Meanwhile, Zhang et al. [17] extracted 19 feature vectors encompassing color, 

shape, and texture of flame images, constructing an echo state network recognition model. 

These findings emphasize the necessity for further research and validation of combustion 

status identification methods tailored to different MSWI plants. In the field of combustion 

status recognition based on flame videos, researchers have proposed diverse solutions for 

similarly complex industrial processes. Chen et al. [18] utilized typical video blocks of 

rotary kiln flame combustion as model training samples. They extracted texture and mo-

tion features from these blocks and inputted them into a support vector machine (SVM) 

to construct a flame status-recognition model, though with relatively unstable recognition 

performance. Li et al. [19] employed a convolutional recurrent neural network (CRNN) 

with spatiotemporal relationships from rotary kiln flame image sequences to predict com-

bustion status. Wu et al. [20] initially used a convolutional neural network (CNN) to ex-

tract spatial features from electric melting magnesia furnace video signals. Then, they ap-

plied a recurrent neural network (RNN) to extract temporal features, achieving automatic 
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labeling of abnormal conditions using weighted median filtering. These studies indicated 

that flame video recognition is founded upon analyzing sequences of flame images. Thus, 

achieving video recognition of combustion status in the MSWI process should commence 

with constructing an offline recognition model based on flame images. 

The offline modeling process for flame-image recognition typically comprises two 

stages: feature extraction and image recognition. Some researchers have focused on man-

ual feature extraction methods to derive flame features. For instance, Zhang et al. [21] 

extracted multiple feature vectors encompassing color, shape, and texture features from 

flame images, utilizing these as inputs to the bilinear convolutional neural network 

(BCNN) for flame-image recognition. Wu et al. [22] initially segmented the pertinent re-

gion in the flame image and, subsequently, employed extracted color, texture, and rectan-

gularity features for flame recognition. Another approach by Wu et al. [23] assessed image 

quality by modeling texture, structure, and naturalness, using the resulting image quality 

score as the input for the visual recognition model. However, the ability of the extracted 

feature parameters in the aforementioned studies to accurately represent combustion sta-

tus relies partly on image-processing techniques, such as image segmentation algorithms, 

and partly on manual expertise. Consequently, this approach has significant limitations 

and inherent instability. 

Feature extraction methods based on deep learning offer the capability to autono-

mously learn representative features from flame images. Han et al. [24] utilized flame im-

ages to train the convolutional sparse autoencoder (CSAE), resulting in a feature extractor 

adept at extracting deep features. Visualization of these features demonstrated clear dis-

criminability across various combustion statuses. Similarly, Liu et al. [25] applied deep 

learning to industrial combustion processes, employing a multi-layered deep belief net-

work (DBN) to extract nonlinear features. This approach yielded descriptive insights into 

flame physical properties, outperforming traditional principal component analysis (PCA). 

These studies validated the immense potential of deep networks in combustion status 

recognition. LeNet-5, a convolutional neural network devised by LeCun et al. in 1998, 

gained prominence in handwritten digit recognition, showcasing commendable recogni-

tion results [26]. Roy et al. [27] utilized LeNet-5 to extract deep features from forest fire 

images, offering insights for developing early-stage forest fire detection systems by con-

trolling model complexity through L2 regularization. He et al. [28] enhanced the model 

by augmenting the layer count of the LeNet-5 network and incorporating a dropout layer, 

achieving heightened recognition accuracy. Li et al. [29] merged low-level and high-level 

features extracted from the LeNet-5 structure, leveraging the first two pooling layers and 

fully connected layers as SoftMax inputs for micro expression recognition, yielding robust 

results on a public expression database. LeNet-5’s capability to capture local image fea-

tures based on local receptive fields, reduce network training parameters through shared 

weights, and maintain a simple network structure is noteworthy. Despite being an early 

convolutional neural network with shallow layers, LeNet-5 finds extensive use in image-

processing tasks like license plate recognition and face detection. These studies show Le-

Net-5’s broad application prospects in image recognition. Its characteristic structure ex-

cels in extracting deep features, making it a promising choice for MSWI flame combustion 

status recognition in this study. 

Drawing inspiration from deep neural network models, the deep forest classification 

(DFC) algorithm introduced by Zhou et al. [30] comprises two primary components: a 

multi-grained scan and a cascaded forest (CF). The former transforms raw data features, 

while the latter constructs prediction models using these transformed features [31,32]. The 

multi-grained scan bolsters CF training, augmenting its effectiveness. Cao et al. [33] inte-

grated a rotating forest into the cascaded layer to enhance DFC’s discriminative ability for 

hyperspectral features. Their work also leveraged spatial information from adjacent pix-

els, refining hyperspectral image classification. Zheng et al. [34] tackled challenges in leaf 

classification, specifically addressing the lack of large-scale professional datasets and ex-

pert knowledge annotations. They utilized generative adversarial networks for image 
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feature extraction and a designed fuzzy random forest as CF’s base learner, achieving su-

perior recognition performance compared to existing techniques. Sun et al. [35] applied 

DFC to chest computer tomography (CT) scan image recognition for coronavirus disease-

19 (COVID-19). Extracting features from specific image locations, they employed DFC to 

learn high-level representations, resulting in commendable recognition performance. Ad-

ditionally, Nie et al. [36] proposed an online multi-view deep forest architecture for re-

mote sensing image data. DFCs offer advantages over DNNs, such as fewer hyperparam-

eters, interpretability, and automatic adjustment of model complexity [37]. Moreover, 

they perform well with smaller image data samples, effectively resolving challenges in 

constructing DNN recognition models. However, it is noteworthy that the multi-grained 

scan module of DFC can be time-consuming and inefficient in acquiring diverse scaled 

deep features. These studies collectively imply that DFC, combined with CNN-based deep 

feature extraction algorithms, can effectively tackle the limitations posed by limited flame-

image datasets in the MSWI process. 

In summary, achieving online recognition of combustion video status in the MSWI 

process entails addressing several key factors: (1) effectively extracting deep features from 

flame images despite limited sample size; (2) maximizing the utilization of these extracted 

deep features to build a recognition model that meets on-site recognition requirements; 

(3) advancing toward online video recognition by leveraging flame-image recognition. 

Hence, this article proposes an online video recognition method rooted in convolutional 

multi-layer feature fusion and DFC. This method involves (1) training the LeNet-5 net-

work using flame images collected on-site to extract deep flame features; (2) employing 

an adaptive fusion method based on LeNet-5 multi-layer features to select and use fused 

features as flame representations; (3) utilizing the extracted deep fusion features in DFC 

to construct an offline recognition model for determining combustion status based on 

flame images; and (4) integrating the offline recognition algorithm into the developed 

MSWI flame video combustion status-recognition platform to achieve real-time online 

recognition. 

