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Abstract: The challenges arising from the management of municipal solid waste (MSW) have a
profound impact on the sustainable development of urban areas. As a sustainable solution, the
transportation of MSW underground offers the potential to alleviate traffic congestion and reduce
environmental pollution. In this study, we propose the implementation of a large-scale underground
waste collection system (UWCS). To begin, a comprehensive operational process for the UWCS is
designed based on an intelligent technology system, including facility operation, processing workflow,
and technical parameters. Additionally, network planning methods for the UWCS are presented. A
mixed-integer linear programming model is formulated with the objective of minimizing total cost.
This model determines the optimal location and allocation of nodes within the network, as well as
the pipeline layout and flow direction. Given the computational complexity, a hybrid optimization
method, namely the genetic greedy algorithms and genetic variable neighborhood search algorithms
(GGA-GVNS), is devised to obtain high-quality solutions for the model. Finally, to validate the
efficacy of the proposed method, a simulation is conducted in the central city of Nanjing, China.
The results demonstrate that the implementation of the UWCS network in Nanjing’s city center can
yield an annual benefit of USD 5.99 million. Moreover, a sensitivity analysis reveals further MSW
management-related insights and long-term planning strategies.

Keywords: municipal solid waste; underground waste collection; transportation network design;
mixed-integer programming; reverse logistics

1. Introduction

With the rapid growth of the urban population, the production of municipal solid
waste (MSW) has witnessed a significant increase, accompanied by a diversification in the
types of waste [1–3]. The clearance and processing volume of MSW in China experienced
a notable rise from 191.419 million tons in 2015 to 2420.62 million tons in 2019, reflecting
a year-on-year growth rate of 20.9%. It is expected to reach 409 million tons by 2030.
Effectively managing MSW has become a pressing issue for cities. In traditional methods
of MSW processing, the problem of accumulation arises due to limited waste treatment
capacity, leading to long-term environmental and human health concerns [4,5]. Waste
classification offers several advantages, such as improving the utilization rate of waste
resources, effectively protecting the ecological environment, and facilitating sustainable
urban development [6]. Notably, in recent years, many developing countries, including
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China, have started implementing waste classification initiatives [7,8]. However, the im-
plementation of waste classification has also encountered certain challenges. Residents’
awareness of waste classification has caused improper source sorting, necessitating the use
of different types of vehicles for waste transportation—a factor that further escalates trans-
portation costs, urban traffic congestion, and greenhouse gas emissions [9–11]. Therefore,
with the advent of technologies like intelligent classification and smart garbage collection
systems, the concept of MSW intelligent classification has gained considerable attention
within society. Based on this technology, the undergrounding of MSW has also started
to experiment in many cities and countries. For instance, in Tongzhou, Beijing, China, a
pneumatic waste collection system primarily transported kitchen waste and other waste
through underground transport pipes. The classified waste was pre-treated in the pipes
and then moved to the transport truck inside the container. As early as 1975 in New York,
pneumatic underground pipes realized waste collection from 16 high-rise buildings in
Manhattan to the transfer station in Queens [12], among other things.

Therefore, we propose a groundbreaking and all-encompassing subterranean waste
collection system, referred to as the underground waste collection system (UWCS). Firstly,
the distinctiveness of the UWCS lies in its meticulous process design. Following the au-
tomated classification of MSW, diverse types of waste necessitate dedicated pipelines for
transportation. However, the criteria for classifying MSW vary across different countries [7].
During transportation, it is essential to align the flow direction and size of the pipelines
with the movement of waste between facilities, all coordinated with the speed of the vehi-
cles [13]. At the same time, facility capacity, equipment treatment capacity, and treatment
plant size need to be reasonably designed according to the amount of waste generated
to ensure efficient transportation [14]. Furthermore, effective information management is
indispensable between the automated classification equipment, the intelligent waste control
system, and the smart city digital platform, facilitating the digitalization and refinement
of MSW underground transportation [15–17]. Secondly, the UWCS can also be defined
as an extensive and intricate reverse logistics network transportation system. The UWCS
integrates a series of MSW logistics activities, including automatic classification, collection,
pretreatment, transfer, and ultimate disposal, into a set of pipeline infrastructure networks
with sufficient capacity. The location of underground network facilities is intricately based
on the existing transportation system, with certain facilities either clustered together or
directly relocated beneath the surface. In addition to common goals such as minimizing
operating costs and minimizing transport distances as in traditional MSW transporta-
tion system network design, the overall design of the UWCS network is influenced by
characteristics such as the high cost and irreversibility of underground works [14].

In summary of existing studies, we find that scholarly investigations into the subter-
ranean collection of MSW have been scarce, primarily focused on evaluating the feasibility
and benefits of underground automatic vacuum collection systems [18–20]. With the ad-
vancing strides in intelligent technology and the initial implementation observed in select
new cities, UWCS represents an emerging solution to cope with the ever-growing MSW
production. Next, most researchers have concentrated on the study of small-scale MSW
collecting systems within cities. Instead, there is very little research on the design and
network planning of large-scale underground MSW collection systems. Furthermore, net-
work planning can be made more efficient and decision-making easier through the use
of mixed-integer planning models to quantify the network layout of large-scale urban
domestic garbage collection systems. To fill the gap, this study proposes a network design
method for a large-scale automated waste collection system as a case study in the central
city of Nanjing, China. Firstly, we provide an overview of the various technical techniques
and create the entire suite of UWCS operational processes. Secondly, a mixed-integer linear
programming (MILP) model and solution algorithm are introduced to obtain the location of
node facilities and the waste distribution between the facilities. Furthermore, a sensitivity
analysis is conducted to examine the model’s viability across various parameters. By pro-
viding an efficient underground waste collection system for Nanjing, this study’s findings
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will facilitate rational decision-making by local authorities concerning the management
of MSW.

The contributions of this study mainly lie in two aspects: (1) the operation process of
UWCS and the idea of facility siting layout are designed based on the intelligent technology
system. This system generates fresh concepts for both the UWCS network layout and the
network planning of other subterranean transportation systems; (2) from the standpoint of
the application, the research findings broaden the scope of the MSW collecting and reverse
logistics research domains and enhance the functional design of MSW transportation
systems. In addition, this study offers new ideas and quantitative optimization approaches
for linear or network-based complex engineering projects. The supplied case study provides
additional insights for research and practice.

The novelties of this study are two. Firstly, we designed an automatic intelligent
transportation system encompassing the entire process from UCP-CCP-UTS-treatment
plants. The operational flow of the system was designed and described in detail, providing
an original planning design for the automatic, reliable, and environmentally friendly imple-
mentation of waste reverse logistics at the urban level. Secondly, considering the matching
with existing facilities and network operations, the optimal layout of underground facili-
ties, pipelines, and the waste flow direction was determined through the utilization of a
mixed-integer linear programming model, which was then validated and efficiently solved
by a GGA-GVNS hybrid optimization algorithm. The proposed method for optimizing
network layout brings a new perspective to the planning of the UWCS network.

The remainder of this paper is organized as follows: Section 2 offers an extensive
review based on the body of current research. Section 3 describes the system operating
process, technological specifications, and optimization issues of UWCS. In Section 4, the
mathematical model is presented. The model’s solution algorithm is created in Section 5.
The simulation results of Nanjing UWCS network schemes are discussed in Section 6.
Finally, Section 7 summarizes the findings and points out future research directions.

2. Literature Review
2.1. MSW Underground Collection System

MSW collection and transportation are important parts of MSW management. At
present, the MSW transportation system is composed of three types of facilities: collection
points, transfer stations, and treatment plants. The traditional MSW transportation starts at
the collection points, followed by transfer and pretreatment at transfer stations, and finally
the final disposal at treatment plants [21–23]. With the development of intelligent technol-
ogy, the process of waste collection has started to consider intelligent waste classification,
and different types of vehicles are used to transport the classified waste, which improves
the efficiency of waste disposal but also increases the cost of MSW management [24–26].

