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Abstract: Due to its high power, high efficiency, low pollution, and compact size, permanent-magnet
synchronous motors (PMSMs) have been widely used in a variety of fields, including electric ve-
hicles, aerospace, wind turbines, and marine devices, which are used in renewable, sustainable,
and environmentally friendly energy resources. However, in these practical scenarios, the motor
operating conditions are complex and variable. Under high-temperature and high-current conditions,
PMSMs may experience demagnetization failures, not only leading to performance degradation but
also inducing unexpected failures of the motors. To reduce the risk of unexpected losses caused
by demagnetization faults and improve the safety and reliability of motor systems, it is necessary
to apply automated monitoring of the magnet flux of the motor’s permanent magnets and achieve
real-time diagnosis of early demagnetization faults, ensuring the safe operation of the motor. This
review article tries to summarize the current detection methods of the automated monitoring of
demagnetization faults in PMSMs. The main online monitoring technologies from both practical and
academic perspectives are summarized and their benefits and challenges are reviewed. Finally, the
research trends and suggestions for future improvements are provided. This review article not only
sheds light on the origins of the automated monitoring of demagnetization faults but also helps to
design highly effective and sustainable permanent-magnet synchronous motors.

Keywords: automated monitoring; permanent-magnet synchronous motor; sustainable energy
resources; demagnetization faults

1. Introduction

In the past decades, as the requirement of sustainable development has become the
priority due to the negative environmental impact that has influenced our daily lives, it
has placed greater research interest on exploring renewable and environmentally friendly
energy resources. In the driving technology area, which is a pertinent area to reduce energy
consumption, it is critical to design and develop new materials and new technologies to re-
alize energy-efficient motors. With the rapid development of permanent-magnet materials,
particularly the performance enhancement of neodymium–iron–boron permanent magnets
and the gradual reduction in their prices, the application of highly effective permanent-
magnet synchronous motors (PMSMs) has been continuously increasing [1]. In addition,
the PMSM’s advantages such as simple structure, small size, high efficiency, large torque,
high energy density, and low noise have made it widely applied in various fields such as
electric vehicles, aerospace, and marine industries [2].
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PMSMs operate based on the interaction between the stator and rotor magnetic fields.
In general, PMSMs consist of a stator serving as the stationary part and a rotor serving as
the rotating part. The stator has windings through which an alternating current passes,
producing a rotating magnetic field. The rotor contains permanent magnets that create
a fixed magnetic field. The stator windings are energized with an AC power supply,
generating a rotating magnetic field. This rotating magnetic field interacts with the fixed
magnetic field produced by the rotor’s permanent magnets. The rotational speed of
the magnetic field in the stator is synchronized with the rotor’s magnetic field. This
synchronization is essential for efficient motor operation and is why these motors are called
“synchronous” motors. The interaction between the rotating magnetic field in the stator
and the fixed magnetic field in the rotor causes the rotor to follow the rotating magnetic
field, thus producing mechanical motion. This interaction creates torque, resulting in the
rotation of the motor. The PMSMs often use sophisticated control systems, such as sensor
feedback and algorithms like field-oriented control or direct torque control, to precisely
control the motor’s speed, torque, and efficiency. These control methods optimize the
motor’s performance under various operating conditions. PMSMs are known for their high
efficiency, reliability, and power density compared to other types of motors. The use of
permanent magnets in the rotor reduces losses typically associated with other motor types.

However, for the application of electric vehicles, which is the mainstream topic in
sustainable energy consumption, the integrated electric drive systems have limited space
for installation, and thus face the constraints of heat dissipation, especially when it operates
under synergistic service conditions, including startup, braking, acceleration, and decelera-
tion, as well as variable load conditions. As a result, when the motor runs continuously
at high speeds, the internal temperature of the system continues increasing, leading to
uniform demagnetization faults in the permanent magnets.

In addition to the demagnetization resulting from the high temperature, due to the
armature reaction in PMSMs, the direction of the magnetic field generated by the armature
current is opposite to that of the permanent magnets. When the motor runs at a high
speed or under heavy loads, the transient armature current increases rapidly, enhancing
the demagnetizing effect of the armature reaction, which can cause irreversible local de-
magnetization failure of the permanent-magnet materials. A previous study has predicted
and tested the rotor demagnetization of a 0.6 kW (cont.), 9-slot/6-pole fractional-slot con-
centrated winding (FSCW), and an interior PM synchronous machine under controlled
temperature conditions. The experimental testing results of the rotor demagnetization
were compared with the finite element predictions characteristics in a three-phase sym-
metrical short-circuit and single-phase asymmetrical short-circuit. These results confirm
that the properties of the magnet material, such as the magnet’s thermal coefficients, have
significant impacts on the failure mode of the machine [3].

Another detrimental demagnetization failure originates from the cracks of the permanent-
magnet materials during the manufacturing or installation process of the PMSM. The
randomly distributed cracks can also result in local or uniform demagnetization failure
when the motor operates at high speeds or experiences severe collisions [4]. Moreover, the
aging phenomenon of the permanent-magnet materials is inevitable with the increasing
service life of the motor, which also governs the demagnetization failure of the motors [5].

