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Abstract: Post-consumer soft plastics often face inadequate management practices, posing threats to
both human life and the environment while also leading to the loss of valuable recyclable materials
when not recycled. Traditional mechanical recycling methods are unsuitable for waste soft plastics
due to their thin and flimsy nature. This study presents an effective, user-friendly process for
converting waste soft plastics into new products, generating value, and expediting their collection
and recycling without the need for pelletization. The outcome of this process was compared with
products derived from traditional recycling and commercially available alternatives through various
analytical techniques including tensile testing, Fourier transform infrared spectroscopy, differential
scanning calorimetry, X-ray diffractometry, scanning electron microscopy, and energy-dispersive
X-ray spectroscopy. The findings suggest that waste soft plastics can be transformed into flexible
sheets without significant alterations to their properties. In particular, the ultimate tensile strength
of samples recycled using the developed process in this study and traditional recycling were found
to be 25.9 ± 0.4 and 25.2 ± 0.8 MPa, respectively, surpassing commercially available products by
nearly 15 MPa. Additionally, a life cycle assessment revealed that producing flexible sheets from
waste soft plastics using this innovative approach, rather than virgin polymer, could reduce fossil
fuel depletion and global warming by 99.4% and 94.6%, respectively. This signifies the potential of
the process to mitigate environmental pollution and produce high-quality products exclusively from
100% waste plastics.

Keywords: plastic waste; waste to valuable product; cleaner production; environmental-friendly;
sustainability; circular economy

1. Introduction
1.1. The Significance of Recycling Waste Soft Plastics

Soft plastics are among the most versatile and widely utilized materials globally [1,2].
They find application in numerous sectors including packaging, household goods, agri-
culture, electrical and electronic devices, construction, automotive, and more. Soft plastics
are prized for their unique combination of strength, ductility, barrier properties, chemical
resistance, low weight, and affordability, making them an invaluable resource [3]. The
magnitude of the soft plastic market becomes evident when considering that a staggering
6.9 billion plastic bags are consumed annually in Australia alone [4]. This extensive use
of soft plastic products has resulted in a pressing waste management issue [5]. The pro-
liferation of plastic products leads to an increase in post-consumer plastics [6], and it is
disheartening to observe that a substantial portion of waste soft plastics is not managed
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efficiently. Instead, these materials often end up in landfills, waterways, or are incinerated
for energy recovery or disposal [7,8]. Plastics are generally non-biodegradable [9], with
some biodegradable variants degrading very slowly and in limited quantities [10]. The per-
sistence of waste plastics in the environment is contingent upon their chemical composition
and the conditions of the disposal environment [11], ensuring their long-term presence.

A significant portion of waste plastics inevitably finds its way into water bodies
including oceans, posing significant threats to marine ecosystems [12]. It is evident that
many animals inadvertently ingest or become entangled in waste plastics, leading to
asphyxiation, starvation, and drowning [13]. On the flip side, micro- and nano-plastics,
which are degradation products of plastics, enter the human food chain through the
consumption of seafood, potentially impacting human health [14–16]. Iqbal et al. [17]
observed that micro- and nano-plastics could alter the soil nitrogen biogeochemistry and
influence plant growth and yield. Moreover, plants absorb these micro and nano-plastics,
potentially entering the human and animal food chains [17]. Microplastics have also
been detected in air samples, and their inhalation or ingestion may lead to various health
issues [18]. Furthermore, waste plastics can release incorporated additives or chemicals
during their degradation into micro- or nano-plastics [19].

The incineration of waste plastics generates toxic emissions that are detrimental both
directly through inhalation and indirectly when rain carries these toxins into water bodies
and soil [20,21]. Consequently, waste plastics pose considerable risks to both life forms
and the environment, thereby jeopardizing environmental sustainability [22]. Furthermore,
more than 90% of polymers are derived from non-renewable petrochemicals, implying that
future resources for polymer production are limited [23]. At present, 8% of the total annual
fossil oil consumption is used for plastic production, with this figure projected to rise to
20% by 2050 [24]. The polymer manufacturing process also indirectly consumes petroleum
resources, as approximately 3–4% of total fossil fuel consumption annually is used to power
plastic production [25]. Additionally, the polymer production process emits significant
greenhouse gases including carbon dioxide (CO2) [26]. Climate change and fossil fuel crises
have now emerged as formidable challenges to achieving sustainable development [27].

However, what is the solution to these problems? One of the most apparent solutions
is to reuse already-manufactured plastics instead of producing virgin plastics from fossil
resources [28]. Recycling also carries economic benefits as it reintegrates waste materials
into the economy. Nonetheless, a substantial obstacle to this solution remains the lack of an
economically viable process for recycling and reprocessing waste plastics.