The existing research highlights prevalent applications of online flame video recog-

nition in areas like rotary kilns and electric magnesium melting furnaces. Surprisingly, 

there is a dearth of studies regarding online flame video recognition in the MSWI field. 

Consequently, this article aims to explore an online recognition method tailored to the 

unique characteristics of flame videos in MSWI. The primary innovations of this method 

encompass (1) proposing a fusion technique that combines flame depth feature extraction 

and adaptive selection based on LeNet-5; (2) integrating deep fusion features with the 

DFC algorithm to construct a combustion status-recognition model specifically designed 

for the MSWI process; and (3) developing a practical online combustion status-recognition 

platform based on flame video for MSWI. These advancements signify the potential prac-

tical value of this technology within the MSWI field. 
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2. Flame-Image Analysis of the MSWI Process for Online Recognition 

2.1. Description of Flame Image in the Furnace 

Figure 1 shows the process flow of grate-type MSWI in Beijing. 
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Figure 1. Process flow of an MSWI plant in Beijing. 

The MSWI process includes six stages: solid waste storage and transportation, solid 

waste combustion, use of a heat recovery boiler, steam electric power generation, flue gas 

cleaning, and flue gas emission. Initially, MSWs undergo collection and transportation via 

vehicles to the MSWI plant, where they undergo fermentation and dehydration to attain 

a high calorific value. Subsequently, these wastes are elevated and deposited into the feed 

hopper of the incinerator. Within this phase, the feeder pushes MSWs into the incinerator, 

traversing through various stages: drying, burning 1, burning 2, and burnout. The flue gas 

generated by combustion is then directed by the induced draft fan into the waste heat 

recovery system, generating high-temperature steam through heat exchange with liquid 

water in the boiler drum. Exiting the boiler outlet, the flue gas proceeds successively 

through the reactor and bag filter. Ultimately, the induced draft fan discharges the flue 

gas from the stack into the environment after the removal of acidic gases, particles, and 

active carbon adsorbates. This emission phase marks the presence of components such as 

HCl, SO2, NOx, dioxins, and other substances [38]. 

From the solid waste combustion stages depicted in Figure 1, industrial cameras are 

positioned at oblique upper positions on the end of grates to capture real-time flame video 

streams. These videos are then transmitted via coaxial cables to the supervisory control 

room of the distributed control system (DCS). In this study, video acquisition cards are 

utilized to store these streams on the data acquisition computer for offline modeling. Typ-

ically, field experts assess the combustion status of municipal solid waste (MSW), and the 

corresponding manipulation strategy controls the MSWI process. Consequently, combus-

tion status serves as key feedback information for achieving intelligent control of the 

MSWI process. 
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2.2. Combustion Status Analysis of MSWI Process 

Figure 2 illustrates the correspondence between the layout of the furnace grate within 

the incinerator and the captured flame image. 

 
(a) (b) 

Figure 2. Correspondence relation between furnace grate and flame-image distribution: (a) furnace 

grate image; (b) flame image. 

In Figure 2a, the interior screen of the right-side furnace clearly displays the layout, 

featuring the dry grate, combustion grates 1 and 2, the burning grate, and the steps be-

tween these grates. This provides a clear means to determine the flame-burning position 

by aligning the furnace-grate image. Before making the classification of combustion sta-

tus, our preliminary investigation focused on abnormal combustion phenomena within 

biomass grate furnace combustion. Huang [15] defined layered combustion deviation sta-

tus while studying diagnostic methods for the MSWI process, highlighting lateral and 

longitudinal deviations in the flame’s spatial distribution. In the field of biomass grate 

furnace combustion, Duffy [39] and other researchers [40] identified a phenomenon 

termed “channeling.” This occurs when the bed inside the combustion chamber is uneven 

or at the junction with the furnace’s boundary wall. Channeling disrupts the uniformity 

of the secondary air blown in from beneath the grate, exacerbating bed irregularities. This 

article classifies MSWI flame images into four distinct combustion statuses: normal, devi-

ation, channeling, and smoldering. This classification draws from the observed on-site 

flame combustion conditions in the studied MSWI process and the analysis of abnormal 

disturbance phenomena in grate furnace combustion, using knowledge from on-site ex-

perts and research scholars. Following the effective classification, corresponding adjust-

ments to control strategies will be initiated, based on the obtained results. Such initiatives, 

focused on artificial intelligence (AI) vision, will be a focal point for future research en-

deavors. 

Four typical flame combustion statuses are as follows. 

In Figure 3, the red arrow’s direction represents the flame’s orientation, while the 

arrow’s length corresponds to the flame’s height. The blue line signifies the combustion 

line, while the red line outlines the outer flame’s edge. Figure 3a showcases a typical in-

stance of channeling burning, characterized by localized, bright, divergent jets due to 

short-term material scarcity. The flame distribution indicates local channeling, particu-

larly bright areas, and divergence. Additionally, the combustion line appears scattered in 

both the dry and combustion sections. Figure 3b presents a typical example of smoldering, 

reflecting poor MSW combustion status with substantial blackened areas in the furnace. 

The combustion line appears star-shaped. Figure 3c displays a typical case of partial burn-

ing, attributed to uneven material layer distribution, resulting in a dispersed yet bright 

flame. The combustion line assumes a curved distribution. Figure 3d depicts a typical ex-

ample of normal burning, showcasing a favorable MSW combustion status. The flame re-

mains stable, bright, and concentrated, while the combustion line maintains a straight dis-

tribution. Efforts are underway to simulate on-site expert identification methods by mon-

itoring flame videos. With a focus on synchronous on-site monitoring of the left and right 

grates, there is a desire to establish a laboratory platform capable of real-time playback of 
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flame videos. This platform aims to identify combustion statuses using an online model, 

facilitating the translation of laboratory research findings to industrial applications. 

 
(a) (b) (c) (d) 

Figure 3. Typical flame combustion status of MSWI process: (a) channeling burning, (b) smoldering, 

(c) partial burning, (d) normal burning. (The red line represents the upper edge of the flame, the 

blue line represents the lower edge of the flame, and the red arrow represents the direction of the 

flame). 

Absolutely, simulating the on-site experts’ identification method via flame video 

monitoring is imperative. The aim is to realize the synchronous monitoring mode of both 

the left and right grates on site. Establishing a laboratory platform capable of real-time 

playback of flame videos and deploying an online model to identify combustion statuses 

are important. This platform will serve as invaluable support in seamlessly transferring 

the research findings from laboratory investigations to industrial sites. 

3. Materials and Methods 

3.1. Materials 

The plant has a capacity of 628.8 tons per day (t/d) for managing municipal solid 

waste. The dimensions of the grate measure 11 m in length and 12.9 m in width. The pri-

mary airflow within the system is 67,500 cubic meters per hour (m3/h) at a temperature of 

200 °C. The primary air is introduced into the bed through four separate sections of the 

grate, with each section contributing varying proportions of the total airflow: 24.31%, 

43.35%, 19.27%, and 13.07%, respectively. 