The occurrence of demagnetization failure leads to a reduction in the magnetic flux
of the permanent-magnet materials, thus decreasing the output electromagnetic torque.
Figure 1 illustrates the dynamic demagnetization process of a PMSM. Under the same
load torque conditions, the decrease in the magnetic flux of the permanent magnets leads
to an increase in the stator current, which induces a higher copper loss in the PMSM,
resulting in elevated internal temperatures and further accelerating the demagnetization
process of the permanent-magnet materials. Furthermore, the increase in stator current
enhances the demagnetizing effect of the armature reaction magnetic field, creating a
vicious cycle between PMSM demagnetization faults, internal operating temperature,
and the demagnetizing effect of the armature reaction magnetic field [6]. Additionally, the
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occurrence of local demagnetization faults in the permanent magnets of a PMSM introduces
non-integer harmonic components in the magnetic flux, which generates corresponding
non-integer harmonic currents in the PMSM’s armature. This leads to torque and speed
ripples in the motor, directly affecting the control precision of the PMSM. As a result, it
is critical to implement the online automated monitoring of demagnetization faults in
permanent-magnet synchronous motors to avoid severe damage in advance [7].
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Therefore, in a practical application, such as electric vehicles, in which safety and
reliability are the priority issues, it is necessary to perform real-time online monitoring of
the magnetic flux of the PMSM’s permanent magnets, achieving the real-time diagnosis of
initial demagnetization faults, and further differentiate the demagnetization fault modes.
This ensures the safe, reliable, and efficient operation of electric drive systems in electric
vehicles and aerospace motors, reducing the occurrence of accidents and minimizing eco-
nomic losses. The core of online monitoring for demagnetization faults in PMSMs is to find
reliable and unique fault features. Moreover, when applied in scenarios such as electric
vehicles and aerospace, it is necessary to identify fault features under non-stationary oper-
ating conditions. According to previous research results, the online monitoring methods
for demagnetization faults in PMSMs can be categorized into two types: the uniform
demagnetization fault monitoring methods and the local demagnetization fault monitoring
methods, depending on various demagnetization fault modes [8].

For uniform demagnetization fault monitoring, one approach is to analyze the change
in back electromotive force (EMF) characteristics of the PMSMs [9]. The demagnetization
fault can cause a decrease in the amplitude and distortion of the back EMF waveform,
which can be detected and analyzed to identify the fault condition [10]. Another method
involves monitoring the change in the air-gap magnetic field distribution of the PMSMs
using magnetic field sensors or Hall effect sensors [11]. The demagnetization fault affects
the magnetic field distribution, and deviations from the normal pattern can indicate the
occurrence of a fault. On the other hand, for local demagnetization fault monitoring, the
focus is on detecting and identifying the specific regions or magnets that have experienced
demagnetization [12]. This can be carried out by analyzing the harmonic components
in the stator current or by using additional sensors, such as flux sensors or magnetic
field sensors, to measure the magnetic field distribution and identify any deviations from
the expected pattern. Additionally, advanced signal processing techniques, such as Fast
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Fourier Transform (FFT) analysis or wavelet analysis, can be applied to extract fault-related
information from the measured signals [13].

It is worth noting that to achieve effective demagnetization fault monitoring in non-
stationary operating conditions, advanced signal processing and pattern recognition algo-
rithms are often employed. These algorithms can adaptively adjust their parameters and
criteria to account for varying operating conditions and ensure accurate fault detection
and identification. Overall, the development of reliable and unique fault feature extraction
methods, along with the utilization of advanced signal processing and pattern recognition
techniques, is critical for the successful online monitoring of demagnetization faults of the
PMSMs in electric vehicles.

Common quantitative performance criteria for the RLS method in PMSM applications
may include the mean squared error, tracking error, rise time, setting time, noise sensitivity,
convergence rate, and computational efficiency. Generally, a low mean-squared-error track-
ing error and sensitivity, a faster convergence rate, and a higher computational efficiency
indicate better performances.

2. Automated Monitoring of Uniform Demagnetization Faults in PMSMs
2.1. Background

The online monitoring of uniform demagnetization faults starts by detecting the in-
ternal electrical parameters of the motor, such as current, voltage, and magnetic flux, and
then establishes a mathematical model for fault monitoring. By analyzing the mathemat-
ical model, specific parameters related to the magnetic flux, such as the amplitude and
distortion of the back electromotive force (EMF), can be extracted and monitored. The
obtained parameter information enables qualitative analysis and quantitative diagnosis
of demagnetization faults. Changes in these parameters can indicate the occurrence of
demagnetization faults in the permanent magnets [14].

Several types of EMF distortions affect the normal, expected, or ideal behavior of
electrical systems, including harmonic distortion, transient distortion, noise, DC offset,
and interruptions. First, the harmonic distortion occurs when the voltage or current
waveforms deviate from their ideal sinusoidal shape. It is characterized by the presence of
harmonic frequencies that are multiples of the fundamental frequency. These harmonics
result from non-linear loads like power electronic devices, causing deviations from the
standard sinusoidal waveform. Second, the transient distortions are sudden, short-lived
spikes or disturbances in the waveform, often caused by sudden changes in the system,
such as switching events, lightning strikes, or sudden load changes. Transients can lead
to voltage spikes or dips that can damage sensitive equipment. In addition, the electrical
noise involves unwanted, random signals or fluctuations superimposed on the desired
signal. This noise can arise from various sources, including electromagnetic interference,
radio-frequency interference, or system malfunctions, and can disrupt the accuracy and
clarity of the signal. Sometimes, an undesired DC component might be present in an AC
signal, leading to an offset from the zero axis of the waveform. This can occur due to
asymmetrical distortion or imbalances in the circuit, causing a shift in the waveform’s
center. EMF distortion can also occur in the form of interruptions, where there are sudden
breaks or losses in the continuity of the voltage or current. Interruptions can result from
faults, short circuits, or power supply issues.

