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Abstract: This paper proposes a framework for AI-driven municipal solid waste classification service
design and management, with an emphasis on advancing sustainable urban development. This
study uses narrative research and case study methods to delve into the benefits of AI technology in
waste classification systems. The framework includes intelligent recognition, management strategies,
AI-based waste classification technologies, service reforms, and AI-powered customer involvement
and education. Our research indicates that AI technology can improve accuracy, efficiency, and cost-
effectiveness in waste classification, contributing to environmental sustainability and public health.
However, the effectiveness of AI applications in diverse city contexts requires further verification.
The framework holds theoretical and practical significance, offering insights for future service designs
of waste management and promoting broader goals of sustainable urban development.

Keywords: AI; municipal solid waste classification; garbage classification; service design; intelligent
recognition; management strategy

1. Introduction

Since 2019, Chinese provinces and prefecture-level cities have advocated solving prob-
lems of “garbage siege” and carrying out the environmental protection policies like the
“Ban on Free Plastic bags”, both of which have put forward the overall requirements of
“reduce, reuse, and recycle” for municipal waste classification [1,2]. Compared with other
countries, there are big differences in the treatment modes and actual results of garbage
classification due to different economic strengths, resource demands, technical levels, and
legal policies. With the reuse, superimposition, and crossover collaboration of “Internet
plus”, “AI plus”, big data, Internet of Things, and other technologies in recent years, the
exploration of the technology and service changes in garbage classification, a systematic
project, is particularly prominent and important in the round of the comprehensive man-
agement of garbage classification in major cities of China [3]. This paper, based on the
scientific concept of service design, studies the latest development trends of AI 2.0 technol-
ogy and the driving factors in combination with waste classification service management.
It proposes a solution for the assistant tool for urban solid waste classification management
in the project practice in Hangzhou, China [4,5]. At the same time, it introduces the case
of the ZRR2 waste classification robot used in the waste classification processing plant
in Barcelona [6]. By comparing the two cases, it more prominently highlights the huge
potential of AI in waste management strategies.

The main research outcome of this paper is the proposal of a framework model for
AI-driven waste classification service design and management. The results of the project
practice summarize several forward-looking strategic plans for AI-driven service design
and management in future urban solid waste management. In addition, this paper dis-
cusses the environmental constraints, challenges faced, driving factors, and future research
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perspectives on future urban waste management. This research helps in understanding the
potential application of AI technology in the field of waste classification management and
provides practical guidance for the development of future waste classification policies and
initiatives. This study also reveals the importance of community service co-creation and
value network systems in environmental management under the concept of service design,
especially in the context of promoting sustainable urban development.

2. Literature Review

Municipal solid waste (MSW) classification management comprises the activities
associated with the collection, transfer, treatment, recycling, resource recovery, and disposal
of solid waste generated within urban locales [7]. The process extends from the point of
waste generation to its ultimate disposal, with efficiency and productivity being critical
considerations. Artificial intelligence (AI) technology has emerged as a promising tool in
bolstering the efficiency and precision of MSW classification. Artificial intelligence-based
technologies like smart garbage bins, garbage sorting robots, predictive models for waste
production, and optimizing the performance of waste processing facilities. The details are
shown in (Table 1). Notably, Finland, Japan, and the United States have pioneered the R&D
of automatic garbage-sorting robots. ZenRobotics Recycle system (ZRR) from Finland, the
first garbage classification robot globally, can efficiently differentiate mixed waste, useful,
and non-useful waste within MSW. Japan’s FANUC garbage sorting robots utilize the AI
vision analysis system to analyze wood quality and discriminate polymer from plastic.
The Computer Science and AI Laboratory at the Massachusetts Institute of Technology
has developed ‘Rocycle’, a garbage recycling and sorting robot that can distinguish paper,
metal, and plastic by touch [6].

The application of AI in waste management transcends waste classification. AI mod-
eling methods can accurately predict waste generation quantities, facilitating the design
and operation of effective waste management systems [8]. AI has also been instrumental in
forecasting waste generation, managing construction waste, and optimizing landfill site
selection [9]. Other studies have employed non-parametric models to track the tempo-
ral productivity changes in waste management services, considering both economic and
environmental aspects [10].