The use of underground spaces for collecting waste began in the 1960s, and more
than 1600 automated vacuum collection system solutions are under construction or in
operation in more than 30 countries in Europe, North America, and Australia [27]. In
Shanghai, a network of container railroad tunnels was planned deep underground in the
city for the automatic transport of MSW between municipal waste collection points and
waste incineration plants [28]. Nakou et al. studied the construction costs of a vacuum
underground waste collection network that covered several neighborhoods in Athens [20].
In Singapore, pneumatic waste collection systems have been implemented in some new
buildings and private housing estates, where an underground pipe network conveys waste
to collection points via the power of vacuum suction [7].

Unlike the most recent studies, the UWCS suggested in this study expands the plan-
ning horizon from a small urban region to an urban supply chain. Additionally, it incorpo-
rates intelligent transportation and automatic trash sorting technologies into the design of
the system’s network structure and operating process. Furthermore, the proposed hybrid
optimization technique employs basic but efficient algorithms and a decomposition strategy,
which could be a much more generalized alternative for UWCS planning in megacities.
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2.2. MSW Collection System Network Planning

In the design of reverse logistics networks, many scholars have focused on system
design, network models, and algorithms. In terms of network modeling, Tsydenova et al.
proposed the optimized design of the concrete network and established a bi-objective
mixed-linear optimization model with a minimum cost of recycling the network [29].
This model defines the material flow in an integrated regional recycling network. Oyola-
Cervantes and Amaya-Mier designed a reverse logistic system applicable to large complete
tires discarded in decentralized mining sites [30]. A MILP model was developed to deter-
mine the optimal network of scrap road tires, including decisions on facility siting and
transportation amounts, so as to maximize the profitability of the reverse logistics network.
Trochu et al. proposed a random planning model of a two-stage reverse logistics network
design with uncertainty and dynamic supply source locations [31]. The main objective
of the optimization model was to maximize the expected profit generated by the sale
of recycled materials to the secondary market. Govindan et al. proposed a multi-item,
multi-period, and bi-objective model to design a green reverse network for medical waste
and obtained the best location of the facility and vehicle routes with the optimization
objective of minimizing total cost and population risk [32]. Yoosefloo et al. have designed a
network for sustainable MSW management under uncertainty, seeking sustainability from
two qualitative and quantitative aspects [33].

In terms of solution algorithm, Blazquez and Paredes-Belmar proposed a two-stage
MILP model based on a two-stage MSW collection system and used the large neighborhood
search algorithm in the second stage to find good feasible vehicle path solutions [34]. Lu
et al. proposed an intelligent waste classification and collection system and optimized the
problem of waste collection by establishing a bi-objective mathematical planning model.
A new multi-objective hybrid algorithm based on whale optimization and genetic algo-
rithms has determined the problem of vehicle route planning in different echelons and
the problem of trash bin allocation [35]. Shang et al. introduced a distributionally robust
cluster-based hierarchical hub location problem for the integration of urban and rural
public transport systems at the strategic level, and a variable neighborhood search algo-
rithm and a population-and-searching-based heuristic algorithm were designed to handle
the realistic-sized instances [36]. Hashemi-Amiri et al. applied the chance-constrained
programming approach to deal with the profit uncertainty gained from waste recycling and
recovery activities. Furthermore, some of the most proficient multi-objective meta-heuristic
algorithms are applied to address the complexity of the problem [37].

Traditional above-ground MSW collection system research has yielded broad knowl-
edge in terms of network design and models. However, the underground waste collection
plan is different. Firstly, the deployment of waste pipelines is one-time and irreversible.
Waste transport in the underground network must meet the layout of the fixed infrastruc-
ture and the established network topology. Secondly, considering the different loads of
nodes and pipelines, a multi-level network topology is required to schedule underground
freight transportation. Finally, effective information control among the automatic classifica-
tion equipment, intelligent waste control system, and digital platform of UWCS requires
the integrated planning of transportation paths, nodes, and pipeline locations of the UWCS
network. Therefore, by building a mixed-integer linear programming model and creating a
hybrid optimization method based on the features of underground waste collection, this
study is able to determine the facility layout and capacity allocation of the UWCS network.

3. Prototyping UWCS Network

The considered UWCS network includes the underground node facilities, network
topology, operational flow of facilities and equipment, and related technical systems. This
section describes the system prototyping and the assumptions and modeling boundaries of
the UWCS network design problem.
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3.1. UWCS Physical Components
3.1.1. Node Facilities

Considering the capacity of the facility and the environmental impact of the waste
itself, in the UWCS, waste cannot be excessively detained after reaching the corresponding
underground node. Instead, they should be transferred directly to the next node for
processing. By setting one or two transit layers between the waste generation point and
the processing plant, it can greatly improve transportation efficiency and system service
capabilities. Based on the above planning principles, the node facilities are divided into the
following four layers:

(1) Underground collection point (UCP)

The UCP plays a role in docking the surface with underground networks. Residents
directly put MSW into the UCPs, which are then automatically classified, initially separated,
compacted, boxed, and stacked at the loading and unloading platform. In this paper, the
centers of the residential community are used as UCPs.

(2) Concentrated collection point (CCP)

The CCP is one of the optimization targets, with waste pre-treatment or a temporary
storage function connecting the upper UCPs and the lower underground transfer stations.
The number and distribution of CCPs directly affect system services. In this paper, the
candidate set of CCPs is first determined by an E-Topsis evaluation model, and then the
optimal location of CCPs is determined by a mixed-integer linear programming model
with a heuristic algorithm.

(3) Underground transfer station (UTS)

The UTS is also one of the optimization goals, with a waste transfer function connecting
the upper CCPs and the lower treatment plant. The waste transfer capacity of UTSs is the
main barrier to system service performance. In this paper, the optimal position of UTSs is
determined in the same way as CCPs.

(4) Processing plants

Because MSW can be divided into four types of waste, there are also four types of
processing plants: recyclable processing plant (RPP), comprehensive kitchen waste disposal
center (CKWDC), hazardous waste collection center (HWCC), and incineration plant (IP),
with final disposal functions. In this article, the location of the treatment plant has been
determined outside the city.

3.1.2. Network Topology

As depicted in Figure 1, the UWCS network designed in this paper has three levels.
The topology characteristics of the third-level network can be described as a hub-and-

spoke structure, and the transportation path is from UCPs to CCPs. Given the different
types of MSW and packing methods, the third-level pipeline (TPs) is set up in a three-lane
unidirectional form to ensure that each type of waste enters the corresponding pipeline
for transportation. The specifications of pipelines TPs-1, TPs-2, and TPs-3 are the same.
The transportation process in the network is roughly described as follows: First of all,
the residents manually bring MSW to UCPs and put them into the port of intelligent
waste devices. The intelligent waste classification devices automatically divide the waste
into four categories: kitchen waste (KW), other waste (OW), recyclable waste (RW), and
hazardous waste (HW), which then enter the mobile storage waste unit. The device contains
a temporary storage section that works together with the central control system to control
the operation of the system. Among them, TP-1 transports KW, TP-2 transports OW, and
TP-3 transports RW and HW. In the TP-3 pipeline, RW directly enters the pneumatic pipe,
while HW temporarily exists in Container 4, and then enters the pipeline when it reaches a
certain amount.
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The topology characteristics of the secondary network can also be described as a hub-
and-spoke structure, and the transportation path is from CCPs to UTSs. The second-level
pipelines (SPs) of the network are set up with a single lane and use automated guided
vehicles for staggered transportation. The transportation process is described as follows:
MSW transported from TP-1, TP-2, and TP-3 enters the loading and unloading platforms
of CCPs. At this time, the four types of waste are transported to different disposal points.
KW is transported from the loading and unloading platform to the pre-processing device
of the kitchen waste, where KW is squeezed, hydraulic, and then loaded into Container 1.
OW is transported to other garbage-compressed devices, and it is compressed and loaded
into Container 2. RW is transported to the recyclable waste classification device, further
classified, and then loaded into Container 3. HW does not process it directly into the
loading and unloading platform. When the sensor in the container detects that the waste is
full, the control system will call the robotic arm to transport the container to the vehicle,
which will then be transported along the SPs. The quality specifications of the container
should be determined in advance to avoid violations of the carrier capacity of vehicles
and pipelines.