Through qualitative analysis, patterns and trends associated with demagnetization
faults can be identified based on the mathematical model. For example, a decrease in the
amplitude or distortion of the back EMF waveform may indicate the presence of a uniform
demagnetization fault [10]. Quantitative observation and diagnosis involve comparing the
extracted parameter values with predefined thresholds or reference values. If the values
exceed the specified thresholds or deviate from the expected range, it suggests the presence
of a demagnetization fault. To facilitate this process, real-time monitoring of the electrical
parameters within the motor is required [15]. This can be achieved by using appropriate
sensors to measure the currents and voltages in the motor and employing signal processing
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techniques to analyze and extract the relevant information. Additionally, advanced data
analysis methods, such as model-based estimation or system identification, can be utilized
to improve the accuracy and reliability of the monitoring system. By combining the
mathematical model of the PMSM with real-time measurements and analysis, it becomes
possible to qualitatively and quantitatively analyze and diagnose uniform demagnetization
faults in the PMSM’s permanent magnets [16].

2.2. Recursive Least Squares Method

In PMSMs, it is critical to accurately estimate parameters including motor resistance,
inductance, and the EMF constant, which are governed by manufacturing tolerances
or temperature changes. The Recursive Least Squares (RLS) method is a mathematical
and computational technique used for parameter estimation and system identification of
PMSMs. The RLS method is a valuable tool that enables real-time parameter estimation
and adaptation, contributing to the efficiency and reliability of PMSM control systems.
Unlike traditional least squares methods, which require the re-computation of parameters
by using all available data points, RLS sequentially updates parameter estimates as new
data and ensures that they are particularly suitable for online applications and control
systems. In addition, RLS allows prompt alignment in the motor’s behavior by employing
a weighted least squares approach, where more recent data points can be given a higher
weight in the parameter estimation process. RLS-based parameter estimation has been
widely used in PMSM control and fault detection. It helps improve control performance,
efficiency, and fault tolerance by ensuring that the control algorithm operates with accurate
and up-to-date parameter values [17].

To meet the challenges originating from inaccuracies of modeling, a real-time and
data-driven RLS method was used to control the current in a PMSM. The results indicated
that the effectiveness of Model Predictive Controllers is strongly dependent on the quality
of the utilized models. By using an RLS-based model to identify and interlock time compen-
sation, the control system can make more accurate predictions about the system’s behavior.
This study suggests that the RLS approach is suitable for self-commissioning applications
where the drive system needs to be set up or commissioned automatically without relying
on predefined wide-band models. In particular, this study presents an advanced control
strategy that combines data-driven model identification, timing compensation, and predic-
tive control to enhance the performance of electric drives, particularly in scenarios where
accurate models are not readily available or when system parameters are variable [18].

A novel online method to estimate the complete set of parameters in PMSMs has
been developed by Yu. By introducing an algorithm based on the RLS method, the full
range of motor parameters, including stator resistance, d-axis and q-axis inductances, and
flux linkage, can be estimated in an α-β frame. The simulation and experimental results
manifest the effectiveness of the proposed full-parameter estimation algorithms in the
α-β frame during both steady and transient states. Compared with other algorithms, it
was claimed that the proposed method has the merits of faster convergence rate, less
computational cost, and high accuracy [19].

Most recently, an updated RLS method, named long-term memory Recursive Least
Squares current estimation, has been developed for Finite-Control-Set Model Predictive
Controllers. This approach can be used to identify the differential inductance and flux
linkage maps without additional signal injection for online self-commissioning in seconds.
By continuously adapting the flux linkage maps, it ensures precise open-loop torque control
by merely using stator resistance as the datasheet. The results prove the accuracy of the
identified model and the superior control performance of the Finite-Control-Set Model
Predictive Controllers during the transient and steady-state operations [20].

In our recent study, an experimental study was conducted on the PMSM under a
steady-state. The PMSM was maintained at its rated speed of 1500 rpm, with phase
currents at their rated values peaking at 2.5 A. Figures 2 and 3 depict the waveforms of
healthy and demagnetized phase currents of the PMSM under this steady-state operating
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condition. By compared the proposed RLS algorithm with the traditional FFT algorithm, the
RLS algorithm and FFT algorithm were separately used to analyze the current waveforms
shown in Figures 2 and 3, and the analysis results are listed in Table 1.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 23 
 

of the identified model and the superior control performance of the Finite-Control-Set 

Model Predictive Controllers during the transient and steady-state operations [20]. 