1.2. Development of a Recycling Method

Only a small fraction of waste soft plastics are currently recycled due to the existing
limitations of reprocessing and recycling technology. While several chemical recycling meth-
ods have been proposed to convert waste soft plastics into oil, gas, and monomers for resin
production, they are not yet economically viable or environmentally sustainable [29–31].
Most waste soft plastics consist of thermoplastics, which become pliable at elevated tem-
peratures and return to a solid state when cooled [32]. Consequently, waste soft plastics
can be readily reprocessed while preserving their fundamental properties [33,34].

The traditional mechanical recycling process for waste soft plastics involves two steps,
as depicted in Figure 1a: the first step entails creating pellets through processes such
as pressing, shredding, extrusion, and pelletization, followed by the second step, which
involves producing products through a plastic processor like cast extrusion. Nonetheless,
a key challenge in recycling waste soft plastics using the traditional mechanical method
lies in feeding these thin and pliable materials into plastic processing machines. Although
the continuous agglomeration process has been introduced to agglomerate plastic films
into manageable chunks and granulate them before extrusion and pelletization [35], this
process is beset with limitations, resulting in suboptimal performance and reduced value.
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Figure 1. Schematic of the direct transformation of waste soft plastics by (a) traditional cast extrusion
process and (b) the developed process in this study.

In this study, we propose a straightforward recycling process to directly transform
waste soft plastics into high-quality flexible sheets, as illustrated in Figure 1b. This process
eliminates the need for shredding and pelletization. While pelletization aids in transporta-
tion, it is more suited for rigid waste plastics, as waste soft plastics can be easily compacted
into bales. Our developed process aims to maintain the properties of waste plastics by
avoiding certain treatment steps that could introduce additional thermo-mechanical stress
and further degrade the polymers. In addition to experimental investigations, a life cycle
assessment (LCA) was conducted to quantitatively assess the environmental benefits of
manufacturing plastic from waste soft plastics compared to virgin polymers.

2. Materials and Methods
2.1. Materials

In this study, we focused on recycling the most common type of post-consumer soft
plastics, namely, shopping bags. This choice was made to ensure the reproducibility of
our results. It is important to note that the developed process has the potential to recycle
other soft plastics composed of single or compatible polymers. The collected waste soft
plastics required no prior washing or cleaning, as this type of plastic is typically free
of contaminants.

2.2. Sample Preparation

Melt Compression and Hot Pressing: The waste soft plastics were placed within a
square-shaped steel die and subjected to a hot press (Carver, Wabash, IN, USA) for the
purpose of melting and compressing them into a panel. The hot-press temperature was set
to 160 ◦C, and a force of 20 MPa was applied. After the completion of melt-compression,
the die was removed from the hot-press and allowed to cool in an open environment until
the die’s temperature reached approximately 130 ◦C. Subsequently, the panel was extracted
from the die and directly fed into a rolling system, eliminating the need for full cooling and
subsequent reheating.

Standard Cast Extrusion Process: To evaluate the influence of the processing method
on product properties, a standard cast extrusion process was carried out. It should be
noted that blow molding was not considered for recycling waste soft plastics due to the
potential presence of contaminants that could lead to blowout of the molded product. To
facilitate feeding waste soft plastics into the cast extrusion machine, granules were required,
necessitating a preliminary hot-pressing and shredding step. The waste soft plastics were
first hot-pressed and solidified into a dense panel. Subsequently, the panel was shredded
into granules using a low-speed granulator (SHINI, UK) equipped with a 5 mm mesh. The
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shredded granules were then processed into flexible sheets using a cast extrusion machine
with a metering zone temperature set at 180 ◦C.

2.3. Characterization

Fourier Transform Infrared (FTIR) Spectroscopy: FTIR spectroscopy was conducted
using an FTIR spectrometer (Spectrum 100, PerkinElmer, Waltham, MA, USA) equipped
with an attenuated total reflectance (ATR) accessory. FTIR spectra were acquired in the
range of 4000 cm−1 to 450 cm−1 with a resolution of 4 cm−1. Each measurement consisted
of 64 scans to reduce noise.

Differential Scanning Calorimetry (DSC) Analysis: DSC analysis was performed using
a DSC (204 F1 Phoenix, NETZSCH, Selb, Germany) under an argon atmosphere, following
the ASTM D3418 standard [36]. Heating and cooling were conducted at a rate of 10 ◦C/min,
with calculations based on the second heating cycle.