In essence, AI technology, in conjunction with the Internet of Things (IoT), plays a vital
role in the classification and management of MSW. These technologies enable precise waste
classification, waste collection and transportation optimization, and the establishment of
efficient waste management systems. AI modeling and DEA-based models are employed
to measure productivity from various perspectives, thus providing comprehensive insights
into the performance of waste management services in terms of productivity and eco-
productivity [10].

In China, the government initiated a new MSW classification strategy in 2017, with
Hangzhou being one of the first pilot cities. The policy aims to ensure effective MSW
classification implementation via measures like AI- and computer vision (CV)-based ap-
proaches [11]. The implementation of IoT technology in MSW classification and manage-
ment can enhance the classification level and optimize waste collection and transportation,
thereby reducing costs and environmental pollution. The COVID-19 pandemic has am-
plified the challenges of MSW management due to the surge in medical and household
waste [12]. This scenario has highlighted the criticality of waste collection, recycling, treat-
ment, and disposal services. Concurrently, the pandemic has exposed the complexities
of waste management, emphasizing the importance of efficiency, health considerations,
and customer satisfaction. In this context, factors such as waste collection frequency, age,
educational status, and family size play a crucial role in customer satisfaction [13].
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Table 1. The main application of artificial intelligence to waste management [14].

Type of AI
Technology Types of Waste Measures of AI Key Information Results/Benefits References

Smart
garbage bin

Solid waste Sensor network
1. Garbage bin monitoring
2. Collect data
3. Analyze information

Used to collect
municipal waste

Khan et al. (2021)
[15];
Ghahramani et al.
(2022)
[16]

Solid waste Ultrasonic sensors
1. Garbage will not overflow
2. The lid will open automatically
3. Automatic detection of garbage

Digital garbage bin

Wijaya et al. (2017)
[17];
Praveen et al. (2020a)
[18]

Solid waste Ultrasonic sensors
Red external sensor

1. Identify garbage
2. tracking the vehicle and IR
sensors
3. Garbage level monitoring

Instantly detection
of the status of Bins:
Filled or Empty

Pawar et al. (2018);
[19]

Garbage-
sorting
robot

Reusable garbage Computer vision
Robotic framework

1. Gripping
2. Motion control
3. Material categorization

Success rates:
glass: 79%
plastic: 91%

Wilts et al. (2021) [8];
Kshirsagar et al.
(2022) [20]

Solid waste

Computer vision
simultaneous
localization and
mapping

1. Automatic navigation
2. Garbage recognition
3. Pick up automatically

Recognition
accuracy is 94%,
even without path
planning

Bai et al. (2018) [21];
Lee, K.-F. (2023) [6]

Seven types of
garbage

Skin-Inspired Tactile
Sensor

1. Quadruple tactile sensing
2. Object recognition
3. Garbage classification

Recognizing 7
types of garbage,
accuracy of 94%

Li et al. (2020) [22];
Lee, K.-F. (2023) [6]

Predictive
model for
waste
production

Hazardous
waste,
construction site
waste

Genetic
algorithm-adaptive
neuro-fuzzy
inference system

1. Defining targets for waste
production
2. Optimizing resources
3. Reporting and conducting
inspections
4. Compared with different AI
prediction models

Raised proposed
measures for waste
reduction
prediction

Haque, M.S. et al.
(2021) [12];
Bang et al. (2022) [10]

Solid waste Proximate analysis

1. Generation rate and waste
composition
2. Quantified, characterized, and
evaluated energy potential and
nutrient value of solid waste

Reduce tons of
carbon dioxide
equivalent
greenhouse gas
emissions.

Fetene et al. (2018)
[13]

Solid waste Eco-Productivity
Analysis

1. DEA-based models
2. Sampling and characterization
3. Carbon emissions evaluation of
MSW disposal system

Decline of daily
carbon emission in
MSW disposal
system after waste
sorting.

Lo Storto, C. (2017)
[9]
Wang, Y. et al. (2021)
[11]

Therefore, it is imperative to conduct further research to unravel the multiple roles of
AI technology or AI agents in waste classification management systems. These technologies
function not only as technical components of the service system but also as collaborative
agents alongside human operators [23]. The aim is to explore how AI influences service
design and management practices for MSW from different perspectives. This investigation
would provide constructive insights for future service ecosystem innovation, preparing us
to better handle unforeseen events and navigate the multifaceted challenges of our evolving
social environment.