The topological characteristics of the first-level network can be described as a star
structure. Each UTS has multiple allocation processing plants. In order to reduce the
complexity of the model, there is no connection between any two UTSs. In this network,
use the first-level pipelines (FPs) and cooperate with automated guided vehicle staggered
transport. The transportation process is as follows: MSW transported from the SPs enters
the loading platform at UTSs, where various types of containers are unloaded from the
vehicles. When the system detects that the container meets the transport quantity, the
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robotic arm is called to put the container on the transport vehicle, and then the vehicle is
transported along the FPs to different processing plants, respectively. In particular, because
of the small variation in RW generation and the relatively fixed frequency of dispatch, this
paper designs RW to be transported to RPP using trucks. Of course, according to the actual
local needs, underground pipelines can also be used for transportation, and they have no
influence on the system network analysis and model study.

The entire network’s operations are adaptively controlled. The MSW conveying
process is completed in a fully enclosed state from start to finish, without any manual
operation or direct contact with waste.

3.2. UWCS Technology Components

The treatment of MSW in the underground is similar to that of traditional MSW but still
requires some necessary equipment and technology. Specifically, KW’s pre-processing unit,
OW’s compression unit, and KW’s classification unit. In particular, the unique technologies
required for UWCS mainly include two categories, namely MSW intelligent classification
technologies and transportation technologies. In terms of MSW intelligent classification,
a smart trash bin prototype designed by Clean Robotics in the United States and a smart
waste container developed by the French UZE company both automatically discriminate
and classify the types of waste [38,39]. In terms of MSW underground transportation
technology, it mainly includes underground pipelines, transportation vehicles, and control
systems. Underground pipelines are directly in contact with MSW transported by high-
speed transportation. MSW has a certain shape and size and contains different components,
which may have adverse effects on pipelines, so it is particularly important to the choice of
pipelines [1]. The type of pipeline mainly includes pneumatic pipelines, vacuum pipes, and
electric pipelines. Fernández et al. proposed a control system equipped with an automatic
vacuum waste collection system (AVWC), which can be used to determine the time interval
for clearing the entrance [27]. This control technology is particularly important for the
AVWC system to reduce energy consumption. Among them, the UWCS can refer to the
technical parameters as shown in Table 1.

Table 1. Technical parameters of the UWCS network.

Technical
Type

Vehicle Systems
Option with

Packaging Mode

Pipe
Diameter Power Capacity Cost Source

Pipelines

TP
Envac 0.6–1 m Vacuum tube NA USD 0.4 (106/km) [38]

NV 0.5–1 m Pneumatic 0.5 t/h USD 0.2 (106/km) [20]

SP
PCP 4–6 m Pneumatic 10 t/h USD 4.5 (106/km) [14]
UCT 6–8 m Electric rail 75 t/h USD 7 (106/km) [13]

FP
PCP 4–6 m Pneumatic 10 t/h USD 5 (106/km) [14]
UCT 6–8 m Electric rail 75 t/h USD 7 (106/km) [13]

Pre-processing
device UN Electric 45 t 7.8 × 103 (USD)

Local
standard

Compression device UN Electric 13 t 2.2 × 103 (USD)
Local

standard

Classification device UN Electric 17 t 3.0 × 103 (USD)
Local

standard

Notes: TP: Third-level pipe; SP: Second-level pipeline; FP: First-level pipe; UCT: Underground container train;
PCP: Pneumatic capsule pipe; NA: Not applied; NV: Unused vehicles; UN: unnecessary.

According to the facility capacity, transport vehicle load, and waste type, the main
transportation technology systems used in this paper are selected from Table 1. For the TPs,
due to the shorter transportation distance of the third-level network, it can be transported
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at any time. It is easy to use pneumatic pipelines. For FPs and SPs, the PCP or UCT vehicle
mode can better meet transportation needs. It can also be selected according to local needs.

Related underground transportation and pipeline technology have been widely used
in municipal and transportation fields such as subways, underground highways, and
public transport tunnels, which also provides a solid foundation for UWCS transporta-
tion technology.

3.3. Modeling Boundary and Hypotheses

The UWCS network we put forward in this study has a multi-level node topology
structure. For the description of the network design problem of the system, it can be
divided into two parts: (i) Determine the candidate position of CCPs and UTSs through
E-Topsis; (ii) The decision-making of the problem mainly includes (a) determining the
number and location of CCPs and UTSs; (b) determining the allocation of UCPs to CCPs or
CCPs to UTSs; (c) determining the allocation of UTSs to various types of the processing
plant. This problem is a classical three-tier capacity facility location–allocation problem
(CFLAP), which is solved by an MILP model with the lowest system cost.

In order to keep the planning of the network consistent with reality, the following
assumptions need to be added to adjust the boundaries of the problem. However, the
problem can also be modified according to actual needs.

(i) The amount and location of the waste at each demand point are known, and it remains
stable and will not increase or decrease at different times within one year.

(ii) The location of the processing plant is known, the processing capacity meets the needs,
and the transportation capacity of FPs is not limited.

(iii) In order to improve transportation efficiency, any two CCPs are not connected to each
other, and any two UTSs are not connected to each other. The capacity of each CCP
and each UTS is the same.

(iv) The maintenance and installation costs of the pipeline and vehicle purchase costs are
calculated into the fixed cost of the pipeline. The transportation cost of pneumatic
pipelines is calculated into their fixed cost.

(v) The driving distance between the nodes is straight, and it remains unchanged.
(vi) Assuming that KW pre-processing, RW, OW, and HW collect transportation, it will

not damage their quality.

4. Model Development
4.1. E-Topsis for Evaluating the Importance of Demand Points

When selecting CCPs and UTSs, node locations, capacity constraints, and distances to
demand points and treatment plants need to be considered. This requires the importance of
demand points as a priority assessment object when choosing (here, we define the impor-
tance of demand points as convenience from demand points to processing factories). The
information entropy calculated in the indicator matrix is used to weigh the characteristics of
the demand nodes, avoiding the influence of human subjective factors [40]. The technique
for order preference by similarity to an ideal solution (TOPSIS) method is used to find
the candidate nodes of the evaluation object in the target decision-making, which solves
the problem of high requirements for samples. The TOPSIS method is a multi-subject
and multi-attribute decision-making method, but the traditional TOPSIS method is mostly
determined in terms of indicator weight and is more affected by human factors [40]. There-
fore, we use improved entropy-weighted TOPSIS (E-Topsis) to comprehensively evaluate
and rank the importance of demand points [41].

This paper uses three indicators of demand quantity (QD), regional accessibility (RA),
and transportation cost (TC) to evaluate the importance of demand points in the system.
Among them, the indicators QD and RA were obtained from Eftihia Nathanaila [42,43].
They believe that alleviating urban transportation and developing comprehensive trans-
portation are two of the most significant features of sustainable cities. The indicator TC
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was obtained from Sagnak et al. [44,45]. They believe that transportation costs are the most
important factor affecting the location of sustainable waste collection centers.

(1) Demand quantity (DQ). Because the amount of MSW at each demand point will affect
the flow of garbage transportation, the candidate locations of nodes at each level
should be those with the highest possible generation:

INDQ
1 = qi (1)

where qi is the quantity of MSW generated per day at the demand point i.
(2) Regional accessibility (RA). RA is defined as the convenience of MSW transportation

from demand point i to processing plant n [46]. Regionally accessible indicator
available time-distance function representation:

INRA
2 = ∑

i∈I
∑

n∈N

(
tin
S

)λin

(2)

where tin is the average transport time from the demand point i to the processing plant
n, S is the transport distance within the region, and λin∈(0, 1) is a time-sensitive factor.

(3) Transportation cost (TC). TC is an important factor affecting the total cost of UWCS
network construction. Therefore, the transportation path should be optimized to the
maximum extent in the network design to minimize its transportation cost.

INTC
3 = Qindin(L1 + L2 + L3) (3)

where Qin is the amount of waste transported from demand point i to the processing
plant n for each type of waste, din is the transportation distance from demand point i
to the processing plant n, L1, L2, and L3 are the unit transportation costs (determined
according to the local level).

The specific steps of the E-Topsis method of demand point importance evaluation are
shown in Appendix A. Finally, the evaluation results are ranked. Select the first 8 demand
points as the candidate points of UTSs, and select the 27 requirements of the secondary
requirements as the candidate points of the CCPs.