To capture flame videos, industrial cameras are strategically positioned at the end of 

the grates to enable real-time monitoring of combustion status. These cameras facilitate 

the transmission of MSWI flame videos via a coaxial cable. Subsequently, the videos are 

acquired and stored utilizing video acquisition cards. The onsite collection equipment 

configuration is illustrated in Figure 4. 
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Figure 4. Onsite collection equipment. 

We meticulously gathered flame videos from the MSWI power plant in Beijing span-

ning the period between November 2020 and January 2022, with video intervals ranging 

from 1 to 3 months. These videos comprehensively depict the combustion conditions at 

the MSWI plant over the entire year. Each grate’s collection of flame videos has a total 

duration of 132 h and 30 min, recorded at a frame rate of 25 frames per second. Following 

a thorough screening process, we identified and isolated 54 h and 49 min of typical com-

bustion status video clips for the left grate and 44 h and 45 min for the right grate. These 

carefully chosen video clips were then sampled to create a database of image frames rep-

resenting typical combustion statuses. This image database served as the foundation for 

training the offline model. Subsequently, for the online recognition test, we utilized a dis-

tinct 2.5-h flame video collected on 21 September 2021. Notably, this particular video was 

not used in the offline modeling process. 

3.2. Methods 

The proposed strategy is shown in Figure 5. 
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Figure 5. Strategy of flame video online recognition. 

Figure 5 shows that the method is mainly includes three steps: data collection and 

analysis, offline modeling, and online recognition. The detailed information about these 

steps is as follows. 

3.2.1. Data Collection and Analysis 

Initially, leveraging domain expert knowledge and operational experience, the dura-

tions of typical combustion statuses within the four categories—normal, partial burning, 

runaway burning, and smoldering—are identified based on comprehensive insights into 

the global information of the flame. Subsequently, adhering to the specifications outlined 
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by research experts, the sampling frequency is determined, enabling the extraction of a 

series of combustion flame images. These images serve as the foundation for constructing 

the offline training model. Finally, employing a DFC based on MATLAB code as the clas-

sification tool, automatic classification of typical combustion images is achieved. This clas-

sification process relies on the recorded duration information corresponding to the vari-

ous typical combustion statuses, facilitating the effective categorization of these images. 

3.2.2. Offline Modeling 

The functions of each module in the offline modeling stage are as follows. 

(1) Deep feature extraction module based on LeNet-5: This module is dedicated to pre-

processing the training samples sourced from the library of typical combustion im-

ages. Subsequently, the LeNet-5 network undergoes training to extract profound fea-

tures from flame images. The trained LeNet-5 network’s output features from each 

layer are intelligently selected and fused adaptively, culminating in the extraction of 

deep fusion features inherent in flame images. 

(2) Construction of recognition model based on cascaded forest: This module employs 

the extracted deep fusion features of flame images as the primary input for the cas-

caded forest. The aim is to construct a combustion status-recognition model. Through 

this process, the system derives the combustion status-recognition results, enabling 

the identification and classification of different combustion statuses. 

Deep Feature Extraction Based on LeNet-5 

Function description 

Before inputting the flame-image dataset 1{ }N

n n=I  into LeNet-5 [12], it needs to be pre-

processed to meet the network input requirements. The preprocessing operation used 

here is to first adjust the size of the original color flame image nI
 to 32 32 , and then 

perform grayscale processing. The expression is as follows: 

Pre

Gray Scale( ( ))n nf f=I I
,       

1, ,n N=    (1) 

where Scalef
 represents the image scaling operation and Grayf

 represents the image gray-

scale processing. 

Then, the preprocessed image 
Pre

nI  is input into the LeNet-5 network to train the 

ability of network to extract depth features from flame images. Figure 6 shows the model 

structure of LeNet-5. 
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Convolutional 
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layer 1 Fully 
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Figure 6. Structure of LeNet5. 

As shown in Figure 6, the network mainly consists of convolutional layer 1, pooling 

layer 1, convolutional layer 2, pooling layer 2, fully connected layer 1, fully connected 

layer 2, and the output layer. 

(1) Convolutional layer 1 
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The convolutional layer comprises numerous convolutional kernels, and the area 

covered by each kernel on the input feature map is termed the receptive field. These ker-

nels slide across the feature map with a specific step size, facilitating localized perception 

within their respective receptive fields. Simultaneously, every local region of the feature 

map shares convolutional kernel weights and bias parameters, fostering parameter shar-

ing across the network for efficient computation. 

Figure 7 is a schematic diagram of the convolution process. When the convolution 

kernel covers the upper left corner of the input feature map, the calculation process of the 

upper left corner elements 11z  of the output feature map is as follows: 

11 11 11 12 12 21 21 22 22z a k a k a k a k=  +  +  +    (2) 

Input feature map Convolutional kernel Output feature map 

11a 12a 13a

21a 22a 23a

31a

32a 33a

11k 12k

21k 22k

11z 12z

21z 22z

 

Figure 7. Schematic diagram of convolution process. 

Afterwards, the convolution kernel slides in steps of layer 1 on the input feature map 

to obtain the remaining elements of the output feature map, and the convolution process 

is denoted as * . 

For the convolutional layer 1 of the LeNet5 network, the input is 
Pre

nI , the convolu-

tional kernel is 1K
 with size 5 5 6  , and the output net activation graph is 1,nZ

 with 

size 28 28 6  . The calculation expression for 1,nZ
 is as follows: 

Pre

1, , 1, 1,( )j n n j jb=  +Z I K
, 

1,2,...6j =
  (3) 

Then, the output feature map of convolution layer 1 1,nA
 is obtained by inputting 

1,nZ
 into the Tanh activation function, and its calculation expression is as follows: 

1, 1

1, 1,

,

1, tanh 1,( )
n

n n

n

n n

e e
f

e e

−

−

−
= =

+

Z Z

Z Z
A Z

  
(4) 

where tanh ( )f 
 represents the Tanh activation function. 

(2) Pooling layer 1 

The pooling layer, also known as the downsampling layer, is used to reduce overfit-

ting in the network by sparsely processing the feature maps. The pooling kernel of the 

pooling layer only consists of a framework and does not have specific parameters. Similar 

to the convolutional layer, the pooling kernel slides over the input feature maps with a 

certain stride and performs either max pooling or average pooling on the feature maps. 