In our recent study, an experimental study was conducted on the PMSM under a 

steady-state. The PMSM was maintained at its rated speed of 1500 rpm, with phase cur-

rents at their rated values peaking at 2.5 A. Figures 2 and 3 depict the waveforms of 

healthy and demagnetized phase currents of the PMSM under this steady-state operating 

condition. By compared the proposed RLS algorithm with the traditional FFT algorithm, 

the RLS algorithm and FFT algorithm were separately used to analyze the current wave-

forms shown in Figures 2 and 3, and the analysis results are listed in Table 1. 

 

Figure 2. The waveform of the current ia in a healthy motor under steady-state. 

 

Figure 3. The waveform of the current ia in a demagnetized motor under steady-state. 

Table 1. Analysis of the magnitudes of fault-related harmonic components in the current according 

to various algorithms and different healthy states (Unit: A). 

Harmonic Wave Healthy (FFT) Healthy (RLS) 
Demagnitized 

(FFT) 

Demagnitized 

(RLS) 

2/4 0.001 0.00125 0.02512 0.02521 

4/4 2.49 2.4905 2.497 2.496 

5/4 0.03 0.0299 0.06 0.057 

5 0.02 0.01556 0.013 0.01295 

7 0.01 0.01316 0.0115 0.01132 

As can be observed in Table 1, the magnitudes of each selected harmonic component 

are approximately the same. This indicates that the proposed RLS algorithm can replace 

the FFT for spectral analysis in practical applications. In addition, it is evident that, for a 

locally demagnetized PMSM, the magnitudes of fault-related harmonic components are 

Figure 2. The waveform of the current ia in a healthy motor under steady-state.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 23 
 

of the identified model and the superior control performance of the Finite-Control-Set 

Model Predictive Controllers during the transient and steady-state operations [20]. 

In our recent study, an experimental study was conducted on the PMSM under a 

steady-state. The PMSM was maintained at its rated speed of 1500 rpm, with phase cur-

rents at their rated values peaking at 2.5 A. Figures 2 and 3 depict the waveforms of 

healthy and demagnetized phase currents of the PMSM under this steady-state operating 

condition. By compared the proposed RLS algorithm with the traditional FFT algorithm, 

the RLS algorithm and FFT algorithm were separately used to analyze the current wave-

forms shown in Figures 2 and 3, and the analysis results are listed in Table 1. 

 

Figure 2. The waveform of the current ia in a healthy motor under steady-state. 

 

Figure 3. The waveform of the current ia in a demagnetized motor under steady-state. 

Table 1. Analysis of the magnitudes of fault-related harmonic components in the current according 

to various algorithms and different healthy states (Unit: A). 

Harmonic Wave Healthy (FFT) Healthy (RLS) 
Demagnitized 

(FFT) 

Demagnitized 

(RLS) 

2/4 0.001 0.00125 0.02512 0.02521 

4/4 2.49 2.4905 2.497 2.496 

5/4 0.03 0.0299 0.06 0.057 

5 0.02 0.01556 0.013 0.01295 

7 0.01 0.01316 0.0115 0.01132 

As can be observed in Table 1, the magnitudes of each selected harmonic component 

are approximately the same. This indicates that the proposed RLS algorithm can replace 

the FFT for spectral analysis in practical applications. In addition, it is evident that, for a 

locally demagnetized PMSM, the magnitudes of fault-related harmonic components are 

Figure 3. The waveform of the current ia in a demagnetized motor under steady-state.

Table 1. Analysis of the magnitudes of fault-related harmonic components in the current according
to various algorithms and different healthy states (Unit: A).

Harmonic Wave Healthy (FFT) Healthy (RLS) Demagnitized
(FFT)

Demagnitized
(RLS)

2/4 0.001 0.00125 0.02512 0.02521
4/4 2.49 2.4905 2.497 2.496
5/4 0.03 0.0299 0.06 0.057

5 0.02 0.01556 0.013 0.01295
7 0.01 0.01316 0.0115 0.01132

As can be observed in Table 1, the magnitudes of each selected harmonic component
are approximately the same. This indicates that the proposed RLS algorithm can replace
the FFT for spectral analysis in practical applications. In addition, it is evident that, for a
locally demagnetized PMSM, the magnitudes of fault-related harmonic components are
greater than those of a healthy PMSM. This implies that the 2nd/4th-order harmonics and
the 5th/4th-order harmonics can serve as indicators for diagnosing local demagnetization
faults. Since the proposed algorithm is in a recursive form, computational resources can be
significantly reduced. The execution time of one iteration of this algorithm is much smaller
than that of FFT, which requires a larger memory capacity to store data points.

Taking into account the variations in the magnitude of the fundamental component,
for a more illustrative representation of the effectiveness of the algorithm in this section,
the magnitudes of each of the harmonics related to local faults can be vividly depicted
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using Equation (1), which essentially denotes the ratio between the k/4th-order harmonic
component and the fundamental component’s amplitude.

η =
Mk
M4

× 100% =

√
Ak

2 + Bk
2√

A4
2 + B4

2
× 100% (1)

Comparing the amplitude ratios of the 2/4th- and 5/4th-order harmonics between
a locally demagnetized PMSM and a healthy PMSM under steady-state conditions, it is
evident that the amplitude ratio of fault-related harmonics for the locally demagnetized
PMSM is greater than that of the healthy PMSM. For the locally demagnetized PMSM, the
ratio between the 2/4th-order harmonic and the fundamental component is 1.01%, whereas
for the healthy PMSM, this ratio is less than 0.1%. Regarding the 5/4th-order harmonic, for
the locally demagnetized PMSM, this ratio is 2.3%, while for the healthy PMSM, this ratio
is 1.2%.