4.2. MILP Model
4.2.1. Symbol Definition

The following notations in Table 2 are utilized for mathematical formulation.

Table 2. Nomenclature of the mathematical model.

Symbol Definition Indices

I set of UCPs, indexed by i

J set of CCPs, indexed by j

M set of UTSs, indexed by m

N set of treatment plants N = {1, 2, 3, 4}, Where 1 indicates the CKWDC, 2
indicates the IP, 3 indicates the RPP, and 4 indicates the HWCC

U set of MSW U = {a, b, c, d}, where a denotes KW, b denotes OW, c denotes
RW, and d denotes HW

Parameters

qi MSW quantities at i kg

βa, βb, βc, βd the proportion of KW, OW, RW, and HW, respectively /

h2, h3 fixed cost for establishing CCP and UTS, respectively USD
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Table 2. Cont.

Symbol Definition Indices

C1, C2, C3 fixed cost for establishing per km of FPs, SPs, TPs, respectively USD/km

l purchase cost of MSW handling equipment USD

v unit disposal cost of MSW at j USD/t

dij Euclidean distance between i and j km

djm Euclidean distance between j and m km

dmn Euclidean distance between m and n km

L1, L2 unit transport cost of MSW via SP, or TP, respectively USD/t km

L3 unit transport cost of MSW via road USD/t km

cap capacity of MSW handling equipment at j t

capm MSW handling capacity at UTS m t

cap3-1, cap3-2, cap3-3 maximal underground traffic of MSW used for TP-1, TP-2, and TP-3 t/d

cap2 maximal underground traffic of MSW used SP t/d

r1 maximal covering radius of UCP to the affiliated CCP km

r2 maximal covering radius of CCP to the affiliated UTS km

p1, p2 maximum number of CCPs or UTSs allowed to be built /

p3 maximum number of equipment allowed to be installed at CCP /

T Any large number /

π depreciation factor for infrastructure /

Ai, Aj, Am the floor area of UCP, CCP, and UTS, respectively m2

Cop urban land opportunity cost USD/m2 year

fRT average load of RT for transporting MSW t/vehicle

ξcarbon, ξNOx, ξPM
average carbon, NOx, and PM emission factors of trucks (i.e., HMT, LGT,
and RT), respectively g/km truck trip

λcarbon, λNOx, λPM unit treatment cost of carbon, NOx, and PM, respectively USD/t

θwater, θnoise
treatment cost of the water pollution and noise caused by truck
operations, respectively USD/km truck trip

τ average diesel consumption factor of HMT, LGT, and RT L/km

Ψ unit price of diesel USD/liter

Decision variables

xj binary variable equals 1 if site j is built as CCP; 0, otherwise

ym binary variable equals 1 if site n is built as UTS; 0, otherwise

Zij
binary variable equals 1 if i is allocated to j and traverses Type III; 0,
otherwise

Sjm
binary variable equals 1 if j is allocated to m and traverses Type II; 0,
otherwise

Wu
mn

binary variable equals 1 if m is allocated to n including each type of
waste U; 0, otherwise

Qu
ij

continuous variable, the number of each type of waste U allocated from i
to j

Pu
mn

continuous variable, the number of each type of waste U allocated from j
to m

Ru
mn

continuous variable, the number of each type of waste U allocated from
m to n;

ηj integer variable, total amount of MSW handling equipment installed at j
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4.2.2. Derivation of Objective Functions

The objective function F of the MILP model is to minimize the total cost of the UWCS,
which mainly includes three parts. The first part of Equation (4) is the construction cost of
CCPs, UTSs, TPs, SPs, and FPs. The second part is the procurement cost of CCP equipment.
The third part is the total transportation cost, which combines (i) the transport cost of the
SPs and the FPs, (ii) the road transport cost, and (iii) the disposal cost at CCPs.

Minimize F = F1 + F2 + F3 (4)

where

F1 = 1
π

 ∑
j∈J

h2xj + ∑
m∈M

h3ym + C3 ∑
i∈I

∑
j∈J

dijZij + C2 ∑
j∈J

∑
m∈M

djmSjm

+C1 ∑
m∈M

∑
n∈N

∑
u∈U

dmnWu
mn


F2 = 1

π ∑
j∈J

lηj

F3 = L2 ∑
j∈J

∑
m∈M

∑
u∈U

Pu
jmdjm + L1 ∑

m∈M
∑

n∈{1}
∑

u∈{a}
Ru

mndmn + L1 ∑
m∈M

∑
n∈{2}

∑
u∈{b}

Ru
mndmn

+L1 ∑
m∈M

∑
n∈{4}

∑
u∈{d}

Ru
mndmn + L3 ∑

m∈M
∑

n∈{3}
∑

u∈{c}
Ru

mndmn + v ∑
i∈I

∑
j∈J

∑
u∈U

Qu
ij

4.2.3. Derivation of Constraints

∑
i∈I

∑
u∈U

Qu
ij ≤ ηjcap, ∀j ∈ J (5)


Qu

ij ≤ cap3−1, ∀i ∈ I, j ∈ J, u ∈ {a}
Qu

ij ≤ cap3−2, ∀i ∈ I, j ∈ J, u ∈ {b}
Qu

ij ≤ cap3−3, ∀i ∈ I, j ∈ J, u ∈ {c, d}
(6)

{
dijZij ≤ r1, ∀i ∈ I, j ∈ J
djmSjm ≤ r2, ∀j ∈ J, m ∈ M

(7)

∑
j∈J

∑
u∈U

Pu
jm ≤ capm, ∀m ∈ M (8)

∑
u∈U

Pu
jm ≤ cap2, ∀j ∈ J, m ∈ M (9)



∑
i∈I

Qu
ij = ∑

m∈M
Pu

jm, ∀j ∈ J, u ∈ {a}

∑
i∈I

Qu
ij = ∑

m∈M
Pu

jm, ∀j ∈ J, u ∈ {b}

∑
i∈I

Qu
ij = ∑

m∈M
Pu

jm, ∀j ∈ J, u ∈ {c}

∑
i∈I

Qu
ij = ∑

m∈M
Pu

jm, ∀j ∈ J, u ∈ {d}

(10)



∑
j∈J

Pu
jm = Ru

mn, ∀m ∈ M, u ∈ {a}, n ∈ {1}

∑
j∈J

Pu
jm = Ru

mn, ∀m ∈ M, u ∈ {b}, n ∈ {2}

∑
j∈J

Pu
jm = Ru

mn, ∀m ∈ M, u ∈ {c}, n ∈ {3}

∑
j∈J

Pu
jm = Ru

mn, ∀m ∈ M, u ∈ {d}, n ∈ {4}

(11)


Qu

ij ≤ TZij, ∀i ∈ I, j ∈ J, u ∈ U
Pu

jm ≤ TSjm, ∀j ∈ J, m ∈ M, u ∈ U
Ru

mn ≤ TWu
mn, ∀m ∈ M, n ∈ N, u ∈ U

(12)
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∑
j∈J

Zij = 1, ∀i ∈ I; ∑
m∈M

Sjm ≤ 1, ∀j ∈ J (13)

ηj ≤ Txj∀j ∈ J (14)


qiβaZij = Qu

ij, ∀i ∈ I, j ∈ J, u ∈ {a}
qiβbZij = Qu

ij, ∀i ∈ I, j ∈ J, u ∈ {b}
qiβcZij = Qu

ij, ∀i ∈ I, j ∈ J, u ∈ {c}
qiβdZij = Qu

ij, ∀i ∈ I, j ∈ J, u ∈ {d}

(15)

∑
j∈J

xj ≤ p1, ∑
m∈M

ym ≤ p2 (16)

ηj ≤ p3, ∀j ∈ J (17)

xj, ym, Zij, Sjm, Wu
mn ∈ {0, 1}; Qu

ij, Pu
jm, Ru

mn ≥ 0; ηj ∈ N∗ (18)

Constraint (5) ensures that the accumulative size of the MSW flows that are allocated to
any CCP does not exceed the in-station handling capacity. Constraint (6) ensures the traffic
capacity of any TP segment is not violated by the total passing flows of MSW. Constraint (7)
specifies the maximum coverage radius of CCP or UTS. Constraint (8) ensures that the
cumulative quantity of MSW allocated to any UTS does not exceed the station’s transfer
capacity. Constraint (9) ensures that the capacity of any SP segment is not affected by the
total amount of MSW. Constraint (10) ensures that the import and export traffic capacity for
each category of MSW is balanced at any CCP. Constraint (11) ensures that the import and
export traffic capacity for each category of MSW is balanced at any UTS. Constraint (12)
ensures that there are allocating decisions to be allocated. Constraint (13) ensures each UCP
is allocated to a unique CCP, and it also ensures each CCP is allocated to a unique UTS.
Constraint (14) ensures that the device is installed only if CCPs are established. Constraint
(15) ensures that the MSW generated at UCPs is balanced with the MSW capacity allocated
to CCPs. Constraint (16) ensures that the number of CCPs or UTSs established is less than
the maximum number allowed for construction, respectively. Constraint (17) ensures that
the number of pieces of equipment installed in each CCP is less than the maximum number
allowed for construction. Constraint (18) defines the domain of variables.