Max pooling takes the maximum feature value within the pooling region, while average 

pooling calculates the average value of the feature maps within the pooling region. Com-

pared to max pooling, average pooling helps to preserve the overall trend of the flame 

image and retain more background information, which is important for flame images. In 

this case, average pooling is used, and its calculation expression is as follows: 
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2, 1, 2( , )n nmean=A A K
  (5) 

where 
( )mean 

 represents the mean function of the matrix, 2K
 ( 2 2 6  ) is the pooling 

kernel used to determine the size of the mean matrix, and 2,nA
 (size 14 14 6  ) is the 

pooling layer output feature map. 

(3) Convolutional layer 2 

When the input feature map is multi-channel, the schematic diagram of the convolu-

tion process is shown in Figure 8. 

Input feature map Convolutional kernel Output feature map

 

Figure 8. Process of multichannel convolution. 

As shown in Figure 7, the number of channels in the convolutional kernel is the same 

as the number of channels in the input feature map. The number of output feature map 

channels is the same as the number of convolutional kernels. The multi-channel convolu-

tion result is the sum of the convolution operations performed on each channel of the 

input feature map and each channel of the convolution kernel. The multi-channel convo-

lution operation is denoted as  . 

For the convolutional layer 2 of the LeNet5 network, the input is 2,nA
, the convolu-

tional kernel is 3K
 with size 5 5 6 16   , and the output net activation graph is 2,nZ

 

with size 10 10 16  . The calculation expression for 2,nZ
 is as follows: 

2, , 2, 3, 2,( )m n n m mb=  +Z A K
,  1, 2,...16m =   (6) 

Then, 2,nZ
 is input into the Tanh activation function tanh ( )f 

 to obtain the output 

feature map 3,nA
 of convolution layer 2, which is calculated as follows: 

3, tanh 2,( )n nf=A Z
  (7) 

(4) Pooling layer 2 

Consistent with pooling layer 1, average pooling is used here. Its calculation expres-

sion is as follows: 

4, 3, 4( , )n nmean=A A K
  (8) 

where 4K
 ( 2 2 16  ) is the pooling core and 4,nA

 ( 5 5 16  ) is the pooling layer output 

feature map. 

(5) Fully connected layer 1 



Sustainability 2023, 15, 16473 12 of 28 
 

The function of the fully connected layer is to map the learned features to the sample 

space. For the fully connected layer 1 of LeNet5, the processing process for 4,nA
 is as 

follows: 

3, 4, 5 3,( )n n nb=  +z A K
, 1, 2,...,120n =   (9) 

where the size of 5K
 is 5 5 16 120    and the size of 3,nz

 is 1 120 . 

Then, 3,nz
 is input into the Tanh activation function to obtain the output feature map 

5,na
 of fully connected layer 1, which is calculated as follows: 

5, tanh 3,( )n nf=a z
  (10) 

(6) Fully connected layer 2 

For the fully connected layer 2 of LeNet5, the processing process for 5,na
 is as fol-

lows: 

4, 6 5, 4n n b= +z k a
  (11) 

where the size of 6k
 and 4,nz

 are 120 4  and 1 4 . 

Then, 4,nz
  is input into the Tanh activation function to obtain the output 6,na

  of 

fully connected layer 1, which is calculated as follows: 

6, tanh 4,( )n nf=a z
  (12) 

(7) Output layer 

Finally, the output of fully connected layer 2 6,na
 is processed by Softmax to obtain 

the probability values 
ˆ

ny
 of the input image belonging to labels. The expression is as 

follows: 

6, ,

6, ,

,

1

e
ˆ

t n

i n

a

t n T
a

i

e
=

=


y

, 1, 2, ,t T=    

(13) 

where 4T =  represents the number of classes and e  represents the base of the natural 

logarithm. 

Parameter learning process 

The parameters that need to be learned mainly include the weight matrices 1K
, 3K

, 5K
, and 6k

of convolution layer 1, convolution layer 2, fully connected layer 1, and fully 

connected layer 2, as well as bias parameters 1b
, 2b

, 3b
, and 4b

. 

LeNet5 uses the gradient descent algorithm to calculate the backpropagation of er-

rors, and then uses the SGD algorithm to update the network parameters. When selecting 

the loss function, the mean squared error (MSE) is widely used, due to its intuitive, easy-

to-compute, and smooth characteristics. So, the used loss function is the MSE loss, which 

is expressed as: 

2

6, 2

1
|| ||

2
n n= −C a y

  
(14) 

where 2|| ||
 represents the L2 norm. 

The specific process of deriving network node gradients from backward to forward 

in the backpropagation algorithm is as follows. 

(1) Parameter updated for fully connected layer 2. 
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First, the error 6  of the loss function on the 4,nz
 output layer of fully connected 

layer 2 is calculated as follows: 

6,

6 6, 4,

4. 6, 4,

( ) '( )
n

n n n

n n n

f
 

= =  = −
  

aC C
a y z

z a z


  
(15) 

where  represents the Hadmard product and the expression for 4,'( )nf z
 is 

2

4, 6,'( ) 1 ( )n nf = −z a
  (16) 

Then, 6  is used to calculate the gradient of the loss function on the parameters of 

the layer: 

6,

6 5,

6 6, 6

( )
n T

n

n

 
=  =

  

aC C
a

k a k


  
(17) 

6

4


=



C

b


  
(18) 

Finally, the error 6  is used to calculate the gradient of the loss function on the pa-

rameters of the layer: 

6,

6 5,

6 6, 6

( )
n T

n

n

 
=  =

  

aC C
a

k a k


  
(19) 

6

4


=



C

b


  
(20) 

(2) Parameter updated for fully connected layer 1. 

First, the error recurrence formula between adjacent layers is used to find 5 : 

2

5 6 6 3, 6 6 5,( ) '( ) ( ) [1 ( ) ]T T

n nf= = −k z k a  
  (21) 

Then, the error is used to calculate the gradient of the loss function for the layer pa-

rameters: 

5,

5 4,

5 5, 5

( )
n T

n

n

 
=  =

  

aC C
A

K a K


  
(22) 

5

3


=



C

b


  
(23) 

(3) There is no parameter update for pooling layer 2, but intermediate layer error 4  

needs to be passed: 

4 5 5( )T= K    (24) 

(4) Parameter updated for convolutional layer 2. 

First, the error recurrence formula is used between adjacent layers to find 3 : 

2

3 4 3, 4 5,upsample( ) '( ) upsample( ) [1 ( ) ]n nf= = −z a  
  (25) 

where 
upsample( )

 represents the upsampling operation. 

The specific processing process is as follows. 
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First, 3  is restored to the size before pooling; then, due to average pooling, the el-

ements of 3  are averaged and restored to the submatrix. Error 3  is used to calculate 

the gradient of the loss function on the parameters of this layer: 

3 2,

3

n


= 



C
A

K


  
(26) 

,

3

1 12

U V
u v

u v= =


=




C

b


  
(27) 

(5) There is no parameter update for pooling layer 1, but intermediate layer error 2  

needs to be passed: 

2 3 3ROT180( )=  K 
  (28) 

(6) Convolutional layer 1 parameter update. 