Although RLS is a powerful algorithm for parameter estimation and online monitoring,
it has several defects, including computational complexity, memory usage, initialization,
sensitivity to outliers, stability, convergence rate, and adaptability, to nonlinear systems.
Engineers and practitioners should carefully consider these limitations when choosing RLS
for monitoring PMSMs and combine them with alternative methods or modifications to
address specific application requirements. Future research in this area should be focused
on improving control strategies, performance optimization, and fault diagnosis methods
for electrical machines. These efforts may contribute to more efficient and reliable systems
in various applications, from industrial automation to renewable energy generation. The
first suggestion is to explore methods for extracting physical parameters from identified
models. These parameters could be essential for various analyses and control strategies.
The operating point control could optimize motor performance, energy efficiency, and
responsiveness, and the long-term memory models can provide valuable support during
transient conditions, where traditional control methods may be less effective. Long-term
memory models can capture complex relationships and patterns in data, making them
suitable for adaptive and data-driven control strategies.

2.3. Current or Voltage Injection Estimation

Current or voltage injection estimation is a technique used in the control and estimation
of PMSMs. In this method, a current signal is injected into the motor windings, and the
resulting motor response is analyzed to estimate various parameters, including rotor position
and speed, stator resistance, and the states of the motor. In this method, a current waveform
with known frequency and amplitude is injected into one or more phases of the motor’s stator
windings. This injected current perturbs the motor’s operation and generates a response
in the form of back-EMF and variations in current and voltage. After carefully measuring
and analyzing the response of the injected current, the current and voltage signal variations
and their phase relationships can be obtained. The current injection estimation provides a
non-invasive and efficient method, which is particularly valuable for predictive maintenance,
enabling early fault detection and assessment without the need for motor disassembly, and
is beneficial in optimizing maintenance schedules, reducing downtime, and improving the
overall reliability and efficiency of PMSMs. It can also be implemented during normal motor
operation, making it suitable for online parameter identification and control adjustments. By
accurately estimating rotor position and speed, this sensorless control method can operate
PMSMs without relying on costly and failure-prone position sensors [21].

Accurate parameter identification is imperative for sensorless field-oriented control, as
it enables precise control of the motor. For accurate parameter identification in a high-speed
PMSM that can improve the performance of sensorless field-oriented control, a parameter
identification method based on current injection, which eliminates the need for a low-pass
filter in the current controller, has been developed. This method allows the maintenance of
a high control bandwidth for 14,000 rpm high-speed PMSMs. The estimated parameters are
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shown to enhance the performance at both low and high speeds, highlighting the accuracy
of the identification process [22].

To ensure a reliable startup of the interior PMSM, an innovative method for the initial
estimation of rotor position has been developed by combining enhanced high-frequency
pulse signal injection with the injection of positive and negative d-axis current biases, as
shown in Figure 4. Unlike previous methods for detecting the initial rotor position, this
method divides the injection and the field-oriented control periods to eliminate the filters
in the high-frequency response current and fundamental current extracting process. The
estimation of magnet’s polarity has been achieved through the stimulation of positive and
negative d-axis currents. In addition, to determine the rotor magnetic polarity, the peak
values of the d-axis current during the injection period have been accumulated. The results
indicated that the high-frequency pulse voltage signal injection method shows the merit
of a high current control loop bandwidth without filters. More importantly, this method
is robust in magnetic polarity identification and has a wider applicative situation. The
effectiveness of the initial position estimation method is verified on a 1.5 kW interior PMSM
drive platform. It was claimed that this approach is beneficial to enhance the reliability of
detection of the magnet’s polarity and can be applied to standstill rotors and free-running
rotors [23].
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Current or voltage injection estimation is a valuable tool for monitoring PMSMs, but it
has limitations originating from the diagnostic capability, sensitivity to noise, steady-state
operation assumptions, and its ability to detect nonlinearities and specific faults. As a result,
it is necessary to complement this method with other techniques to ensure a comprehensive
view of the motor’s condition and performance. The following items should be considered
as future research challenges. First, the current and voltage injection estimation may not
provide detailed diagnostic information. It is typically used for estimating resistance
and inductance, which are essential but may not capture more complex issues or faults.
Second, the current or voltage injection estimation deals with a steady-state operation,
in which the motors operate under constant speed and load conditions. However, in
practical applications, motors are facing transient and dynamic conditions, and the current
and voltage injection may not be suitable for capturing variations outside steady-state
operation. In addition, the current and voltage injections are sensitive to noise and external
disturbances, which can affect the accuracy of parameter estimation. In noisy environments
or with significant disturbances, obtaining accurate parameter estimates can be challenging.
Last, the PMSMs exhibit nonlinear behavior, especially when faults occur. The current
or voltage injection methods may not adequately capture these nonlinearities or detect
issues related to them. Although current or voltage injection methods can identify changes
in motor parameters, it is difficult to detect rotor faults or winding faults, which require
advanced techniques and additional sensors.
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2.4. Nonsingular Terminal Sliding-Mode Control Algorithm

The nonsingular terminal sliding-mode control algorithm weakens the need for an
accurate mathematical model of the PMASMs, making it particularly suitable for systems
with uncertain or time-varying parameters. Unlike traditional control methods that rely on
accurate motor models, this algorithm does not require precise mathematical models of
the motor system. Instead, it employs a sliding-mode control approach with a nonsingular
terminal condition, ensuring robust and precise control even in the presence of uncertainties
and variations in the motor’s parameters. This makes it an effective method to achieve high-
performance control and improve efficiency in PMSM’s various industrial and automotive
applications [24].