Service design models the social, material, and relational elements that support the
customer experience [24,25], integrating the various silos of the organization into a coordi-
nated service offering [26]. It applies human-centered and collaborative methods to explore
the experiences of different stakeholders. This ability to integrate stakeholders enables
service design to develop solutions that are relevant to customers while considering the
structural context of the organization [27,28]. However, the relationship between artificial
intelligence and service systems is a complex and evolving new one [29]. Some believe a
key aspect of the relationship between AI and service systems is that AI has the potential
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to complement rather than completely replace human labor [30]. While AI can automate
certain tasks, it also amplifies the comparative advantages of human workers in areas
such as problem solving, adaptability, and creativity. To fully leverage the potential of AI
in service systems, it is crucial to study and implement strategic frameworks [31]. This
framework should consider the nature of service activities, service processes, and other
specifics [32].

Consistent with all service-dominant logic premises, the AI-driven service system
guides the description of the situation at three levels: Value constellation, whole picture
view of the system, service activities, and other specifics. According to Alter [32], there
are three frameworks for service systems, namely the Work System Framework, the Ser-
vice Value Chain Framework, and the Service Lifecycle Framework. The Work System
Framework provides a systematic perspective for understanding and analyzing any system
that performs work within or between organizations. The Service Value Chain Framework
extends the Work System Framework by introducing functions that are particularly relevant
to services. The Service Lifecycle Framework emphasizes the evolution of service systems,
including the creation, operation, and planned and unplanned changes to services. There-
fore, AI technologies or AI agents are set to become vital focal points in the construction of
new service systems, interactive experiences, and value co-creation [32,33].

3. Materials and Methods

This research proposes a propositional AI-driven waste classification service design
and management framework (hereafter referred to as AI-MSWSS). The research strategy
combines literature review, case study, and Practice-oriented Design Research (PDR) [34].
The focus of the research process is on summarizing reflections or conducting empirical
analysis from Municipal Solid Waste (MSW) service design practice, aiming to uncover
innovative findings and new theoretical frameworks.

Literature Review: A propositional literature review was conducted to identify existing
theories and practices related to AI-MSWSS. This process helped establish a theoretical
foundation in service design and artificial intelligence and identified the undefined role
of AI in service design and management methodologies, as well as the opportunities and
challenges AI technology poses for service design [14,24]. These gaps in knowledge are
addressed in this research. We utilized academic databases for sourcing relevant literature
and critically analyzed the collected articles, books, and reports to understand the current
state of the field.

Case Study: We conducted in-depth research on selected cases, specifically selecting a
case of a waste classification helper, and a case garbage sorting robot [8], to gain a deeper
understanding of the practical applications of AI-MSWSS and to facilitate the comparison
and evaluation of relevant design and management experiences. Solutions were iteratively
refined based on the challenges encountered in practice. The goal was to derive practical
insights and lessons that could be generalized to other similar contexts.

Practice-oriented Design Research (PDR): In this research strategy, the focus is on gen-
erating new knowledge through service design practice. In our study, we implemented the
PDR process via four stages: problem framing, understanding and defining, designing the
service concept and architecture, and evaluation based on results [35]. Knowledge artifacts
and practical experiences gathered during the PDR process were critically reflected upon and
analyzed. The aim was to generate innovative knowledge and theoretical insights that could
contribute to the establishment of AI-MSWSS and contribute to the broader field of practice.

The research process placed significant emphasis on empirical analysis and reflection
from practice. The overall goal was to extract innovative findings and develop a new
theoretical framework that can enhance the practical understanding of AI-MSWSS and
enrich the knowledge construction in the interdisciplinary field of service design and
artificial intelligence.
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4. Case Study: Service Design and Management of MSW Classification Based on
AI Technology
4.1. Case Study 1: BinBin Helper

The BinBin Helper applet, primarily developed to aid in waste classification and
management, serves a crucial role in the urban management of Hangzhou’s Binjiang
district in China. This project, commissioned by the Urban Management Bureau, is an
embodiment of the effective use of artificial intelligence (AI) and Internet of Things (IoT)
technologies in managing municipal solid waste (MSW).