The error recurrence formula between adjacent layers is used to calculate 1 : 

2

1 2 1, 2 1,upsample( ) '( ) upsample( ) [1 ( ) ]n nf= = −z A  
  (29) 

where 1  is used to calculate the gradient of the loss function on the parameters of this 

layer: 

Pre

1

1

n


= 



C
I

K


  
(30) 

,

1

1 11

U V
u v

u v= =


=




C

b


  
(31) 

The SGD algorithm is used to update the parameter values, as shown: 

1p p p−= −  
, 

1, ,p P= 
  (32) 

where p  represents the network parameters at the p -th iteration,   is the learning 

rate, P represents the total number of iterations of network training, and p
 represents 

the parameter gradient calculated during the p -th backpropagation. 

After completing the training of the LeNet-5 network, it has the ability to extract 

depth features from flame images. In order to increase the diversity and complementarity 

of features and effectively characterize flame images, adaptive selection fusion processing 

between multiple layers of features is performed on the output feature maps of each layer 

of the LeNet-5 network. The specific steps are as follows: 

Step (1): The output feature 
1 2 3 4 5 6[ , , , , , ]n n n n n nS S S S s s   of each layer is extracted and 

saved; 

Step (2): 
1 2 3 4 5 6[ , , , , , ]n n n n n nS S S S s s  is flattened to obtain the one-dimensional vector form 

1 2 3 4 5 6[ , , , , , ]n n n n n ns s s s s s  of each layer; 

Step (3): The features of each layer in different combinations are combined and con-

catenated; 

Step (4): Each of the combined features is input into the recognition model to con-

struct different recognition models and the performances of each recognition model are 

compared; 

Step (5): The feature combination corresponding to the best performance recognition 

model is used as the final flame image deep fusion feature 
Fusion

ns . 
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Construction of Recognition Model Based on Deep Forest Classification (DFC) 

To enhance the model’s performance, the DFC’s multi-granularity scanning module 

[24] has been excluded, utilizing solely the CF module for constructing the combustion 

status-recognition model. Within each CF layer, the base learners employed are RF and 

CRF. The structural configuration of the recognition model based on the CF is depicted in 

Figure 9. 

ForestA

CRF

RF

ForestARF

CRF

 

ForestA

CRF

RF

ForestARF

CRF

ForestA

CRF

RF

ForestARF

CRF

Ave. Max.

The first layer The second layer

The A-th layer

Fusion

1( )N

n n=s

1
ˆ( )N

n ny =

 

Figure 9. Structure of CF based recognition model. 

In the DFC model, each layer of CF contains 2 RFs and 2 CRFs for cascade learning. 

The CF layer model is constructed in terms of stack ensemble. 
Fusion

1( )N

n n=s  is input into CF 

to construct a recognition model. Except for the first CF layer, where 
Fusion

1( )N

n n=s  is directly 

used as the input feature of each forest learner, subsequent CF layers need to concatenate 

the class distribution vector output from the previous layer with 
Fusion

1( )N

n n=s  as the input 

of this CF layer to effectively prevent overfitting of the stack strategy. The number of CF 

layers is adaptively adjusted through cross validation. 

RF algorithm 

RF is an ensemble model based on bagging method, which is constructed with deci-

sion trees (DTs). It was proposed by Breiman et al. [41]. 

Bootstrap is used to randomly sample training set {( , ), 1, 2, }i iy i I= =S s . The gen-

eration process of RF training subset G  can be described as follows: 

,

1 1 Gini Bootstrap{( , ) } ( ( , ), )
cc M c i I c

iy f f R= =g S G
  

(33) 

where 
,

1 1{( , ) }
cc M c i I

iy =g
 represents the c -th training subset, Gini ( )f 

 represents a random 

subspace function, Bootstrap ( )f 
  represents the bootstrap function, and 1, , cr R=  , 

cR  

represents the number of features selected for the c  -th training subset in the forest, 
cR R . 

By using the above function C  times, the training set of RF can be obtained: 

11, 1

1 1

,

1 1

1,

1 1

{( , ) }

{( , ) }

{( , ) }

c

C

R i I

i

c R c i I

i

R C i I

i

y

y
C

y

=

=

=





 
 

 




g

S
g

g
  

(34) 

where C  represents the number of bootstraps and the number of DT in RF. 
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DTs are constructed in the RF model using the training subsets. The process is de-

scribed using 
,

1 1{( , ) }
cc M c i I

iy =g
 as an example. Based on the Gini index criterion, the best 

segmentation feature number sel

cR
 and segmentation point s  is found: 

RightLeft

Left Rightsel( , ) arg min[ Gini( ) Gini( )]

cc
PPc c c

P Pc c

yy
R s y y

y y
= +

  

(35) 

2

1 1

Gini( ) (1 ) 1
p p

P p P

p P

C C

c c c

c c

p p p
= =

 = − = − 
  

(36) 

Left

Right

Left Forest

Right Forest

. .
Gini(y )>0

Gini(y )>0

c

P

c

P

P

P

s t












   

 

where Pc
 represents class Pc

 in dataset label
y

, 
1, ,P Pc C

; Pcp
 represents the pro-

portion of Pc
 to the total number of labels; 

Gini( )
 represents the Gini index; Forest

 rep-

resents the threshold for the number of samples contained in the leaf node; Left

c

Py
 and 

Right

c

Py
 represent the label values corresponding to the samples divided into left and right 

nodes in the c -th training subset, respectively. 

Based on the above criteria, the optimal variable number and segmentation point 

value are found by first traversing all input features. The input feature space is divided 

into left and right regions. Then, the above process is repeated for each region until the 

number of samples contained in the leaf node is less than Forest
, or the Gini index of the 

samples in the leaf node is 0. Finally, the input feature space is divided into 
Q

 regions. 

To construct a classification tree model, the following functions is defined: 

,

1

( ) ( )
c

Q
c q c R

c q

q

G
=

  =   p p

  
(37) 

where 

1[ , , , , ] ( , )
p p R qq

q T c

c c C N q G Forestp p p G N =  p y
  

(38) 

where qGN
  represents the number of training samples contained in region qG

 ; 
Rq

c

Ny
 

represents the label vector corresponding to the sample features in region qG
; 

q

cp
 rep-

resents the predicted result of the final output of qG
; and to indicate the function 

( ) 
, 

when 
, cc R

qGp
, 

( )=1 
, otherwise 

( )=0 
. 

The RF model obtained by repeating the above step C  times: 

RF

1

1
( ) arg(max ( ))

P

C
c

c
c

F
C =

 =  
  

(39) 

CRF algorithm 

The difference between CRF and RF is that the former randomly selects the value of 

a certain feature as a splitting node in the complete feature space, while the latter selects 
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the splitting node in the bootstrap random feature subspace through Gini coefficients. 