X-ray Powder Diffraction: X-ray powder diffraction data were collected using MPD
and Empyrean X-ray diffraction instruments equipped with a copper tube as an anode.
Post-consumer soft plastic data were collected using an Empyrean system in transmission
mode with incident beam optics and a focusing mirror to minimize the preferred orientation
effects. The remaining samples were collected using the MPD system with programmable
divergence slits in its incident optics. A PIXcel detector was used in 1-dimensional mode.
To estimate crystallite size, a mixed fitting approach involving full pattern Rietveld fit and
Le-Bail fit [37] was employed. Le-Bail fit was particularly useful for the polyethylene phase,
given the limited available crystallographic information for this phase.

Tensile Properties: Tensile properties of the samples were assessed using a universal
testing system (5982, Instron, High Wycombe, UK) with a laser extensometer (LX 500, MTS,
Eden Prairie, MN, USA) in accordance with the ASTM D638 standard [38].

Microstructural Analysis: The microstructure of the samples was examined using
a scanning electron microscope coupled with an energy-dispersive X-ray spectroscope
(SEM/EDS, S3400 Hitachi, Tokyo, Japan). Prior to microanalysis, the samples were polished
and coated with carbon to prevent overcharging.

2.4. Life Cycle Assessment (LCA)

To evaluate the environmental impact of the processes, a LCA was conducted following
the ISO 14040:2006 standard [39]. SimaPro 9.0.0.49 software, in conjunction with the
Ecoinvent 3 library and TRACI 2.1 V1.05/US 2008 method, was employed to assess the
impacts of the processes. The system boundary was carefully defined and is illustrated in
Figure 2. The process was divided into two stages: the polymer pellet manufacture stage
and the plastic product manufacture stage. Transportation of both waste soft plastics and
virgin pellets was excluded from this LCA analysis.
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3. Results and Discussion
3.1. Effect of Remanufacturing on the Properties of Polymer
3.1.1. FTIR Investigation

Fourier transform infrared (FTIR) spectroscopy is an invaluable tool for the character-
ization of polymer materials. The FTIR spectra of the samples are presented in Figure 3.
All of the spectra exhibited characteristic peaks typical of polyethylene polymers. Notably,
three pairs of overlapping peaks were observed, indicating C–H symmetric and asym-
metric stretching vibrations at ~2915 and ~2849 cm−1, CH2 bending vibrations at ~1472
and ~1463 cm−1, and CH2 rocking vibrations at ~730 and ~719 cm−1 [40–42]. Additionally,
peaks in the wavenumber range of 1400 to 1300 cm−1 (as shown in Figure 3b) were used
to identify the polyethylene category. According to Gulmine et al. [43], the collected soft
plastic does not primarily consist of high-density polyethylene (HDPE) since it exhibits a
characteristic peak at ~1377 cm−1.
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Figure 3. Fourier transform infrared (FTIR) spectra of the samples: (a) full range and (b) magnification
of the 1400 to 1300 cm−1 range.

Noteworthy differences were observed between the spectra of the raw and recycled
samples. For post-consumer soft plastic, a small carbonyl characteristic peak at ~1740 cm−1

was present. However, after reprocessing, both in the new process and traditional cast
extrusion recycling samples, the intensity of this peak slightly increased. A minor increase
was also observed in the intensity of peaks at ~1590, ~1242, 1125, and ~875 cm−1. Con-
versely, the intensity of peaks at 1463 and 730 cm−1 slightly decreased after reprocessing.
Furthermore, new characteristic peaks appeared at ~1160 and 700 cm−1 in the processed
samples. These subtle changes in FTIR spectra could be attributed to potential polymer
chain degradation [43].

3.1.2. DSC Analysis

Differential scanning calorimetry (DSC) provides insights into the material’s struc-
ture. The DSC curves for the second heating of the samples are depicted in Figure 4,
revealing two distinct and well-separated melting peaks. The higher-temperature peak
corresponded to the melting point of linear low-density polyethylene (LLDPE), while the
lower-temperature peak corresponded to the melting point of low-density polyethylene
(LDPE) [44]. This suggests that the samples constitute a non-homogeneous blend of LDPE
and LLDPE, resulting in phase separation [45]. It is worth noting that LLDPE is favored
for its strength, while LDPE enhances processing, clarity, and gloss [46]. Blending LDPE
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with LLDPE is a common practice to reduce extruder pressure and torque, improve melt
strength, and enhance bubble stability [47].
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Figure 4. Differential scanning calorimetry (DSC) curves for the second heating of raw and
recycled materials.