As shown in Figure 1, the applet’s user interface (UI) is designed with simplicity in
mind, utilizing a unique shade of blue as its main color and featuring intuitive visual icons
of sorted trash cans. These design elements aim to assist citizens and community workers
in navigating and using the applet effectively. One of the applet’s noteworthy features is its
use of AI technology. With capabilities such as image recognition, speech recognition, and
text search, the applet assists users in accurately classifying waste with an average accuracy
rate of 92%, which is 9.5% higher than the competing control group. This not only helps
users improve their waste classification practices but also aids the Urban Management Bureau
in the data sampling of garbage bins and waste transfer stations, thereby enhancing the
efficiency of urban environmental sanitation work. Another major component of the project is
the creation of an IoT monitoring platform. Based on Geographic Information System (GIS)
maps, the platform oversees garbage disposal and urban administration patrol management.
During the COVID-19 pandemic, the platform was used to develop a map and supervision
system for discarded mask drop-off points in the Binjiang district. This initiative helped
alleviate environmental pollution and health concerns among the residents, demonstrating
the responsiveness and adaptability of the system to unexpected challenges.
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Figure 1. AI-related features and UI design of BinBin Helper applet.

4.2. Case Study 2: ZRR2 Robot Applied in Garbage Sorting [8]

As shown in Figure 2, in Barcelona’s Ecoparc4 waste treatment facility, a ZRR2 robot
from ZenRobotics was utilized to explore its potential in solid waste sorting, aimed at
testing and evaluating the automation of municipal waste sorting plants by supplementing
or replacing manual sorting. The objectives were to increase the current recycling rates
and the purity of the recovered materials, to collect additional materials from the current
rejected flows, and to improve the working conditions of the workers, who could then
concentrate on, among other things, the maintenance of the robots.
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The ZRR2, equipped with dual mechanical arms, advanced sensors, and deep-learning
software, could identify and sort a variety of waste materials, including metal, plastic, and
cardboard. Researchers trained and tested the robot using 13 different types of residential
and industrial waste. Post-training, the robot demonstrated the ability to accurately classify
different waste materials, achieving over 90% purity in most categories. In the next phase,
the throughput was gradually increased until the desired throughput for production was
achieved. In some cases, a monolayer of the material could no longer be guaranteed, objects
began to overlap, touch, and cover each other. Under such conditions, the ZRR2 robot
showed increasing difficulties in detecting and handling objects. Although the recovery
rate test results for ZRR2 were not satisfactory, averaging only 67%. This case study
provides initial evidence that robots and artificial intelligence can potentially enhance
traditional urban waste sorting processes, improving precision and efficiency. However, it
also identified some challenges in optimizing the entire system for robotic use [8].

4.3. Comparative Study: The BinBin Helper vs. the ZRR2 Robot

This case study primarily focuses on the innovative design and management of
waste classification services regardless of the project type. It represents an evolution and
integration of previous service design methodologies, realized via three distinct stages:
problem framing, understanding the experiences and goals of multiple actors, and ideation
for the design of service concepts and architecture [36].

The first stage, problem framing, involves mapping the value network and identifying all
actors in the waste classification service, and their inter-relationships. The second stage delves
into the goals and experiences of various actors. For instance, during the initial promotion of
waste classification in Shanghai, residents were required to deposit waste at fixed times and
locations. This approach required significant community human and material resources for
classification supervision [11]. Recognizing these issues and the fact that Hangzhou did not
have the same level of resources to invest, Hangzhou improved its regional implementation
methods. This resulted in a more resource-efficient solution such as a digital assistant tool.
This multi-actor perspective provides a comprehensive view of the service ecosystem and
identifies areas of the service encounter that require improvement.

The third stage involves ideation to create a service blueprint for waste classification.
This blueprint includes the determination of the service interface and process, ensuring
a balance of different actors’ goals, and supporting real-time network interactions. These
architectures are not rigid representations with formal language; instead, they provide a
flexible visual experience for a collaborative and iterative service design process. Using
ZRR2 as an example, the design of the service blueprint must consider the differences
between actual working environments and optimal experimental environments [35]. There-
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fore, understanding how AI technology integrates with software and hardware facilities is
crucial, which includes corresponding improvements to process design. In real working
environments, there may be various unforeseen challenges and constraints that require
adjustments and optimizations in the service design so that AI technology can integrate
more effectively with facilities to achieve optimal results.