4.2.4. Complexity Analyses

The decision-making variables of the CFLAP problem are mainly divided into two
main categories: (i) CCPs and UTSs site selection and the allocation between four types
of facilities. (ii) the allocated volume between facilities. Obviously, the complexity of the
above problems mainly depends on the number of UCPs, CCPs, and UTSs. As the number
of three types of facilities continues to increase, the complexity of the model becomes larger
and larger, which will lead to an exponential increase in the calculation of the model. We
have made a detailed analysis of the complexity of the model, as shown in Appendix B
Table A1. In order to more clearly explain the complexity, an example with 445 UCPs,
27 CCPs, and 8 UTSs is provided to identify the total number of decision variables and
constraints. In this case, there are about 300,000 variables, which indicates that the model
proposed is a very complicated issue.

4.3. Quantifying UWCS Benefits

Moving facilities for MSW transportation underground is particularly significant for
land resource saving and land appreciation [13,47]. Equation (19) is formulated to monetize
the land conservation benefit. Equation (20) demonstrates the environmental benefits
brought by the UWCS, including reduced pollution benefits and non-renewable energy
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savings benefits [14,48]. Pollution benefits are calculated by multiplying the emission
factors for various pollutants generated by truck transport of MSW and the unit treatment
cost of these pollutants by the ground transportation miles of the UWCS network instead
of trucks. The non-renewable savings benefit is calculated based on diesel prices and the
total truck-related non-renewable energy consumption saved by the UWCS network.

B1 =

(
∑
i∈I

Ai + ∑
j∈J

Aj + ∑
m∈M

Am

)
Cop (19)

B2 =

fRT(∑
i∈I

∑
j∈J

∑
u∈U

Qu
ijdij + ∑

j∈J
∑

m∈M
∑

u∈U
Pu

jmdjm + ∑
m∈M

∑
n∈N

∑
u∈{1,2,4}

Wu
mndmn)

0.5 · fRT

[
(εcarbonλcarbon + εNOx λNOx + εPMλPM + θwater + θnoise)

−1 + τ−1 + ψ−1
] (20)

5. Solution Approaches

If the scale of the problem is small, it is recommended that the model be solved through
the MILP solution (such as CPLEX) in a short period of time. However, previous studies
have proven that using ordinary, accurate algorithms or commercial MILP solvers to solve
such a large-scale NP-Hard problem is difficult to solve [13]. Therefore, this section will
design an optimization algorithm to find high-quality solutions.

GA is an adaptive search algorithm based on natural selection and evolutionary theory.
When the possible space is small, GA can easily obtain an accurate solution. However, it is
difficult to achieve global optimization [13]. The greedy algorithm is always the best choice
to make when solving a problem. But its solution is fast and efficient. The VNS algorithm
is a meta-heuristic method based on the idea of changing neighborhoods, as proposed
by Mladenovic and Hansen [49]. The basic idea is to systematically change the neighbor
structure of multiple search solutions in the local search process to make the search space
deeper and more extensive and to prevent falling into the local optimum while ensuring
the quality of the optimal solution [50]. Therefore, in this paper, a hybrid genetic greedy
algorithm-genetic variable neighborhood algorithm (GGA-GVNS) optimization approach
is designed to solve the specificity of the solution problem. The flowchart is shown in
Figure 2.

5.1. GGA

GGA includes genetic algorithms and greedy algorithms. The genetic algorithm is
used to determine the location decision of CCPs and UTSs, and the greedy algorithm is
used to determine the radiation range of CCPs and UTSs.

The chromosome coding uses 0-1 encoding, and the location decision of CCPs and
UTSs is encoded into two 0-1 arrays, and 1 indicates that the node is selected. The initial
values use random individuals and calculate the initial fitness value based on the fitness
function. Equation (21) indicates the fitness function. The related genetic operations are
described in detail in Section 5.2.2, where the GGA genetic operations are shown in Figure 3.

5.2. GVNS
5.2.1. Initial Value and Fitness Function

The chromosome coding is encoded in two ways: 0-1 coding and real digital coding.
There are four arrays in an individual. The location of CCPs and UTSs is encoded in two
0-1 arrays. The distribution from UCPs to CCPs and CCPs to UTSs uses real digital coding,
and the real number is [0, 1]. In the previous array, 1 indicates that the node is selected. In
the latter array, take the allocation of UCPs and CCPs as an example. There are four CCPs
satisfying the condition after specific constraints of UCP nodes; at this time, 1 is divided
into four equal parts, and if the chromosome value is 0.3, then the second one is selected as
the final UCPs allocation node among the CCPs already satisfying the condition.
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5.2.1. Initial Value and Fitness Function 
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The last-generation population obtained by GGA is used as the initial population of
GVNS, and the initial fitness value of individuals can be obtained by calculating the fitness
function. Equation (21) presents the fitness function of the individual.

Fit(r) =
1

obj(r)
(21)

5.2.2. Genetic Operations

Use the four-dollar championship method to select the best individuals from the old
population Ps, and obtain the next generation of Pa. The four-dollar championship method
is to randomly select four individuals from the population, calculate the individual’s fitness
value, and select the individual with the best fitness value to enter the next generation’s
population.

Crossover operations. This paper adopts a shuffle-crossover strategy. For each
crossover operation, two groups of parent genes from CCPs and UTSs position sequences
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and allocation sequences are selected in parallel crossover based on random order and
an alternative operator. In order to ensure the feasibility of each offspring generation
after crossover, it is necessary to modify it to adjust the corresponding relationship of
chromosomes in the two sequences.

Mutation operators. This paper adopts a Gaussian mutation strategy. For individuals
of each chromosome, the genes in the sequence of CCPs and UTSs location and the assigned
sequence will be randomly selected to replace the original gene values with a single random
number from a normal distribution with mean µ and variance σ2. However, certain
mutation operations may result in infeasible offspring. In this case, mutations will be
bypassed until it can ensure that the network is feasible. The GVNS genetic operation is
shown in Figure 4.
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5.2.3. VNS

VNS defines N_k (S) and N_l (S) as the neighborhood structures for shaking and local
search. Repeat the shaking and local search process until the standard stop is met [36].
Based on the characteristics of the location–allocation problem, we propose four different
neighborhood structures. As shown in Figure 5.

Neighborhood 1: Exchange of two CCPs. For every CCP, its assignment is exchanged
with that of an unselected CCP. As shown in Figure 5a. The value of this neighborhood
structure is reflected in the full utilization of all CCPs, preventing the search process from
neglecting the selection of some CCPs and falling into local optimality. Consequently, this
enhances the diversity within the search for solutions.

Neighborhood 2: Assign a UCP to a different CCP. For every UCP, it is assigned to
different CCPs. As shown in Figure 5b. The advantage of this local structure is evidenced
by the manner in which the allocation of a UCP to a CCP spans across all CCPs until the
pinnacle of optimization is attained. This, in turn, safeguards against oversight in the
search procedure regarding the choice of UCPs, thereby preventing descent into a local
optimum and safeguarding the integrity of the solution’s quality.

Neighborhood 3: Exchange of two UTSs. For every UTS, its assignment is exchanged
with an unselected UTS. As shown in Figure 5c. The value of this neighborhood structure
is reflected in the full utilization of all UTSs, preventing the selection of some UTSs from
being neglected during the search process. This facilitates a more effective departure from
local optima, ensuring the assurance of solution quality.
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Figure 5. Diagram of neighborhood structure.