Figure 4 reveals that the intensity of the melting peak corresponding to LLDPE slightly
decreased for both the new process in this study and the traditional cast extrusion recycling
samples, while the intensity of the peak corresponding to LDPE experienced a minor
increase. The peak positions and degree of crystallinity, as summarized in Table 1, are
vital indicators of polymer properties. The degree of crystallinity has a direct impact
on a material’s properties. After reprocessing, the degree of crystallinity decreased for
both the developed process in this study and the traditional cast extrusion recycling
samples, approaching the original value of post-consumer soft plastic. The change in
crystallinity may result from chain scission, branching, or cross-linking of polyethylene
during reprocessing [48]. The degree of crystallinity of the samples was found to be
higher post-recycling using the new process. A higher crystallinity in polymeric materials
like polyethylene was associated with improved mechanical properties such as increased
tensile strength and stiffness. It also enhanced the thermal resistance and decreased gas
permeability, which is advantageous for packaging applications that require maintaining
product integrity under varying environmental conditions. This increased crystallinity
can affect the performance by potentially extending the material’s lifecycle when used in
products that are subject to mechanical stress or thermal cycling.

Table 1. Variation of degree of the crystallinity of raw and recycled materials.

Sample 1st Peak Position (◦C) 2nd Peak Position (◦C) Crystallinity (%)

Raw 110.69 125.17 55.64
Hot press 110.17 124.20 47.80

Cast extrusion 111.68 125.34 53.41
Developed process in this study 112.27 126.03 54.35
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3.1.3. XRD Study

The X-ray powder diffraction (XRD) analysis provided crucial insights into the struc-
tural composition of the recycled soft plastics. Upon examination, the XRD patterns
revealed prominent peaks at approximately 20.5◦ and 23.8◦ 2θ, which are indicative of
the (110) and (200) planes of semi-crystalline polyethylene, respectively as shown in
Figure 5 [49]. These peaks are characteristic of the orthorhombic unit cell structure of
polyethylene, signifying the presence of both low-density polyethylene (LDPE) and linear
low-density polyethylene (LLDPE).

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 17 
 

3.1.3. XRD Study 
The X-ray powder diffraction (XRD) analysis provided crucial insights into the struc-

tural composition of the recycled soft plastics. Upon examination, the XRD patterns re-
vealed prominent peaks at approximately 20.5° and 23.8° 2θ, which are indicative of the 
(110) and (200) planes of semi-crystalline polyethylene, respectively as shown in Figure 5 
[49]. These peaks are characteristic of the orthorhombic unit cell structure of polyethylene, 
signifying the presence of both low-density polyethylene (LDPE) and linear low-density 
polyethylene (LLDPE). 

 
Figure 5. X-ray diffraction (XRD) spectra of the raw and recycled materials. 

A closer inspection of the peak positions showed a slight shift toward higher angles 
in the recycled samples compared to the raw material, suggesting a marginal decrease in 
the interplanar spacing post-recycling. This observation could be indicative of a tighter 
packing of the polymer chains, potentially resulting from the reprocessing conditions. 

The peak widths were found to broaden in the recycled samples, particularly after 
hot pressing, which is commonly associated with a reduction in crystallite size. This de-
crease in crystallite size from 46.5 nm in the raw material to 25.4 nm post-hot pressing, as 
presented in Figure 6, reflects the thermomechanical history imparted during recycling, 
likely due to the application of heat and pressure, which can disrupt the polymer chains 
and lead to a more amorphous structure. 

20 25 30 35 40 45 50 55 60 65 70

Developed process
in this study

◽○◆ CaCO3Polyethylene

Raw

Hot press

2θ (°)

Cast extrusion

TiO2

◽◽◽
◆

○○○○○◆○
○◽◽◽ ◽

○○○○○○◆ ◆◽○ ◆◽◆ ◆◆◽◆ ○
○

◆

◽ ◆○ ◽○ ◽◽○
○○○○◆○

○◽◽◽ ○○○○○○◆ ◆◽◆◆◆ ○

◆

◆○ ◽○ ◽◽○○○○◆○
○◽◽○○○○○○◆ ◆◽◆◆◆ ○ ◆○ ◽○ ◽◽○○○○○
○◽◽○○○○○○◆ ◆◽◆◆◆ ○ ◆○ ◽○

◽◽◽
◆

○○○○○◆○
○◽◽◽ ◽

○○○○○○◆ ◆◽○ ◆◽◆ ◆◆◽ ○

○
◆

◽
◆○ ◽○ ◽◽

○

○○○○◆○
○◽◽◽ ○○○○○○◆ ◆◽◆◆ ○

◆

◆○ ◽○ ◽◽○○○○◆○
○◽◽○○○○○○◆ ◆◽◆◆ ○ ◆○ ◽○ ◽◽○○○○○
○◽◽○○○○○○◆ ◆◽◆◆◆ ○ ◆○ ◽○

◽◽◽ ○○○○○◆○
○◽◽◽ ◽

○○○○○○◆ ◆◽○ ◆◽◆ ◆◆◽ ○
◽

◆○ ◽○ ◽◽
○

○○○○◆○
○◽◽○○○○○○◆ ◆◽◆◆ ○ ◆○ ◽○ ◽◽○○○○◆○
○◽◽○○○○○○◆ ◆◽◆◆ ○ ◆○ ◽○ ◽◽○○○○○
○◽◽○○○○○○◆ ◆◽◆◆◆ ○ ◆○ ◽○