In comparing the BinBin Helper and the ZRR2 robot, it is clear that both solutions
utilize AI technology to tackle waste management, albeit in different ways and contexts.
Their respective service designs and management strategies reflect the unique demands of
their environments.

BinBin Helper integrates AI technologies into a user-friendly applet. The design
focuses on user experience, with an intuitive UI that employs recognizable icons and
an appealing color scheme. This design choice encourages user interaction and aids in
the proper classification of waste. The ZRR2 robot, designed for an industrial setting,
prioritizes operational efficiency and accuracy. It incorporates AI and advanced sensors
to autonomously sort various types of waste materials [35]. The management strategy of
BinBin Helper involves aiding the Urban Management Bureau in waste management. The
applet not only enables users to classify waste accurately but also provides valuable data on
waste generation patterns, facilitating more efficient management and planning. The ZRR2
robot’s management strategy focuses on automation and enhancing operational efficiency
within waste treatment facilities. The robot also aims to improve working conditions by
taking over tasks usually performed by humans [8].

In conclusion, comparing these case studies provides valuable insights into the diverse
applications of AI technology in waste management. It highlights the importance of
tailoring the service design and management strategy to the specific context and user needs.
Despite the different approaches, both case studies (Table 2) demonstrate the immense
potential of AI in enhancing waste management efficiency and effectiveness, as shown
through the value networks of different service systems.

Table 2. Summary of the comparative case study on the BinBin Helper and the ZRR2 robot.

Project Case
Study

Types of
Artificial
Intelligence

Types of Waste
(Top 5–10)

Duration or
Frequency of
Use/Trial

Classification
Quality

Efficiency
Optimization References

1. Garbage sorting
helper in China
Hangzhou

Baidu
EasyDL
platform [37]

Mainly four-category
waste sorting, including:
Plastic bags, Milk
cartons, Sunflower seed
shells, Eggshells, Plastic
products

Total of users: 37,800+
Active Users: 6800+
Numbers of Queries:
1,000,279

Accuracy:
92%, compared
with control
group + 9.5%

\ Yuan, J et al.
(2020) [38]

2. The Ecorparc4
municipal waste
sorting plant in
Barcelona [8]

ZenRobotics
ZRR2 [6]

Solid waste: PET bottles,
plastic films (LDPE),
aluminum, ferrous
metals, PE boxes, large
PE bottles,
paper/cardboard, PP,
(untreated) wood,
textiles, Tetra Pak and
vegetable substances

A trial period of
15–30 min, feeding
rate (about
1000 picks/h).

Average purity:
97%

Average
recovery:
67%

Wilts et al. (2021)
[8]

4.4. Findings and Further Study

The integration of AI in service design brings both opportunities and challenges, the
distinctiveness of AI-driven service design as a commodity and design object will bring
new design concepts and methods that revolve around service design. Co-creation in
service contact points now includes both common issues and complex uncertainty issues.
The traditional service co-creation process is an innovation process similar to participatory
and collaborative forms [39]. With the participation of AI, human–computer co-creation
has become a “recommend-select-feedback” cycle process, transitioning human–computer
interactions from “one-way dependence” to “two-way training” [40]. By introducing this
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kind of classification correction function into a waste classification inquiry and result pages,
both the accuracy of waste classification and user interaction can be improved.

Based on these findings, although the service system is not a new area of theoretical
research or social practice, we believe a new theoretical framework is needed to better
guide the design and management of service systems in the context of the AI era. The
following section will detail and explain this new theoretical framework, including its
theoretical basis, main components, and application scenarios. It will also discuss how it
helps us understand and address the problems encountered in this case study and provide
useful insights for more complete and complex service systems in the future.

5. Results: A Proportional Framework for AI-Driven Garbage Classification Service
Design and Management (AI-MSWSS)

Building upon the service design framework and stakeholder value network theory, the
aforementioned case study presents research findings on the key elements and stakeholders of
AI-MSWSS. Compared to traditional urban service systems, this new framework offers several
advantages, as it is designed to address the evolving complexities of waste classification and
management in urban environments. Beyond its immediate application in waste management,
this framework’s significance extends to addressing broader challenges in complex service
systems, challenges that have become increasingly prominent in the AI era [34].