Correspondingly, the CRF model is represented as CRF ( )F 
. 

Output of DFC 

Each layer of CF uses 2 
( )RFF 

 and 2 CRF ( )F 
 for cascade learning. The stack ensem-

ble method is used to construct the CF model. For input 
Fusion

ns
, the last layer of CF will 

output the 
4 pC

-dimensional class distribution vector 
RF RF CRF CRF

1 2 1 2[ , , , ]nRes = r r r r
. The av-

erage and maximum criteria are used to obtain the recognition result 
ˆ

ny
, 

1
ˆ max[ ]

4
n ny Res= 

  
(40) 

For feature
Fusion

1( )N

n n=s
, the final combustion status-recognition result 1

ˆ( )N

n ny =  can be ob-

tained. 

In the recognition module, the number of decision trees C   (we denote it as 
Tree_Number

  later) and the minimum number of leaf nodes Forest
  (we denote it as 

Mini_Samples
 later) in each forest need to be determined, while other parameters remain 

default. 

3.2.3. Online Recognition 

In the online recognition stage for combustion status, the process begins with captur-

ing flame videos, which are then subjected to image preprocessing. Following this, the 

preprocessed images undergo deep feature extraction through the LeNet-5 network. Sub-

sequently, the output features from the intermediate layers of LeNet-5 are intelligently 

fused, based on an adaptive selection fusion mechanism. These fused features serve as the 

input for the DFC model, facilitating the recognition of combustion statuses. Ultimately, 

this sequence culminates in obtaining the online recognition result. 

The schematic diagram of on-site layout of the online identification is shown in Fig-

ure 10. 

Online flame 

video

Online recognition 

Deep feature fusion

ŷ

Image 

preprocessing
 Images captured 

by frame

Deep feature 

extraction based 

on Lenet-5

Identification  model 

of cascaded forest 

 

Figure 10. Process of online identification. 

4. Results and Discussion 

4.1. Data Collection and Analysis Results 

The flame-image dataset utilized in this experiment originates from an MSWI plant 

located in Beijing. To ensure comprehensive coverage despite the limited field of view of 

industrial cameras, each end of the left and right grates onsite is equipped with a dedi-

cated camera for flame video collection. The process of handling the collected videos in-

volves initially selecting typical combustion status segments within the flame videos. 

Upon collection of flame videos from both the left and right grates onsite, the initial step 
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involves the removal of fragments depicting unclear combustion statuses. Following this, 

the remaining video segments are classified according to the combustion status classifica-

tion standard illustrated in Figure 2. These classified video segments are subsequently 

sampled at a consistent rate of 1 frame per minute utilizing a MATLAB program, resulting 

in the extraction of flame-image frames. Consequently, the total count of typical combus-

tion status images obtained from the left and right furnace bars is 3289 and 2685, respec-

tively. For a detailed breakdown of each typical combustion status, please refer to Table 1. 

Table 1. Flame-image dataset. 

Grate Amount Normal Partial Channeling Smoldering Size 

Left 3289 655 1176 1044 414 720 × 576 

Right 2685 564 1002 534 585 720 × 576 

4.2. Offline Modeling Results 

4.2.1. Evaluation Indices 

Table 2 shows the confusion matrix of the classification results. 

Table 2. Confusion matrix of classification result. 

True Situation 
Prediction Result 

Positive Negative 

Positive TP FN 

Negative FP TN 

In Table 2, the directional columns within the confusion matrix denote the prediction 

outcomes, whereas the directional rows signify the actual results. By analyzing the confu-

sion matrix, it becomes evident where the model tends to misclassify during predictions. 

To assess the model’s performance, evaluation indices such as accuracy, precision, and 

recall are employed. They are calculated as follows, 

TP+TN
Accuracy

TP+TN+FP+FN
=

  
(41) 

TP
Precision

TP+FP
=

  
(42) 

TP
Recall

TP+FN
=

  
(43) 

4.2.2. Result of Method Comparison 

The training, validation and testing datasets are divided according to the ratio of 2:1:1 

of the samples. In order to verify the superiority of the proposed method, it is compared 

with the classical CNN method. The settings of parameter are shown in the Table 3. 

The parameters of DFC are set as follows: 
Tree_Number=30

, 
Mini_Samples=5

. At the 

same time, the cascade layer is set to adaptively adjust using cross-validation results. 

Tables 4 and 5, respectively, show the experimental results of the recognition models 

constructed by each method based on left- and right-grate flame images. 
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Table 3. Settings of CNNs parameter. 

Methods 
Settings of Parameter 

Epochs Learning_Rate Batch_Size 

VGGnet 74 0.01 64 

Mobilenet 90 0.045 64 

Densenet 90 0.1 16 

EfficientNet 90 0.256 64 

LeNet-5 (Left) 28 0.01 100 

LeNet-5 (Right) 39 0.01 100 

Regnet 90 0.1 64 

Table 4. Comparative experimental results of left grate. 

Methods 
Evaluation Index 

Accuracy Precision Recall 

VGGnet 0.36893 0.09223 0.25 

Mobilenet 0.81553 0.80217 0.75971 

Densenet 0.83252 0.85054 0.78825 

EfficientNet 0.55097 0.6452 0.60138 

Regnet 0.7185 0.7124 0.7248 

LeNet-5 0.8990 0.8986 0.8929 

DFC 0.8832 0.8576 0.9022 

Ours 0.9380 0.9182 0.9507 

Table 5. Comparative experimental results of right grate. 

Methods 
Evaluation Index 

Accuracy Precision Recall 

VGGnet 0.36418 0.09104 0.25 

Mobilenet 0.77313 0.80396 0.75911 

Densenet 0.87164 0.86668 0.88562 

EfficientNet 0.77313 0.77245 0.77835 

Regnet 0.8269 0.8211 0.8295 

LeNet-5 0.9151 0.9122 0.9149 

DFC 0.8942 0.8848 0.9001 

Ours 0.9508 0.9456 0.9541 

From the comparative experimental results presented above, it is evident that, de-

spite being the most fundamental network, LeNet-5 outperforms other CNN models in 

flame combustion status recognition with fewer training epochs. Interestingly, even with-

out a multi-granularity scanning module, the recognition model constructed with DFC 

manages to achieve commendable recognition results. Building upon this insight, this 

study extracts depth features from flame images using LeNet-5 and dynamically selects 

and merges the intermediate layer features as input for constructing a recognition model 

with DFC. The experimental findings demonstrate a substantial enhancement in recogni-

tion performance when compared to the original recognition models employing LeNet-5 

and DFC. This shows LeNet-5’s proficiency in effectively extracting deep flame-image fea-

tures. Additionally, the adaptive selection and fusion of features from each intermediate 

layer exhibit stronger complementarity. Consequently, upon integrating with DFC, the 

model’s recognition efficacy using adaptive selection features has a remarkable improve-

ment. 
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4.2.3. Results of Offline Recognition 

As shown in Figure 11, the training process of the left- and right-grate flame images 

is based on LeNet-5. 