◽◽◽ ○○○○○◆○
○◽◽◽ ◽

○○○○○○◆ ◆◽○ ◆◽◆ ◆◆◽ ○
◽

◆○ ◽○ ◽◽
○

○○○○◆○
○◽◽◽ ○○○○○○◆ ◆◽◆◆ ○ ◆○ ◽○ ◽◽○○○○◆○
○◽◽○○○○○○◆ ◆◽◆◆ ○ ◆○ ◽○ ◽◽○○○○○
○◽◽○○○○○○◆ ◆◽◆◆◆ ○ ◆○ ◽○

◆ ○

◆

◆

◆ ○

◆

◆

◆ ○

◆

◆

Figure 5. X-ray diffraction (XRD) spectra of the raw and recycled materials.

A closer inspection of the peak positions showed a slight shift toward higher angles
in the recycled samples compared to the raw material, suggesting a marginal decrease in
the interplanar spacing post-recycling. This observation could be indicative of a tighter
packing of the polymer chains, potentially resulting from the reprocessing conditions.

The peak widths were found to broaden in the recycled samples, particularly after hot
pressing, which is commonly associated with a reduction in crystallite size. This decrease in
crystallite size from 46.5 nm in the raw material to 25.4 nm post-hot pressing, as presented
in Figure 6, reflects the thermomechanical history imparted during recycling, likely due to
the application of heat and pressure, which can disrupt the polymer chains and lead to a
more amorphous structure.

Noteworthily, the subsequent processing steps appear to have partially reversed
this effect, with an increase in crystallite size noted in samples produced via the new
process (55.5 nm) and traditional cast extrusion recycling (57.6 nm). This suggests that the
conditions during the final stage of our developed process may facilitate a certain degree of
polymer chain reorganization and crystallite growth.

The crystallite size is a critical factor in determining the mechanical properties of poly-
meric materials. Smaller crystallites can contribute to increased material toughness by pro-
moting energy dissipation during deformation, while larger crystallites often correlate with
greater stiffness and tensile strength due to more pronounced polymer chain alignment.
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Figure 6. Change in the crystallite size of polyethylene during reprocessing.

The degree of crystallinity, a vital parameter influencing the mechanical properties
of polymeric materials, was computed based on the relative areas under the crystalline
and amorphous peaks. The analysis indicated a decrease in crystallinity immediately after
hot pressing, which then approached the original value in the final recycled product. This
underscores the ability of our novel process to maintain the crystalline integrity of the
material, which is crucial for preserving its strength and durability.

Additives such as titanium oxide (TiO2) and calcium carbonate (CaCO3) were also
detected, as evidenced by their respective diffraction peaks. TiO2 is a well-known UV stabi-
lizer, while CaCO3 serves as a cost-effective filler that can enhance mechanical properties
such as stiffness and impact strength. Their presence was uniformly maintained across
the recycled samples, indicating that our recycling process did not adversely affect the
dispersion of these additives.

The incorporation of these additives and their interaction with the polymer matrix
play a pivotal role in the performance of the recycled plastics. TiO2 is crucial for preventing
UV-induced degradation, while CaCO3 can contribute to the overall strength and opacity
of the final product.

The XRD patterns of our recycled material exhibited a high degree of similarity with
conventional recycling process, affirming the reliability of our process. The slight differences
observed in peak intensities and positions offer an additional layer of validation for the
effectiveness of our method in preserving the material’s structural properties.

This comprehensive XRD analysis demonstrated that our developed recycling process,
while introducing minimal structural alterations, preserves the integral properties of the
waste soft plastics, ensuring their suitability for subsequent applications where mechanical
integrity is paramount.

3.1.4. Mechanical Testing

Mechanical testing, specifically tensile testing, is crucial for evaluating the properties
of plastic materials. Tensile testing assesses how well a product performs under tension.
The test involves elongating a sample and measuring the load it carries until failure. The
results are then transformed into a stress–strain curve, providing insights into mechanical
properties such as ultimate strength and elastic modulus.