A nonsingular fast terminal sliding mode control was designed to achieve fast and
precise position regulation for a linear PMSM. This mode can achieve a rapid convergence
of the position tracking error. To mitigate the problems posed by lumped disturbances and
incomplete state information, the authors utilized a high-order super-twisting observer to
estimate the missing state variables, thus enhancing the robustness of the control strategy.
By using the Lyapunov stability theory, the stability of the system was rigorously analyzed,
and the results demonstrated that the system remains stable during operation. Real-time
testing results highlight the efficiency of this approach, making it a valuable contribution to
the field of motor control. Although this nonsingular sliding mode is effective for position
tracking, it faces challenges when dealing with lumped disturbances in the system. These
disturbances can result in incomplete system state information and may lead to chattering
in the control signal [25].

To overcome the challenges posed by magnetic saturation effects, which is defined as
the critical point where the magnetic flux density of the magnets or the iron core in the stator
no longer increase with an increase in the magnetizing force, and as the lack of a maximum-
torque-per-ampere-control guideline with unmodeled dynamic compensation based on
an online excitation level calculation in synchronous reluctance motors, an adaptive non-
singular terminal sliding mode control scheme was developed to face the highly nonlinear
and time-varying parameters. Figure 5 shows the control block diagram of the proposed
method. It shows the speed tracking, current regulators, optimal current angle estimator,
and parameter estimator. It can be claimed that the main contributions of this method are
that it can effectively track MTPA operating points, solve the reference current distribution
problem under the influence of nonlinear and time-varying parameters, and reach the goal
of shortening the time to reach the sliding mode surface and reducing chatter (undesired
high-frequency oscillations) near the surface. The experimental results demonstrated that
this control strategy achieves satisfactory dynamic performance and robustness, despite
the nonlinearities and time-varying parameters [26].

Figure 5. Control block diagram of proposed ANFTSMC system [26].
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Although model-free nonsingular terminal sliding-mode control algorithms have
potential benefits, they also face problems such as complex implementation, sensitivity to
chattering, and measurement noise due to the lack of model--based adaptation. As a result,
it is difficult for it to deal with the nonlinearities in real-time implementation.

2.5. Sliding Mode Observer

A sliding mode observer (SMO) combines an observer and controller to estimate the
critical motor variables or states in real-time of the PMSM system. The SMO has been
widely used in various PMSMs, including electric vehicle propulsion systems, robotics, and
renewable energy systems, where sensorless operation is preferred for higher efficiency
and reliability. In this control mode, a robust control technique is used to guarantee the
stability and accuracy of the system even with uncertainties and disturbances. The key
variables include rotor position, rotor speed, and rotor flux, which are critical for precise
motor control, especially in sensorless operations to reduce cost and complexity. The SMO
continuously updates its estimation to track the actual values. One of the palpable merits
of the SMO is its robustness to system parameter variations, load disturbances, and sensor
inaccuracies. It allows for accurate estimation even under changing operating conditions.
The SMO not only plays a key role in sensorless control strategies but also provides
accurate estimation of essential variables without additional sensors, thus reducing cost
and increasing reliability [27].

To enhance the tracking performance of speed controllers in PMSM drive systems,
an extended-state observer-based sliding mode observer was designed to handle vari-
ous disturbances in real-time, including internal parameter variations and external load
changes, based on an upper bound estimate of the total disturbance. Through this method,
the extended state observer’s parameters could be configured according to the desired
bandwidth of the observer, and the estimated total disturbance obtained from the observer
was used to continuously update the control law in real-time. The results indicated an
improved speed-tracking performance and robustness against disturbances without sacri-
ficing the fast dynamic response. The stability of the closed-loop PMSM drive system with
the proposed control is rigorously demonstrated through Lyapunov theory. Experimental
results from a 200 W salient pole PMSM drive system confirm the practical efficiency of
this strategy [28]. Similarly, another study introduces an active disturbance rejection-based
sliding-mode current control to enhance the tracking performance of current controllers in
PMSM drive systems when facing internal disturbances. The schematic demonstration is
shown in Figure 6. The results indicated that the current controller can significantly im-
prove both steady-state and transient current tracking performance, along with reinforcing
the robustness to internal disturbances [29].