Neighborhood 4: Assign a CCP to a different UTS. For every CCP, it is assigned
to different UTSs. As shown in Figure 5d. The worth of this neighborhood structure is
embodied in the fact that the process of assigning a CCP to a UTS traverses all the UTSs until
the optimal result is found, which enhances the global search capability of the algorithm by
increasing the selection of CCPs to jump out of the local optimum.

The shaking operator will randomly generate a feasible neighbor solution based on
the selected neighborhood, which plays an important role in avoiding local optimality,
as described below. If Neighborhood 1(3) is chosen, a selected CCP (UTS) and an unse-
lected CCP (UTS) are randomly generated, and then the allocation of these two nodes is
exchanged. If Neighborhood 2 is chosen, a UCP is randomly generated, and a random CCP
different from the UCP assignment is generated, then the UCP is assigned to the CCP. If
Neighborhood 4 is chosen, a CCP is randomly generated, and a random UTS but different
from the CCP assignment is generated, then the CCP is assigned to the UTS, as shown in
Figure 6. The merit of the dithering operator lies in its capacity to augment the diversity of
the search, transcending the confines of local optima. By broadening the search scope, it
provides the objective function with the prospect of discovering a superior solution. This
mechanism significantly fortifies the algorithm’s global search prowess, thereby elevating
the quality of solutions.
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The proposed local search operators have a computationally acceptable complexity
when solving large-scale UWCS network instances. Table 3 depicts the formulas for
calculation times in each operator or shaking operator optimization step. The overall
time complexity can be represented as a cubic polynomial. Considering the network case
adopted in Appendix B Table A1 and the algorithm parameters given in Section 6.3, the total
computation magnitude of the VNS was 1011. Evidently, it will not cause an unaffordable
calculation workload, even if the instance size is huge.

Table 3. Complexity analysis of the local search operators for solving the UWCS network model.

Operator Complexity of Each Optimization Step Magnitude of Calculation

Neighborhood 1 operator O
(
n2 ·Ω

)
+ 3 ×104

Neighborhood 2 operator O
(
n2 ·Ω

)
×104

Neighborhood 3 operator O
(
n2 ·Ω + 3

)
×104

Neighborhood 4 operator O
(
n2 ·Ω

)
×104

Shaking operator O
(

n ·
(
|Ω|3 + |S| · |Ω|

))
×106

Overall time complexity O
(

GENmax · n ·
(
|Ω|3 + |S| · |Ω|

)
+ GENmax ·

(
4 ·
(
n2 ·Ω

)
+ 6
)) ×109

Notes: GENmax: Maximum number of generations; n: Population size.

6. Case Study

In this section, the application and effectiveness of the model in a real city case are
demonstrated through a series of computational experiments that have been encoded in
MATLAB 2017a software.

6.1. Small-Sized Experiments

The model solution was first validated on a set of five small problem examples,
involving 50 to 150 UCPs, 5 to 10 CCPs, 1 to 5 UTSs, and 4 different types of treatment
plants. The initial data used for the numerical simulation, such as coordinates, waste
volume, and cost and capacity parameters, were determined adaptively. Population size
and generations were set at 200 and 100, respectively. A reconstructed MILP model was
developed to incorporate the aforementioned simplification steps and network principles.
Each instance was solved by the GGA-VNS and CPLEX solvers.

Appendix B Table A2 shows that the solutions obtained by GGA-VNS differ slightly
from the global optimality in network configuration (e.g., construction cost, transportation
cost, procurement cost, etc.), but as the number of UCPs, CCPs, and UTSs increases, the
solutions gradually become fully consistent with the global optimality. In terms of compu-
tational efficiency, although CPLEX solved very small instances faster, GGA-GVNS showed
advantages in some relatively large instances. The CPU time of the CPLEX increased
exponentially with the growth of the network. In contrast, the trend of increasing CPU time
has proven to be much slower when using GGA-VNS. The experimental results reveal that
the proposed solution method is sufficient to solve the UWCS location–allocation problem
with good optimality and much less CPU time.

6.2. Background and Data

According to statistics, the resident population of Nanjing, China, will be 9.4 million
in 2021, of which the population in the central district will account for about 46%. The
central district generates about 50% of the total annual MSW in Nanjing (Nanjing Statistical
Yearbook) and shows a steady increase in the average daily MSW generation rate over the
years. For example, the increase from 0.63 kg/person in 2010 to 1.056 kg/person in 2020 is
mainly due to population growth and increasing urbanization levels. The central district of
Nanjing includes 7 of the 11 municipal districts of Nanjing, located in the middle of the
city. According to the census in 2021, the area of the central district is about 787 square
kilometers, and the population is about 4.32 million people. It can be seen that the small
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area and large population of the central district area bring with them a large amount of
MSW generation, which seriously threatens the sustainable development of Nanjing.

In this study, in order to describe the reality of waste generation in the central district,
the central location of each community within the central district is used as the demand
point. Based on Baidu map data and ArcGIS 10.7 software, we have built a case summary
of the UWCS network design in the central district. Figure 7a shows the locations of
residential community points (i.e., UCPs) and the four types of treatment plants within
the central district. A total of 445 UCPs were obtained through clustering and merging
communities; treatment plants are outside the city, and locations are known. Figure 7b
shows the amount of MSW generated by each street in the central district.
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It is well known that MSW generation is closely related to population [51]. According
to the Nanjing Statistical Yearbook, the total population of Nanjing and MSW clearing
volume can be obtained for each year from 2015 to 2020. Using Equation (22), we can
obtain the per capita daily generation in each year and finally weigh the data to obtain a
more accurate per capita daily generation in Nanjing of about 0.88 kg (a constant value).
The population of each demand point in Nanjing is known (based on the seventh census),
multiplied by the per capita daily generation, and the daily generation of MSW at each
demand point is obtained.

q =
R

365Q
(22)

We consulted experts in the field of waste management and learned from the Nanjing
Urban Management Bureau to understand the production of various types of waste in Nan-
jing MSW. On this basis, the proportion of MSW is derived as 55% for kitchen waste, 22%
for recyclable waste, 18% for other waste, 1% for hazardous waste, and 4% for bulky waste,
whereas in UTS-MSW, bulky waste is not considered, and its traditional transportation
method is still used.

We have adjusted the parameter values used for the simulation based on the available
techniques, local standards, and expert surveys, as shown in Table 4. These parameters
ensure that the simulation output of our model has strong consistency with the actual
project cases.

Table 4. Exogenous model parameters for simulation.

Parameters Value Source/Reference

βa, βb, βc, βd 0.55, 0.18, 0.22, 0.01 Local standard
h2 USD 2.56 × 103 [13]
h3 USD 1.2 × 104 [13]
C1 USD 1.9 × 106 per km [14]
C2 USD 1.9 × 106 per km [14]
C3 USD 0.25 × 106 per km [14]
l USD 13 × 103 Local standard
v USD 40 per t Expert

L2 USD 0.25 per t km [27]
L1 USD 0.25 per t km [27]
L3 USD 0.4624 per t km Local standard
cap 75 t [14]

capm 1 × 103 t [14]
cap3-1 12 t/d Expert
cap3-2 12 t/d Expert
cap3-3 12 t/d Expert
cap2 5.5 × 102 t/d Expert
p1 18 Hypothetical
p2 5 Hypothetical
p3 3 Hypothetical
T 10,000 Hypothetical
π 1/3650 Local standard
r1 5 km Hypothetical
r2 20 km Hypothetical

Ai, Aj, Am 100 m2/300 m2/800 m2 Local standard
Cop USD 1000 per m2 year Local standard
fRT 6 t per vehicle Local standard

ξcarbon 286 g per km truck trip [52]
ξNOX 1 g per km truck trip [53]
ξPM 0.12 g per km truck trip [53,54]
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Table 4. Cont.