The tensile test results for the raw and recycled samples as well as two commercial
films are illustrated in Figures 7 and 8. These results are consistent with the aforementioned
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DSC and XRD findings. The elastic modulus, as seen in Figure 8, was initially low for the
hot-pressed sample, but it increased for both the cast extrusion and new process samples,
which corresponded to changes observed in the XRD analysis. There was a slight decrease in
the ultimate tensile strength after reprocessing, likely resulting from potential chain scission
and alterations in crystallinity, as indicated in Table 1 [50]. Overall, it can be concluded
that the recycling process does not significantly impact the mechanical properties of the
polymer. Notably, the ultimate tensile strength of the new process samples exceeded the
minimum requirements for plastic films made from low-density polyethylene and linear
low-density polyethylene for general use and packaging applications, as specified in ASTM
D4635 [51].
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Figure 7. Ultimate tensile strength of the raw and recycled samples as well as two commercial
products. The red dash line indicates the requirement for plastic films made from low-density
polyethylene and linear low-density polyethylene for general use and packaging applications.
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The mechanical testing results, specifically the ultimate tensile strength and elastic
modulus of the recycled materials, were contextualized to illustrate their practical impli-
cations. By comparing these values with the requirements for various commercial and
industrial applications, we can evaluate the feasibility of using these recycled materials in
real-world scenarios. For example, the ultimate tensile strength of our recycled material,
which surpasses the industry benchmark for general-use plastic films, indicates its suit-
ability for applications where strength is crucial. Similarly, the elastic modulus provides
insights into the material’s flexibility, suggesting potential uses in consumer products where
both rigidity and pliability are desired. This evaluation is indispensable for manufactur-
ers and end-users who are considering the adoption of sustainable materials as a viable
alternative to virgin plastics.

3.1.5. Microstructural Analysis

The microstructural characteristics of the recycled soft plastic samples were thoroughly
investigated using scanning electron microscopy (SEM) coupled with energy-dispersive
X-ray spectroscopy (EDS). SEM images at both 100× and 500× magnifications, as displayed
in Figure 9, provided detailed visuals of the samples’ topography and particle distribution,
revealing the intricate details of the materials’ internal structure.
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The SEM analysis at 100× magnification for the hot-pressed, cast extrusion, and devel-
oped process samples revealed a distinct morphology indicative of the various stages of
processing. The hot-pressed samples showed a denser particle distribution with smaller-
sized features, suggesting a higher degree of material compaction as a result of the press-
ing operation. This is consistent with the concept that the application of heat and pres-
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sure during hot pressing can significantly influence the microstructure, leading to the
observed densification.

At 500× magnification, the SEM images provided a closer look at the dispersion
of filler particles within the polymer matrix. The hot-pressed samples exhibited a fine
dispersion of CaCO3 and TiO2 particles. The high-resolution SEM images allowed for the
observation of the interfaces between the polymer matrix and the filler particles, which is
crucial for understanding the interfacial adhesion and its impact on mechanical properties.

The EDS mapping complemented the SEM analysis by identifying the elemental
composition associated with the various phases present within the samples. The analysis
confirmed that the larger particles were predominantly composed of CaCO3, while the
smaller particles were identified as TiO2. This distinction is vital as the size and distribution
of these particles can significantly influence the mechanical strength, barrier properties,
and stability of the recycled material.

The developed process samples demonstrated a uniform particle distribution with
a more pronounced presence of larger particles compared to the hot-pressed samples.
This could be attributed to the rolling step included in the developed process, which may
facilitate a more uniform dispersion of filler particles and potentially enhance the interfacial
bonding between the fillers and the polymer matrix.

To further understand the implications of these findings, it is crucial to discuss the
impact of particle size and distribution on the mechanical properties of the final product.
The finer particle size observed in the hot-pressed samples could be linked to an increased
surface area for stress transfer, potentially leading to improved mechanical performance
under certain conditions. On the other hand, the more evenly distributed and larger
particles in the developed process samples may contribute to increased ductility and
toughness, which are essential attributes for flexible sheet applications.

Additionally, the effects of the recycling process on the polymer–filler interface were
analyzed. It was hypothesized that the shear forces and heat applied during the developed
process may have promoted a better interfacial adhesion between the polymer chains and
the filler particles, leading to an enhanced stress distribution throughout the material. This
could explain the improved mechanical properties observed in the tensile testing results,
as a robust polymer–filler interface is known to contribute to the overall strength of the
composite material.