  
(a) (b) 

Figure 11. Training process of LeNet-5: (a) left grate; (b) right grate. 

As illustrated in Figure 11, the loss curve exhibits an initial decrease followed by a 

gradual stabilization, indicating convergence. Similarly, the accuracy curve displays an 

initial ascent followed by a steady level, affirming that the models have converged and 

possess a robust capability to extract deep features from flame images. 

Following the training of the LeNet-5 network, the extracted intermediate layer fea-

tures undergo an adaptive selection and fusion process. Subsequently, these fused fea-

tures are utilized as inputs for constructing a recognition model within the DFC frame-

work. The comparison among various recognition models yields the ultimate multi-layer 

feature adaptive selection fusion outcomes. The fusion recognition results for each layer 

of the left- and right-grate flame images are detailed in Tables 6 and 7, respectively. 

Table 6. Fusion results of multilayer feature adaptive selection for left grate. 

Layers 
Evaluation Index 

Accuracy Precision Recall 

1–6 0.8917 0.8694 0.9174 

2–6 0.9124 0.8894 0.9265 

3–6 0.9039 0.8800 0.9238 

4–6 0.9380 0.9182 0.9507 

5–6 0.9112 0.8942 0.9143 

5 0.8966 0.8743 0.9006 

Table 7. Fusion results of multilayer feature adaptive selection for right grate. 

Layers 
Evaluation Index 

Accuracy Precision Recall 

1–6 0.9121 0.9028 0.9263 

2–6 0.9359 0.9279 0.9470 

3–6 0.9508 0.9456 0.9541 

4–6 0.9329 0.9305 0.9322 

5–6 0.9091 0.9111 0.9050 

5 0.8972 0.8967 0.8950 
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Table 6 shows that for the flame image of the left grate, the best recognition result can 

be achieved by fusing the depth features of the flame image extracted from layers 4–6. 

Table 7 shows that for the flame image of the right grate, the best recognition result can be 

achieved by fusing the depth features of the flame image extracted from layers 3–6. The 

results in multi-layer feature adaptive selection of the left grate and the right grate indicate 

that there are certain differences in the quality of left- and right-grate flame images. There-

fore, it is necessary to construct recognition models based on left- and right-grate flame 

images separately. 

4.2.4. Sensitivity Analysis of Hyperparametric 

Taking the model built by the left grate as an example, the sensitivity analysis of 
Tree_Number

 and 
Mini_Samples

 are shown in Figures 12 and 13. 

 

Figure 12. Sensitivity analysis curve of 
Tree_Number

. 

 

Figure 13. Sensitivity analysis curve of 
Mini_Samples

. 

As shown in Figure 12, the model performance gradually improves with the increase 

in 
Tree_Number

. When the 
Tree_Number

 increases from 1 to 10, the model performance 
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improves significantly. Afterwards, with the continuous increase in 
Tree_Number

 , the 

model performance slight fluctuates within a certain range. 

As shown in Figure 13, with the increase in 
Mini_Samples

, the performance of the 

recognition model gradually decreases. 

4.3. Online Recognition Results 

This article designs an MSWI process data monitoring system based on MATLAB 

APP designer. In the system, process data are directly displayed on the interface through 

corresponding tags, and flame video is used to recognize the combustion status by using 

the offline modeled recognition model. The recognition results are displayed above the 

flame video. The sampling frequency of process data is once per second. The sampling 

frequency of video can be set, with the unit being minutes. Figure 14 shows the online 

identification results of flames in different combustion status for the designed system. 

 

Figure 14. Online identification results of designed system. 

Figure 14 illustrates the system devised in this article, capable of visually presenting 

process data and flame videos. It successfully accomplishes the recognition of online flame 

videos utilizing the designed recognition algorithm. This system effectively eliminates the 

instability in recognition stemming from manual experience, laying the foundation for 

advanced research in intelligent control. 

From Figure 14, it is evident that the software not only presents the current combus-

tion status-recognition results of the flame video but also assigns a probability value. This 

additional detail is reasonable, due to the complexity of onsite combustion status, where 

distinct boundaries between the four categories of combustion status might not always be 

clear. In situations involving transitional or coupled phases of different combustion sta-

tuses, the probability representation mode is employed. This approach enables operators 

in practical MSWI plants to judge the confidence level of recognition results, providing a 

valuable reference for adjusting control strategies. It offers operators a clearer understand-

ing of the degree of coupling within the current combustion status. Furthermore, this 
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enhances the need for a dynamic recognition method based on contextual image correla-

tion in future advancements. 

The hardware configuration used for building the model included an Intel® CoreTM 

i9-11900K CPU, 32 GB of RAM (Santa Clara, CA, USA), and an NVIDIA GeForce 

RTX3060Ti GPU (Santa Clara, CA, USA). The integrated development environment was 

MATLAB 2021b. The time required for the trained offline recognition model to analyze 

and recognize a flame image averaged approximately 0.174 s. During the online recogni-

tion process, flame images were sampled every minute to assess their combustion status. 

Given the relatively slow change in combustion status, this recognition speed effectively 

met the requirements for real-time online recognition. 

4.4. Comprehensive Analysis 

For the method proposed in this article, there are some limitations in each stage, as 

follows. 

(1) In the data collection and analysis stage, the selection of typical video clips was me-

ticulously performed through expert labeling, excluding videos with severe combus-

tion status coupling. Consequently, some unclear videos were not utilized in this 

study. In future research, these video clips might undergo denoising techniques be-

fore expert labeling is applied. Furthermore, the sampled video frames contain visual 

representations of various process data. For instance, Wang [42] utilized CCD radia-

tion energy images to reconstruct the temperature distribution within the incinera-

tion system. Similarly, He et al. [43] measured flame radiation spectra to acquire tem-

perature and emission rates of the burning flames, and Xie et al. [44] predicted calo-

rific value by employing Yolov5 to identify waste types in images. Subsequent efforts 

will focus on integrating these images with the corresponding process data. 