Apart from the state-observer--based sliding mode observer and the active disturbance
rejection-based observer, a fuzzy sliding mode observer with a sensorless control strategy
was introduced for PMSMs. This approach was used to build a sliding mode observer that
adheres to the Lyapunov stability condition. Instead of the traditional sign function, in this
study, a sigmoid function was developed as the switching function within the sliding mode
observer. The contribution of this study lies in adjusting the parameters of the sigmoid
function in real-time through the established fuzzy rules, which effectively modifies the
convergence characteristics of the sigmoid function to enhance observation performance.
Furthermore, the EMF signals, which were extracted using the sliding mode observer, have
been smoothed by using a back EMF adaptive law. This is beneficial to reduce the chatter
and observation errors of the system. The proposed fuzzy sliding mode observer has
been experimentally verified on a 2 kW surface-mounted PMSM vector control platform
and validated through a Matlab/Simulink simulation. Both simulation and experimental
results have proved the effectiveness of this method in tracking changes in rotor speed and
position during motor speed reversals [30].

Even though the SMO provides an accurate estimation for the online monitoring
of PMSMs, from the perspectives of model mismatch, sensitivity to disturbances and
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noise, design complexity, limited fault detection capabilities, limited information about
mechanical components, computational load, and nonlinearities, it is still facing challenges.
First, SMOs significantly depend on a mathematical model of the system to create a sliding
surface. If the model used in the observer significantly differs from the actual motor
dynamics due to parameter variations, nonlinearities, or modeling inaccuracies, the SMO’s
performance can be degraded, thus leading to inaccurate state estimates. In addition, like
other nonlinear observers, SMOs are sensitive to disturbances and measurements of noise.
External disturbances or noisy sensor measurements can disrupt the sliding mode behavior
and affect the quality of state estimation.
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2.6. Luenberger Observer

The Luenberger observer is a mathematical tool used in control systems to estimate
the unmeasurable states of a dynamical system. It is particularly useful when full state
measurements are not available but certain system outputs can be measured. The observer
provides an estimation of the system’s internal states by using the system dynamics and
available output measurements. It is also called the Luenberger state observer, which
is a control method applied in PMSMs to estimate the unmeasurable internal states or
variables of PMSMs, including rotor position, rotor flux, and rotor speed. These variables
are difficult to directly measure but extremely critical for motor control. By developing a
mathematical model, the Luenberger observer can describe the evolution process of the
internal states. Subsequently, by combining this model with the available measurements,
the states’ current values can be estimated using the Luenberger observer by feeding
back into the motor control system, allowing the controller to make real-time adjustments
based on the estimated states. Luenberger observers can provide accurate state estimation
with the presence of disturbances and inaccuracies. It is robust to measure noise and
uncertainties in the motor model and operates in real-time, continuously updating its
estimation as new measurements without additional sensors [31].

To overcome the limitations of substantial computational requirements and steady-
state current errors in the presence of parameter mismatches, a low-complexity, three-vector-
based model predictive current control method with reduced steady-state current errors
for the PMSM drive system has been developed. The optimal voltage vector combination
is selected to relieve the computational burden associated with the three-vector-based
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model. To mitigate steady-state current errors stemming from parameter mismatches,
a Luenberger observer is incorporated to estimate the collective disturbance caused by
parameter mismatches and unmodeled dynamics. The estimated disturbance is then used
for compensation within the model. The testing results indicated that the three-vector-based
low-complexity model predictive current control can reduce the computational complexity
without sacrificing the dynamic and static performance. This method can not only reduce
the steady-state current error resulting from the parameter mismatch and unmodelled
dynamics, but also improve the robustness against parameter variation [32].

To reduce the impact of external load disturbances, a load torque Luenberger observer
is developed to mitigate the slow response speed and the chattering phenomenon in the
general sliding mode control of PMSMs. This strategy is designed to enhance the ability to
withstand external interference. An experimental platform for a PMSM is established to
evaluate the performance of the proposed control strategy and the effectiveness of the ob-
server, and the block diagram of the control system is shown in Figure 7. The experimental
results demonstrate that the load torque Luenberger observer excels at accurately estimat-
ing the actual load torque and tracking the motor’s real speed. Furthermore, the global fast
terminal sliding mode control strategy substantially enhances the motor’s response speed
and bolsters the system’s robustness [33].
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Although the Luenberger observer is a powerful tool to estimate the states of PMSMs,
it has limitations related to model dependency, sensitivity to parameter variations, limited
fault detection capabilities, convergence and stability concerns, computational complexity,
sensitivity to noise, and limited information about mechanical components. First, the
Luenberger observers rely on a mathematical model of the system to estimate the states.
For the PMSMs, the accuracy of the observer is highly dependent on the accuracy of the
motor model used. Any discrepancies between the model and the actual motor behavior
can lead to inaccurate state estimates. PMSMs can experience variations in parameters over
time due to factors like temperature changes, aging, and manufacturing tolerances. The
Luenberger observer may not adapt well to these parameter variations and can result in
inaccurate state estimates if the model parameters are not updated. While the Luenberger
observer can estimate the states of a motor, it is primarily a state estimation technique and
may not be wellsuited for detecting specific motor faults or anomalies. Fault detection
typically requires additional techniques and sensors. Second, the Luenberger observer’s
convergence and stability depend on the eigenvalues of the system’s dynamic matrix.
If the eigenvalues are poorly conditioned or close to the imaginary axis, the observer
may slowly converge or exhibit instability, especially in the presence of measurement
noise. The Luenberger observer involves solving a set of differential equations in real-
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time, which can be computationally intensive, especially for high-dimensional systems or
systems with complex dynamics. This can be a limitation in real-time applications with
limited computational resources. Third, accurate initial state estimates are crucial for the
Luenberger observer to provide reliable estimates. If the initial state estimates are far from
the true values, it may take some time for the observer to converge to the correct estimates,
leading to inaccuracies during the transient phase. Like any state estimation technique,
the Luenberger observer is sensitive to measurement noise. In practice, sensor noise can
degrade the accuracy of state estimates, particularly when measurements are noisy or
corrupted. The Luenberger observer primarily focuses on estimating the electrical states of
the motor, such as rotor flux and stator currents. It may not provide detailed information
about mechanical components, such as bearings or load-related issues.