In summary, the characterization results indicate that the new process does not sig-
nificantly alter the original properties of waste soft plastics. Future studies should focus
on the industrial-scale application of this process. Building upon this foundation, the
exploration of end-use applications for the resultant high-quality flexible plastic sheets
revealed a spectrum of possibilities across various sectors. The robustness, coupled with
the maintained material properties, makes these sheets particularly suitable for several
non-food contact applications.

In the construction industry, the potential of these sheets for insulation and sound-
proofing is supported by their inherent thermal properties. The automotive sector can
also utilize these materials for non-structural interior elements, aligning with the indus-
try’s durability and safety standards. As for consumer goods, the possibilities range from
furniture coverings to durable luggage, leveraging the material’s aesthetic appeal.

Agricultural applications such as greenhouse tarpaulins and irrigation system compo-
nents are envisioned due to the material’s resilience and environmental safety. The textile
industry might find value in these recycled sheets as synthetic leather, harnessing their
flexibility and texture. Furthermore, the structural integrity of these sheets introduces them
as a viable option for geotextile applications in civil engineering projects including soil
stabilization and erosion control.

The sporting goods industry presents another avenue where the material’s impact
resistance and cushioning properties could be advantageous for the development of equip-
ment and protective gear. It is imperative to underscore the importance of rigorous safety
evaluations, especially since the sheets are not intended for food contact purposes due
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to potential thermal treatment by-products. As part of our commitment to upholding
the highest standards of health and safety, ensuring that the recycled product is devoid
of hazardous substances is a fundamental aspect of this research, in strict adherence to
regulatory guidelines.

Thus, the practicality of implementing the recycled sheets in these diverse applications
is contingent upon their compliance with industry-specific requirements and the affirmative
outcomes of exhaustive safety assessments, confirming the absence of any detrimental
by-products post-recycling.

Regarding the safety of the recycled plastic sheets, particularly in relation to the
thermal treatment process, we recognize the importance of ensuring that no harmful
by-products compromise the integrity of the final product. While this study did not
encompass a specific chemical analysis to identify potential hazardous substances like
phthalates, we thoroughly reviewed the relevant literature on the thermal processing of
similar plastics. Studies suggest that the processing temperatures employed in our method
are below those that could result in the release of such substances. Furthermore, a study
investigating the melting of recycled HDPE shopping bags, similar to our input materials,
indicated that phthalate release at the applied temperatures was minimal [52]. It is worth
mentioning that although small amounts of gases could be produced during the recycling
steps, implementing safety precautions such as sufficient ventilation can mitigate this issue.
These findings align with the regulations and standards set forth by environmental and
health authorities, which guide the safe recycling of plastics. Therefore, based on the
available data and regulatory frameworks, we have confidence in the safety of the recycled
sheets for the proposed non-food contact applications.

3.2. Evaluating Environmental Impacts: LCA Results

A LCA was performed to quantitatively evaluate the environmental benefits of man-
ufacturing plastic from waste soft plastics compared to virgin polymer. The net environ-
mental benefit of the new process is estimated as the avoided environmental impacts of
virgin polymer production minus the incurred environmental impacts of pellet preparation
from waste plastic. The environmental impacts of the scenarios are detailed in Table 2.
As shown in Figure 10, the new process substantially reduces the environmental impacts
compared to traditional cast extrusion, even though it utilizes waste soft plastics. The
LCA results underscore that the major distinction between the two processes lies in virgin
pellet production.

Table 2. Environmental impacts of the production of 1 kg of flexible sheet through different scenarios.

Impact
Category Unit

Cast
Extrusion

Using Virgin Pellets

Cast Extrusion
Using Waste Soft

Plastics

Developed Process
in This Study Using

Virgin Pellets

Developed Process
in This Study Using
Waste Soft Plastics

Fossil fuel depletion MJ 10.647 1.086 10.190 0.064
Global warming kg CO2e 2.905 2.015 2.439 0.158

Ecotoxicity CTUe 30.671 25.348 26.967 2.207

The newly developed recycling process offers substantial environmental benefits by
significantly reducing fossil fuel depletion, global warming potential, and ecotoxicity. The
process conserves fossil fuels by avoiding the production of virgin polymers, which is
particularly relevant in the era of dwindling fossil reserves and the imperative shift toward
sustainable energy sources. This conservation is not just a matter of resource management
but a step toward energy security and the adoption of circular economy principles that
recognize the intrinsic value of waste materials.

In terms of climate impact, the process achieves a 94.6% reduction in the global warm-
ing potential. This dramatic decrease in greenhouse gas emissions aligns with the global
commitment to mitigate climate change, helping to stabilize rising global temperatures by
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curtailing the carbon footprint of plastic production. Such innovation is in lockstep with
international efforts to reduce carbon emissions and transition to carbon-neutral practices.
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Figure 10. Comparison of different LCA scenarios.