(2) In the offline modeling phase, the CNN-based feature extraction predominantly em-

phasizes local flame image features, potentially neglecting key global features essen-

tial for comprehensively observing complex combustion status within the MSWI pro-

cess. In our prior investigations, we explored a combustion status-recognition tech-

nique employing Vision Transformer-IDFC [45], leveraging the transformer’s self-at-

tention mechanism to extract significant global features from flame images, resulting 

in commendable recognition outcomes. Consequently, addressing the identification 

of complementary features and the elimination of redundant ones becomes neces-

sary, accomplished by employing feature selection methods that aim for maximal 

correlation and minimal redundancy. Additionally, optimizing classifier hyperpa-

rameters concurrently with those used in feature engineering can improve the gen-

eralization performance of the recognition model. To tackle this challenge, we aim to 

employ intelligent optimization algorithms inspired by biological intelligence, like 

genetic algorithms, differential evolution, and particle swarm optimization. Never-

theless, these approaches may introduce computational complexities with long run-

ning times. As a remedy, optimization using proxy models will be employed to ad-

dress this new challenge. 

(3) In the online recognition phase, we capture flame video frames at regular intervals 

and employ offline constructed recognition model for identification. The obtained 

recognition results are then fed back into the online recognition system, displaying 

them on the desktop. However, this process inherently employs a single-image iden-

tification method, lacking consideration for the temporal relationships and causal 

changes between image sequences over time. Flame videos, as a form of streaming 

data, encapsulate both spatial information within frames and temporal information 

between frames. Regrettably, the current recognition system neglects this temporal 

dimension. Techniques from other domains specializing in stream image mining and 

analysis, such as active learning with expert input [46], real-time video stream ana-

lytics [47], and streaming deep neural networks (DNN) [48], can be integrated. This 
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enhancement would facilitate applications in the actual MSWI process, paving the 

way for intelligent control based on AI vision. 

5. Conclusions 

In response to the practical need for reducing emissions and energy consumption in 

the treatment of MSW using a grate furnace within the MSWI process, we developed an 

online combustion status-recognition method. Based on a database of flame images de-

picting typical combustion statuses, our approach involves utilizing convolutional multi-

layer feature fusion and DFC. Initially, a LeNet-5 network undergoes training to extract 

deep features from flame images across various typical combustion statuses. These ex-

tracted deep features are selectively fused using a multi-layer feature adaptive selection 

method, forming a comprehensive representation of flame combustion status. Subse-

quently, the fused depth features are fed into the DFC to establish an offline recognition 

model. Ultimately, this model facilitates the realization of online flame video recognition. 

This study presents several notable advantages: (1) Advanced combination: It marks 

the first time of successfully combining LeNet-5 and DFC, applied specifically to the field 

of MSWI combustion status recognition. (2) High recognition accuracy: The constructed 

combustion status-recognition model exhibits superior accuracy in identifying various 

combustion statuses. (3) Online application validation: The application of the offline 

recognition model to online recognition systems demonstrates practical value and real-

world applicability. (4) Real MSWI plant data: The research is based on actual MSWI plant 

flame data, offering important practical insights and guidance for implementation. 

The study’s limitations are apparent in two areas: (1) Incomplete representation: The 

considered combustion statuses might not encompass all the varied conditions observed 

on site. Future work should involve supplementing these statuses based on expert insights 

to develop corresponding recognition models. (2) Qualitative analysis only: The current 

recognition model predominantly performs qualitative analysis of the flame’s combustion 

status. There is a vital need to make quantitative analyses using flame data to assess fac-

tors like material layer thickness. 

The flame combustion status online recognition system plays a pivotal role in boost-

ing operational efficiency and reducing pollutant emissions within the MSWI process. 

This cutting-edge technology enables real-time monitoring of incineration flames, ensur-

ing a consistently efficient and stable combustion process. Based on the software of the 

flame online-recognition system, precise control strategies can be employed to fine-tune 

combustion parameters, thus minimizing the release of harmful gases significantly and 

enhancing resource utilization efficiency. This intelligent-control approach contributes 

significantly to realizing the sustainability objectives of MSW management by combining 

incineration technology with environmental sustainability protection, steering the MSWI 

process toward a more eco-friendly direction. 
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Nomenclature 

Symbols Meaning 

I  
Flame image 

y
 

Corresponding labels of flame-image dataset 

N  
Number of flame-image datasets 

n  Index of flame image 
Pre

I
 

Preprocessed image 

Scalef
 

Image scaling operation 

Grayf
 

Image grayscale processing 

j
 

Index of channel numbers in feature maps 

J  
Number of feature map channels 

K
 

Convolutional kernel 

k
 

Elements in convolutional kernel 

b
 

Bias 

b
 

Bias element 

A  
Output feature maps of convolutional and pooling layers 

a  Fully connected layer output feature map 

a  Output elements in feature maps 

( )mean 
 

Matrix mean function 

*  
Convolutional operation 

tanh ( )f 
 

Tanh activation function 

ˆ
ny

 
Output of LeNet-5  

e  The base of natural logarithms 

T  
Number of categories 

down( )
 

Downsampling function 

Z  
Net activation of convolutional layers 

z  Net activation of fully connected layers 

z  Elements in output feature maps 

  
Taking partial derivative 

  
Network middle-layer error 

C  
Loss function 

2|| ||
 

L2-norm 

 
Hadmard product 

upsample( )
 

Upsampling operation 

ROT180( )
 

Flip matrix 180 degrees 

,U V
 Width and height of   

  
General term for network parameters 

  Learning rate 

P  
Total number of iterations for network training 

p
 

Parameter gradient calculated during the p -th backpropagation 

S  
Layer 1–4 output feature map of LeNet-5 

s  Output feature flattening for each layer 
Fusion

s
 

Deep fusion features of flame images 

Tree_Number
 

The number of decision trees in the CF layer forest 

Mini_Samples
 
Minimum sample size of leaf nodes 

Trainŷ
 

Offline recognition results 

DFC ( )f 
 

DFC model 
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ŷ
 

Online recognition results 

 

True positive example 

 

False positive example 

 

True negative example 

 

False negative example 

S  
Training set of RF 

G  
Training subset of RF 

c  Index of RF training subset 
cR  

Number of features selected by the c -th training subset in the forest 

C  
Count of bootstrap 

selR
 

Number of best segmentation feature  

s  The cut 

Gini( )
 

Index of Gini 

Forest
 

Threshold of the number of samples contained in leaf nodes 

LeftPy
 

Label values corresponding to samples divided into left nodes in the training sub-

set 

RightPy
 

Label values corresponding to samples divided into right nodes in the training 

subset 

Forest
 

Threshold of leaf node 

Q
 

Number of input feature space partition regions 

Pc
 Class Pc

 in dataset label 
y

. 

Pcp
 The proportion of class Pc

 to the total number of labels 

( )c 
 

Classification tree model 

qGN
 Number of training samples included in region qG

 

Rq

j

Ny
 

Label vectors corresponding to sample features in region qG
 

q

cp
 Prediction results of the final output of region qG

 

( ) 
 

Indicator function 

RF ( )F 
 

RF model  

CRF ( )F 
 

CRF model 
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