Parameters Value Source/Reference

λcarbon USD 307 per t [55]
λNOx, λPM USD 14,743 per t/USD 37,622 per t [53]

θwater, USD 0.047 per km truck trip [14]
θnoise USD 0.032 per km truck trip [14]

τ 0.125 L per km Local standard
Ψ USD 1.02 per liter Local standard

6.3. Results Analysis

We have conducted several simulations for the central city case of Nanjing, and
the results show that the proposed hybrid optimization algorithm spends an average
of 490.2043 s CPU time per run to obtain the optimal solution of the location–allocation
model. Such calculations take little time and ensure the advantages of our model in realistic
decision-making.

With the settings of p1 = 27, p2 = 8, and p3 = 3 (according to the capacity of the facility
and the actual situation), we obtained the optimal network layout after simulation, as
shown in Figure 8. Among them, the best network configuration between the UWCS is
shown in Table 5.
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The results show that a total of 19 nodes were selected from the CCP candidate nodes,
and 4 nodes were selected from the UTS candidate nodes. The construction cost is about
3.5 × 105 dollars per day, of which the construction cost of CCPs and UTSs is about
4.9 × 104 dollars per day and 4.8 × 104 dollars per day, accounting for 13.92% and 13.74%,
respectively, and the remaining pipeline construction cost reaches 72.34%. The purchase cost
is about 170 dollars per day, and the total number of equipment purchases is about 47. The
transportation cost is about 1.6 × 105 dollars per day, and the total cost is about 5.1 × 105

dollars per day. It can be seen that the proportion of construction costs in total costs is
large, reaching 68.56%, and the procurement cost accounts for the smallest, only 0.03% of
the total cost. This is because in underground construction, the difficulty and complexity
of the geology lead to a large cost of construction, while procurement costs include only
equipment purchases at CCPs and therefore account for the smallest percentage.
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Table 5. Amount of waste distribution among some nodes in the UCWS network.

Network
Hierarchy

Nodes
Number

Type of MSW Load Rate of
SP or TP

Total Length of ST or
TP per Segment (km)

Transport Cost on ST
or TP per Segment

(USD)KW (kg) OW (kg) RW (kg) HW (kg)

UCP
and
UTS

3-5 82.30 26.94 32.92 1.50 26.12% 11.31 0.41
4-5 31.41 10.28 12.56 0.57 9.97% 14.22 0.19
7-5 122.15 39.98 48.86 2.22 38.77% 3.75 0.20
8-7 128.09 41.92 51.24 2.33 40.65% 3.62 0.20
9-7 128.68 42.11 51.47 2.34 40.84% 2.17 0.12

10-7 128.70 42.12 51.48 2.34 40.84% 2.41 0.14
11-2 128.79 42.15 51.52 2.34 40.87% 4.25 0.24
13-5 128.37 42.01 51.35 2.33 40.74% 4.62 0.26
16-1 28.89 9.46 11.56 0.53 9.17% 2.66 0.03
18-5 127.60 41.76 51.04 2.32 40.49% 6.21 0.35
19-2 99.76 32.65 39.90 1.81 31.66% 8.77 0.38
20-7 128.86 42.17 51.54 2.34 40.89% 2.05 0.12
21-2 128.22 41.96 51.29 2.33 40.69% 4.500 0.25
22-2 87.02 28.48 34.81 1.58 27.62% 9.612 0.36
23-1 22.67 7.42 9.07 0.41 7.19% 3.741 0.04
24-2 127.69 41.79 51.08 2.32 40.52% 7.470 0.42
25-1 109.40 35.80 43.76 1.99 34.72% 16.624 0.79
26-5 80.83 26.45 32.33 1.47 25.65% 2.156 0.08
27-7 51.86 16.97 20.75 0.94 16.46% 5.176 0.12

UTS
and

treatment
plants

1 160.96 52.68 64.38 2.93 -- 29.20 13.66
2 571.49 187.03 228.59 10.39 -- 31.35 4.80
5 572.66 187.42 229.06 10.41 -- 36.60 12.67
7 566.19 185.30 226.48 10.29 -- 27.45 0.23

According to Equations (19) and (20), the two types of benefits generated by the
UWCS network reached 5.3408 × 106 dollars per year, which means that the UWCS
network saves 5.34 × 106 dollars per year in land conservation compared to conventional
collection systems. After two decades of operations, the UWCS has generated a total of
1.6 × 105 dollars in environmental benefits from reduced carbon, NOx, and PM emissions,
as well as reduced water pollutants, reduced noise, and conservation of non-renewable
energy. Through statistical analysis, it can be clearly seen that as the operating time
increases, the advantages of UWCS in land conservation and environmental benefits are
still optimistic.

6.4. Sensitivity Analysis

Considering the uncertainty of the device placed in CCPs in the actual UWCS decision,
analyze the sensitivity of the objective costs, network configurations, and benefits by
changing the value of p3. Sensitivity was tested under several representative scenarios and
then compared with p3 = 3 as the baseline result.

After simulation, the network configuration can be obtained in different situations
of p3, including the number of CCPs and UTSs, target costs, benefits, and total devices.
Among them, p3 values are set for five scenarios. The results showed that as p3 increased,
the number of total devices kept increasing, and the number of selected CCPs decreased
accordingly, while the number of UTSs remained constant. This is because the number
of devices allowed to be installed is increasing, the processing capacity of each CCP is
growing, and the number of its chosen continues to decrease. The choice of UTSs has
nothing to do with the value of p3.

Figure 9a–d illustrate the relationship between the objective cost and p3. Obviously,
with the increase in p3, construction and transportation costs decrease, while procurement
costs increase. This is because the number of configuration devices allowed in each CCP will
lead to a decrease in the number of CCPs constructed, thereby reducing the transportation
distance of waste flow. The construction cost and transportation cost have been reduced
accordingly. Of course, as the installation equipment increases, the required procurement
cost will increase accordingly, but the procurement cost only accounts for 0.03% of the
total cost, which has a small impact on the total cost. Therefore, under the premise of
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determining the capacity of CCPs and the processing capacity of the secondary pipelines,
the number of facilities at CCPs should be reduced as much as possible to reduce investment
in the total system network.
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Figure 9. Cost analysis when p3 changes.

Figure 10 illustrates the relationship between benefits and p3. Obviously, the land
benefit and the environmental benefit are in a synchronous dynamic change with the
increase of the p3 value. This is because the land benefit is related to the number of CCPs
and UTSs selected, and the environmental benefit is related to the transport MSW stream
parameters. During the change in the value of p3, while the number of selected UTSs is
unchanged, the number of selected CCPs decreases continuously, the transport distance
changes, and the waste flow of transportation among facilities will also change accordingly.
Therefore, from the perspective of UWCS, there is the best combination of benefits between
p3 values and two types of benefits.
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Based on the sensitivity analysis and evaluation, some managerial insights for UWCS
decision-making are disclosed.

(1) Due to the disparate distribution of geography and waste volumes, the utilization
rate of nodes and pipelines in various urban sectors may exhibit substantial dis-
parities, thereby diminishing the economies of scale impact of the Underground
Waste Collection System (UWCS). As cities progress and UWCS implementation
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unfolds, it becomes imperative for the government to provide policy support for sub-
terranean transportation, thereby nurturing an optimal environment for the design of
the UWCS network.

(2) From an external perspective, the networked development of UWCS can bring sig-
nificant social and environmental benefits, along with advantages from automated
operations and economies of scale. It is anticipated that the advantages ushered in by
UWCS at this juncture can significantly diminish the government’s financial outlay
on the management, operation, and maintenance of MSW.

(3) From the perspective of urban development, UWCS emerges as a potent strategy for
propelling sustainable aspirations. By seamlessly melding a specialized subterranean
infrastructure network, the management of MSW and subterranean transportation
coalesce synergistically into a cohesive system committed to intelligent and sustain-
able MSW management endeavors. The automated categorization of MSW and the
provision of real-time information updates during transportation confer considerable
convenience upon residents in waste disposal, concurrently refining MSW manage-
ment operations for governmental authorities.

7. Conclusions and Future Research

This paper addresses the UWCS network design problem. By analyzing the limita-
tions of the current MSW transportation system, the whole process of operation in the
underground was designed based on an intelligent technical system. First, the importance
of demand points was evaluated using the E-Topsis evaluation method to obtain candidate
nodes for CCPs and UTSs. Then, an MILP model was formulated by considering minimum
total cost, and a GGA-GVNS hybrid optimization algorithm was developed to simplify
the model and obtain the optimal solution to the problem (i.e., node location–allocation,
pipeline layout, and waste flow). Finally, a case study based on the central city of Nanjing
was conducted to validate the proposed model and solution technique in different scenarios.
The experimental results show that the GGA-GVNS algorithm has strong efficiency in this
model. Therefore, under the premise of reasonable planning, our suggested UWCS proves
to be both practical and viable.