Moreover, the process’s 92.8% reduction in ecotoxicity marks a significant decrease
in the potential to harm both terrestrial and aquatic ecosystems, ensuring the protection
of biodiversity and ecosystem health. By mitigating the release of hazardous substances
typically associated with plastic production, the process exemplifies an environmentally
friendly approach, advancing the cause of sustainable development.

In weaving together these environmental advantages, the process emerges as a promising
solution that not only mitigates pollution but also underscores a commitment to sustainable
and responsible plastic manufacturing and recycling practices. It is through these lenses
that the method presents a transformative step toward a greener, more sustainable future,
effectively turning waste into worth, while honoring our environmental responsibilities.

It is worth mentioning that this LCA is associated solely with the processing stage of
recycled plastics. This LCA does not account for the transportation and logistics phase,
which represents a limitation of our current analysis. Future studies should incorporate
these aspects to fully assess the environmental footprint of the recycling process. This com-
prehensive approach will allow for a more accurate evaluation of the overall sustainability
of recycling post-consumer soft plastics.

3.3. Techno-Economic Analysis (TEA)

The TEA was conducted to assess the feasibility of the recycling process developed in
this study when scaled up to a commercial level. The TEA considered various financial
indicators including capital expenditure (CapEx) and operating expenditure (OpEx) for
this evaluation.

CapEx refers to the expenses associated with non-consumable parts such as plant
equipment. These costs primarily include the purchase price of the equipment, which
is a significant factor in the estimation of CapEx. Conversely, OpEx encompasses the
costs associated with the ongoing operations, which include the expenses for all materials,
utilities (such as electricity and fuel), labor, maintenance, and insurance. The estimation
of OpEx takes into account the costs of materials and utilities. For the purposes of this
analysis, the recycled plastics were considered to have no cost.
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The comparative data for CapEx and OpEx required to produce 1 kg of plastic sheet
from both virgin and waste soft plastics are presented in Table 3. These data indicate that
the process utilizing waste plastics is economically advantageous. Notably, the equipment
costs for processing waste plastics are significantly lower than those for virgin plastics.
Furthermore, the operational costs for the recycling process of waste soft plastics are less
than those for the process using virgin plastics.

Table 3. Techno-economic analysis (TEA) of producing 1 kg of plastics from virgin and waste soft
plastics using the newly developed process.

Product (1 kg) from Virgin Plastic Product (1 kg) from Waste Plastics

Detail Value Detail Value

CapEx

Equipment:
(a) Dryer
(b) Cast extrusion

AUD2500
AUD50,000

Equipment:
(a) Shredder AUD5000
(b) Dryer AUD2500
(c) Hot-press AUD4400
(d) Rolling machine AUD4100

OpEx

Materials: Materials:
Virgin LDPE and LLDPE AUD2.40 Waste plastic -
Utility: Utility:
Electricity (6 kWh) AUD1.98 Electricity (9 kWh) AUD2.97

4. Conclusions

In this study, we successfully developed a straightforward process for the transfor-
mation of waste soft plastics into high-quality products. This novel approach involved
the melt-compression of waste soft plastics using a hot press to create a densified panel,
followed by hot rolling to produce flexible sheets. The samples obtained from this in-
novative process were comprehensively evaluated and compared with those from tra-
ditional recycling methods through a battery of tests including tensile testing, Fourier
transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray
powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive
X-ray spectroscopy (EDS).

The assessment results suggest that waste soft plastics can be recycled without signifi-
cantly altering their inherent properties. Notably, the properties of the samples derived
from the developed process in this study and those from the cast extrusion recycling
process are remarkably similar. The ultimate tensile strength, elastic modulus, and other
mechanical properties remain largely unaffected by the recycling process.

Moreover, the life cycle assessment (LCA) results emphasize the environmental ad-
vantages of producing flexible sheets from waste soft plastics using our unique approach
compared to using virgin polymers. This process minimizes environmental impact by re-
ducing fossil fuel depletion, global warming, and ecotoxicity, making it a more sustainable
and environmentally friendly choice.

Implementation of this novel recycling process offers multiple benefits including a
reduction in waste material disposed of in the environment, a decrease in the use of non-
renewable fossil fuels, and the production of valuable high-quality products entirely from
waste materials. This innovative approach not only contributes to waste reduction but also
advances the cause of sustainability and environmental responsibility in plastic production
and recycling. Future endeavors should focus on scaling up the application of this process
for industrial and commercial use, thus realizing the full potential of this sustainable and
environmentally conscious solution for waste soft plastics.
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