5.1. A Proportional AI-Driven Service Design Framework

The service design basis for an AI-driven Municipal Solid Waste (MSW) service system
should be established using service design methodologies and stakeholder value network
concepts. Following the design thinking process as described by Brown [41] and Stickdorn
and Schneider (2010) [28], the construction of the entire service design framework can be
divided into four stages: problem framing, understanding, ideation, and implementation.
However, to effectively leverage AI technology and address the challenges of designing
services for value networks, it is necessary to explore the dual or multiple roles that
AI technology can play within the service system. This understanding should then be
translated into value network service concepts and service architectures.

Building upon the aforementioned case, the service design basis should not only
consider the tasks, processes, personnel allocation, interactive behaviors, and value ex-
changes at each stage of the waste management lifecycle but also how AI technologies
can continuously refine and optimize these elements. AI brings challenges to almost all
stages of a typical design process (Figure 3). As shown in the triangular colot block area
in Figure 3, the proposed AI design methods and tools have mostly focused on the two
ends of this creative process, either helping designers to understand what AI is and can do
generally or enhancing the evaluation of the final design [42].
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The four stages that can be employed in AI-driven service design include the following:
Stage 1. Plotting the Value Network
As shown in Figure 4, the first phase focuses on plotting the value network of the

municipal solid waste (MSW) service system. This involves identifying all key stakehold-
ers and their respective roles in the system. These can include waste generators such as
individual households and businesses, waste collectors, waste treatment facilities, and
regulatory bodies supervising waste management [44]. Tasks in this phase include stake-
holder identification, role definition, and relationship mapping. Interactions in this phase
primarily involve decomposing the elements of the service system, understanding the
role positioning and network relationships of different participants, and establishing a
comprehensive understanding of the service ecosystem. AI can play a crucial role in this
phase, helping analyze the complex stakeholder network and the AI agent itself can also
become part of the network structure. For example, machine learning algorithms can iden-
tify waste generation patterns among different stakeholder groups, helping to highlight
key contributors or potential inefficiencies within the system.
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Stage 2. Understanding the Experiences and Interactions of Multiple Participants
As shown in Figure 4, the second phase involves empathizing with various stake-

holders to understand their experiences, needs, and pain points in the waste management
process. The means include qualitative research methods such as user interviews, surveys,
and observations (Table 3). Process tasks may include developing user personas, journey
mapping, and empathy mapping. Interactions mainly involve contact with stakeholders,
activities, interactions of multiple users, goals, and conflicts of multiple users, and the
value goal is to discover unmet needs and opportunities to improve the service [36]. AI can
provide assistance in this phase by analyzing large amounts of user feedback to identify
common themes or sentiments. For example, user-generated content can be used for social
network analysis, survey feedback, media commentaries, and internet public sentiment
about waste management.
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Table 3. Mapping AI technology challenges onto the AI-MSWSS [36].

Actor’s Goal Subgoal Quotes

1. quality of garbage
classification

accuracy What the hell are dry batteries? Is it hazardous waste? (inspector)

complete Do we need to break the bag of perishable garbage? Under what
circumstances do not need to break the bag? (citizen)

understandability Why are the classification marks on the trash cans inconsistent? (city
management)

2. efficiency of garbage
reduction

source classification There are too many types of garbage, how to quickly memorize and identify
them? (company representative)

recycling efficiency There are so many types of garbage, how do you know which ones are
recyclable? (community management)

transfer and treatment
efficiency

We need to optimize the transportation routes for garbage collection to reduce
the time and cost of delivery to the landfill (city management)

labor saving Disposal supervisors are not doing a good job (inspector)

3. relationship among
actors

citizen centered Garbage classification is beneficial to the people rather than disturbing the
people (community management)

majority support Good garbage classification reflects the level of the community (community)

mostly value
recognition

If the garbage classification in the community is done well, the value of the
real estate will increase a lot (citizen)

4. information sharing

regulatory compliance We need to make sure that all stakeholders are aware of the regulations and
guidelines for garbage reduction (community property)

uniform standards The standard of classification in Hangzhou is different from that in Shanghai,
and the names are also different (city management)

easy to use We must first teach the elderly and children to sort garbage, and others will
naturally (community management)

Stage 3. Designing the Value Network Service Architecture
The third phase involves designing service prototypes and architecture based on

insights gathered from the previous two phases (Figure 5). This involves defining the
customer journey, touchpoint interfaces, and the service architecture that will deliver
value to the stakeholders. The research methods used are primarily participatory design,
service blueprinting, and prototyping. Tasks in this phase may include service blueprinting,
process modeling, and technology selection. Interactions here mainly involve collaborative
design work, ensuring the balance of customer value constellations and activities and
goals of multiple user roles. The goal of constructing the value network is to integrate
service concepts and architectures for different participants, thereby creating an effective
and efficient service process [36,44]. AI can play a significant role in this phase, helping
optimize the service process and integrate the technical architecture. For example, AI can
offer a model service to assist in computing how front-end waste classification can adjust
to fit the city’s MSW disposal scheme, ultimately achieving an optimal allocation scheme
with maximum economic benefits.