Through a meticulous exploration of the UWCS network in Nanjing, we summarize
the following implications regarding practical and theoretical aspects. On the theoretical
front, this study proposes an automated, large-scale underground collection system for
MSW. Simultaneously, it conducts a systematic study on the whole set of operation flows in
the system, including waste categorization, facility siting, pipeline transportation capacity,
and the hierarchical interplay among facilities. In conjunction with the practical context, a
network planning model for UWCS is built. Furthermore, by designing the corresponding
intelligent solution algorithms to obtain the optimal layout of the multi-class facility net-
work and the optimal layout of facility siting. This set of methods can establish a robust
theoretical foundation for MSW underground collection systems and other forms of urban
underground systems in future smart city planning, management, and construction. In
practice, the UWCS can help cities establish a comprehensive and efficient waste logistics
network system. At the same time, it assumes practical and guiding significance in the
pursuit of constructing resource-efficient and environmentally friendly modernized urban
landscapes. It presents a novel perspective for contemplating the sustainable development
of cities and the harnessing of underground spaces.

This study provides a new planning concept for the planning and management of
UWCS. However, some limitations still exist. Moreover, due to the unavailability of
exact data, we attached strict assumptions, which may reduce the applicability of our
model in UWCS network design. The system we designed did not address the problems
of MSW transport fleet scheduling. Future research can be carried out in two aspects.
Firstly, consider the dynamics of MSW underground networks, such as the uncertain waste
amount, the modeling of waste generation amount, and the scheduling of operating vehi-
cles [31,56,57]. Secondly, considering the cities’ sustainable development goals, we should
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pay more attention to the strategic level of network planning, such as the construction scale
of underground networks and how to achieve the coordinated operation of the UWCS and
traditional highway transportation systems.
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Appendix A. E-Topsis Computational Procedures

Notice: This part of the parameter has nothing to do with the parameter in Section 4
above, and it is just an introduction to the computational steps of the TOPSIS approach.

Step 1: Construct the original evaluation index matrix. Assuming that there are n
evaluation indicators and m demand points to choose from, the value of indicator i in
subset j is aij, the original decision matrix A consisting of the indicator data for the m
demand points.

A =
(
aij
)

mn =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 (A1)

Step 2: Generate a standardized matrix. Standardize the data in matrix A, the calcula-
tion formula is as follows.

For positive indicators:

zij =
aij −min

(
aij
)

max
(
aij
)
−min

(
aij
) (A2)

For negative indicators:

zij =
max

(
aij
)
− aij

max
(
aij
)
−min

(
aij
) (A3)

After standardization of the data, the standard matrix after the original data is natural-
ized, and it is recorded as Z:

Z =

 zij · · · z1n
...

. . .
...

zm1 · · · zmn

 (A4)

Step 3: Determine the index weight. Firstly, calculate the weight of evaluation demand
point i under the j indicator for that indicator Pij, Ej represents the entropy value of the j
indicator, and Wj represents the weight of each indicator.

Pij =
zij

m
∑

i=1
zij

Ej = − 1
ln m

m
∑

i=1
Pij ln Pij, j = 1, 2, . . . , n

wj =
1−Ej

n
∑

j=1
(1−Ej)

(A5)
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Step 4: Generate evaluation matrix R.

R =
(
rij
)

mn =
(
wjzij

)
mn =

w1z11 · · · wjz1n
...

. . .
...

w1zm1 · · · wjzmn

 =

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 (A6)

Step 5: Determine the ideal solution V+ and the negative ideal solution V−. After
obtaining the evaluation matrix, it is necessary to determine the positive ideal solution V+

and the negative ideal solution V−. The calculation formula is as follows.

V+ =
(

r+1 , . . . , r+j , . . . , r+n
)

V− =
(

r−1 , . . . , r−j , . . . , r−n
) (A7)

among them, r+j = max
{

rij

∣∣∣1 ≤ i ≤ m}, r−j = min
{

rij

∣∣∣1 ≤ i ≤ m).
Step 6: Calculate the distance. Calculate the distance di

+ from each evaluation vector to
the positive ideal solution and the distance di

− from the negative ideal solution, respectively.
Using the European distance calculations di

+ and di
− [42], the formula is as follows.

d+i =

[
n
∑

j=1
wj(r+j − rij)

2
] 1

2

, (i = 1, 2, 3, . . . , m)

d−i =

[
n
∑

j=1
wj

(
r+j − rij

)2
] 1

2

, (i = 1, 2, 3, . . . m)

(A8)

Step 7: Calculation sticker progress ci for sorting.

ci =
d−i

d+i + d−i
, (i = 1, 2, 3, . . . m) (A9)

ci indicates the relative closeness of the evaluation demand point i to the ideal solution.
The range of the value is between 0 and 1. The closer the value is to 1, the closer the value
of the positive ideal, the more important the demand point is.

Appendix B

Table A1. Number of variables and constraints in the UWCS network model.

Variables Constraints Number at Most Case

Variables xj, ym, ηj 2 × |J| + |M| 62

Variables Zij, Sjm |I| • |J| + |J| • |M| 12,231

Variables Zij, Sjm, Wmn
u, Qij

u, Pmn
u, Rmn

u 2 × |U| • |M| • |N| + |U| • |I| • |J|+|U| • |J| • |M| 49,180

Cons. (5), (11), (13), (14), (16), (17) |I| + 7 × |I| + 5 × |M| 674

Cons. (6), (7), (8), (9), (18) |I| • |J| • (|U| + 2) 72,090

Cons. (10), (12), (19), (23) 3 × |J| • |M| + 2 650

Cons. (15), (20), (21), (22), (24), (25) 2 × |J| + |M| + |I| • |J| • (3 × |U| + 1) + |J| • |M| •
(3 × |U| + 1) + 4 × |U| • |M| • |N| 159,577

All / 294,464
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Table A2. Comparison of GGA-GVNS and CPLEX on small-sized instances.

No Hypothetical
Instance p1, p2, p3 Approach F1 F2 F3 F CPU

Time (s) Gap (%)

1 50 UCPs, 3
CCPs, 2 UTSs

2, 1, 1
GGA-GVNS 69.1190 0.0071 19.6226 88.7488 23.3045

0.0%
CPLEX 69.1150 0.0071 19.6219 88.7440 0.4600

2 50 UCPs, 5
CCPs, 3 UTSs

5, 3, 2
GGA-GVNS 66.4527 0.0071 19.4427 85.9025 22.8315

0.3%
CPLEX 66.6635 0.0071 19.5044 86.1750 0.4800

3 100 UCPs, 5
CCPs, 3 UTSs

5, 3, 2
GGA-GVNS 130.4497 0.0142 37.1766 167.6406 33.3904

1.2%
CPLEX 132.0655 0.0142 37.6373 169.7170 14.4300

4 100 UCPs, 10
CCPs, 5 UTSs

10, 5, 3
GGA-GVNS 71.8308 0.0142 37.4301 109.2752 35.5050

0.0%
CPLEX 71.8301 0.0142 37.4297 109.2740 47.7300

5 150 UCPs, 10
CCPs, 5 UTSs

10, 5, 3
GGA-GVNS 85.0939 0.0142 65.0640 150.1721 45.7244 0.0%

CPLEX 85.0933 0.0142 65.0635 150.1710 80.3400 0.0%

Table A3. Nomenclature of system components.

Nomenclature of System Components

UWCS underground waste collection system
MSW municipal solid waste
KW kitchen waste
OW other waste
RW recyclable waste
HW hazardous waste
UCP underground collection point
CCP concentrated collection point
UTS underground transfer station

CKWDC kitchen waste disposal center
IP incineration plant

RPP recyclable processing plant
HWCC hazardous waste collection center

TP-1, TP-2, TP-3 third-level pipelines (three types)
SP second-level pipeline
FP first-level pipeline
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