Stage4. Evaluation Based on Results
The final phase involves testing and evaluating the service design. This includes

prototype testing and field testing and involves measuring the performance of the service
system according to defined metrics, as well as a qualitative assessment of customer
satisfaction and other subjective indicators in the value network. The research methods
used can include the Analytic Hierarchy Process (AHP) and satisfaction surveys [45]. Tasks
in this phase may include prototype testing, field pilot testing, performance testing, and
satisfaction surveys. Interactions mainly involve testing and collecting feedback, and the
value goal is to validate the service design and identify areas for improvement. AI can
provide advanced analytical capabilities in this phase. For instance, machine learning
algorithms can analyze operational data and identify patterns or trends that may not be
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apparent to human analysts. This can help gain a deeper understanding of the service
system’s performance and provide recommendations for further optimization.
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5.2. A Proportional AI-Driven Service Management Framework

Consistent with all service-dominant logic premises, the AI-driven service system
guides the description of the situation at three levels: value constellation, whole picture
view of the system, service activities, and other specifics. According to Alter’s view [32],
there are three frameworks for service systems, namely the Work System Framework,
the Service Value Chain Framework, and the Service Lifecycle Framework. The Work
System Framework provides a systematic perspective for understanding and analyzing
any system that performs work within or between organizations. The Service Value
Chain Framework extends the Work System Framework by introducing functions that are
particularly relevant to services. The Service Lifecycle Framework emphasizes the evolution
of service systems, including the creation, operation, and planned and unplanned changes
of services. Therefore, AI technologies or AI agents are set to become vital focal points in
the construction of new service systems, interactive experiences, and value co-creation.

In integrating AI as a specific element in the Work System Framework, a marked
enhancement in the system’s ability to perform tasks efficiently is observed (Figure 6). This
elevation, attributed to AI technologies, presents in the form of intelligent automation, data
analytics, and predictive capabilities that significantly augment traditional infrastructure.
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This shift redefines the roles and responsibilities within the service system, where both
service providers and receivers find their functions facilitated. The former, in leveraging
AI’s data analysis and decision-making capabilities, can deliver more personalized and
efficient services. The latter, on the other hand, benefits from improved service experiences,
facilitated by AI’s ability to anticipate needs and provide timely solutions.
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The lifecycle of the service activities within this system, under the influential hand of
AI, undergoes continuous evolution and iteration. AI drives this process by promoting
efficiency, scalability, and adaptability, allowing the system to respond effectively to fluctu-
ating service needs and environments. The transformative effect of AI’s inclusion in the
new service management framework is profound, enhancing operational efficiency while
empowering the creation of innovative service offerings. Its ability to co-create value by
amplifying the effectiveness of service delivery and experience underscores AI’s pivotal
role. Conclusively, AI is a vital catalyst in the new service management framework, driving
the evolution and iteration of service activities, and enabling role players to excel in their
responsibilities. As the importance of AI continues to gain recognition, its role in the future
of service management frameworks is set to increase, validating its significance.

6. Discussion

Artificial intelligence (AI) technologies are observed to play a crucial role in the new
service system of municipal solid waste (MSW) classification. They serve multiple roles,
necessitating careful consideration of their positioning. In the context of urban solid waste
management, AI is viewed not merely as a technical tool, it is seen as an active participant,
automating and optimizing complex tasks. For example, AI-driven robots using advanced
sensors and cameras can effectively identify, classify, and separate waste, enhancing system
efficiency and reducing human exposure to hazardous waste.

However, it must be acknowledged that AI’s role in the entire new service system is
currently apparently local and not global. Some sorting tasks still have to be carried out
manually (manual picking), e.g., the quality control of recovered material and the manual
sorting of oversize and waste streams [8]. This raises a demand for setting how AI adapts
to existing workflows and environments. While the advent of AI 2.0 technologies offers
the possibility of AI replacing some human participants, particularly those that follow
logical structures and require minimal social interaction, this transition is recognized as
being not immediate and may face technical and implementation challenges. AI technology



Sustainability 2023, 15, 16454 13 of 16

is also seen as assisting human participants in achieving their goals within the system.
Ideally, it serves as a co-pilot, sharing the objective of improving process efficiency and
user experience with humans. In certain circumstances, AI may turn the task of image
recognition into a bidirectional training process that continuously enhances learning [42].
For instance, in the waste classification recognition process of BinBin Helpler, human
intervention is still required when situations arise where multiple objects overlap and cause
confusion in image recognition. This is necessary to determine the correct target for sorting
and subsequent disposal actions.

In the commercial environment, services dominated by efficiency and utilitarianism
can be replaced with AI, as demonstrated in various automatic telephone services launched
by banks, airlines, and other operators [46]. It is expected that classification and sorting
services will also be gradually replaced with AI in the waste classification field. On the
other hand, the distinctiveness of AI-driven service design as a commodity and design
object will bring new design concepts and methods that revolve around service design.

With the introduction of service design, the concept of ‘co-creation’ has evolved.
Co-creation in service contact points now includes dealing with both common issues
and complex uncertainty issues [39]. The ultimate concern of service design is people’s
experience perception in value co-creation. Users complete value co-creation in the process
of service delivery and contact. The service’s value is embodied in the “enable” of the
platform, which provides various possibilities for participants. This concept of “enable
design” can be evaluated using methods like AHP and CSI satisfaction, calculating the
evaluation level of the sense of value created from service design [39,45].

In the lifecycle management of the new service system, AI also plays a critical role. If
AI widely replaces some participants, it can simulate human participants’ goal perception
and the system’s incentive for proactive behavior, enabling AI to exhibit capabilities of
reinforced learning and adaptability. This plays a crucial role in managing the lifecycle of
the service system. In large institutions, the role of AI can be further optimized to ensure
that AI agents continue iterating to meet an ever-changing user experience. As the system
evolves, AI can be trained and retrained to ensure system adaptability and durability.
For instance, when new types of waste are introduced, the AI model can be updated to
recognize and sort these new waste types.

However, it must also be noted that the application of AI in lifecycle management
needs to consider certain constraints, such as hardware durability, software scalability, and
the cost of AI updates and maintenance [32,42]. For example, predictive maintenance can
foresee potential breakdowns and schedule maintenance to avoid service interruptions, which
requires ample data support and highly accurate forecasting models. Additionally, AI needs
ongoing supervision and adjustment in adapting to changes in waste management regulations
or guidelines to ensure that services are always in compliance with legal requirements.

In discussing this topic, the possibility that AI challenges social ethics and economic
activity must also be considered. The increased use of AI agents may lead to a loss of jobs
requiring lower qualifications, which could obviously pose social and ethical challenges and
increase uncertainties in economic activity. Future research is needed to delve deeper into
this issue to ensure that the application of AI not only improves efficiency but also considers
social and economic impact. This could involve developing new policy frameworks to
protect workers who may be affected or providing new job opportunities through education
and training.

7. Conclusions

This framework is intended to offer profound insights into advancing AI technology in
waste classification management and pave a new path toward the goal of sustainable cities.
By automating tasks, optimizing processes, and analyzing large volumes of data, AI holds
the potential to significantly enhance the efficiency of waste classification and management,
thereby reducing the environmental impact of waste. Nevertheless, while utilizing AI
technology to achieve these goals, we also need to address a range of challenges including
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setting appropriate boundaries for AI, ensuring transparency and ethics, managing shifting
human–AI relationships, and designing people-centric services. Particularly in the process
of human–AI service co-creation, we need to find a way to align human and AI capabilities
for mutually beneficial collaborations.

To further advance the implementation and refinement of this framework, more
research is needed, including deepening community engagement, exploring solutions to
uncertainties in service co-creation, and investigating how to better integrate this framework
with the broader goals of sustainable urban development. We hope this framework can not
only drive improvements in waste management services but also provide new ideas and
tools for building more sustainable and environmentally friendly cities.
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