2.7. Model Reference Adaptive System Observer

Model Reference Adaptive System (MRAS) observers are suitable for the sensorless
control of PMSMs in electric vehicles, industrial machinery, robotics, and renewable energy
systems. MRAS observers are designed to be robust to disturbances, noise in measurements,
and variations in motor parameters. They provide reliable state or parameter estimates
under various operating conditions. Similar to the sliding mode observers, the primary
purpose of the MRAS observer is to estimate unmeasurable states or parameters, such as
rotor position, rotor speed, and rotor flux of the PMSM. MRAS observers can adjust their
internal model or reference to minimize the error between the estimated states and the
actual measurements. This adaptation enables them to handle varying operating conditions
and load changes. MRAS observers use a reference model that represents the expected
behavior of the PMSM under nominal conditions. The discrepancies between the model and
the actual system are compensated through adaptation, allowing the observer to provide
accurate estimates even in the presence of model uncertainties. MRAS observers are less
sensitive to variations in motor parameters and load conditions compared to traditional
observers, making them well suited for applications where these factors may change
dynamically. The estimated states or parameters generated by the MRAS observer are
typically used as feedback in the motor control system. This feedback allows the controller
to adjust the control signals in real-time based on the estimated states, enabling precise
motor control [34].

To monitor the position and speed of a PMSM, an MRAS approach was developed
by considering the error between actual and estimated rotor position values. A state
equation for the PMSM was formulated within the synchronous d-q reference frame. This
frame relies on the estimated speed and the nominal parameters of the PMSM. Figure 8
presents the scheme of the block diagrams of the sensorless control system. The primary
contribution of this approach is the MRAS adaptation scheme, which aims to estimate the
rotor position and speed while minimizing the errors between the derivatives of d-q axis
currents of the real system and the model system. Experimental results demonstrate strong
performance and accurate speed-tracking capabilities when compared to the sliding mode
observer under various speed and load torque conditions [35].

To enhance the motor’s performance in standstill and low-speed operating regions, a
straightforward and robust approach for sensorless control of a surface-mounted PMSM
drive was developed based on an electromagnetic-torque-based MRAS speed estimator,
combined with a cascaded pseudo-derivative feedback controller. In this approach, a
small-signal model was employed to analyze the stability and sensitivity of the estimator.
The testing results indicated that the estimator remains stable in a wide range of speed
regions, and exhibits robustness against uncertainties in machine parameters. To further
confirm the benefits of this approach, the estimator was implemented on a 1.5 kW laboratory
prototype PMSM drive using an ALTERA Cyclone II field programmable gate array (FPGA).
The experimental results further affirmed the efficacy of the method under various test
conditions in a wide and adjustable speed range, including low-speed regions and standstill
conditions [36].
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The MRAS algorithm faces difficulties in designing the adaptive law to ensure the si-
multaneous convergence of multiple parameters and determining control parameters. The
Extended Kalman filter algorithm incorporates noise factors and effectively reduces the in-
fluence of system noise on identification results, thereby improving identification accuracy.

2.8. Kalman Filter

The Kalman filter is an optimal estimation algorithm used to estimate the state of a
dynamic system from a series of noisy measurements over time. It is a recursive algorithm
that continuously updates the estimated state based on new measurements and predictions
of the system’s behavior. The Kalman filter is a recursive algorithm, meaning that it
continually updates its estimation based on new measurements. It is beneficial to mitigate
the defects of the MRAS observer in PMSMs. The block diagram is shown in Figure 9. As
can be seen from this figure, the Kalman filter can be used to estimate unmeasurable states
or parameters within the motor system, such as rotor position and speed. This adaptability
is particularly valuable in real-time applications like motor control. In PMSMs, it can
integrate measurements from various sensors, such as encoders, resolvers, and current
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sensors, to provide a more accurate and robust estimation of motor states. The Kalman
filter leverages a mathematical model, which predicts the expected behavior of the PMSM
system, given the current state and control inputs. It minimizes the error between the
predicted state (based on the model) and the measured state (based on sensor readings) by
adjusting the filter’s gain. This minimization process optimally balances the contributions
of the model and measurements to improve estimation accuracy. The filter can account for
various sources of noise, including sensor noise and process noise. This makes it suitable
for applications where measurements are subject to uncertainty and variability. Kalman
filters are computationally efficient, making them well suited for embedded systems and
applications with limited computational resources [37].

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 23 
 

suitable for applications where measurements are subject to uncertainty and variability. 

Kalman filters are computationally efficient, making them well suited for embedded sys-

tems and applications with limited computational resources [37]. 

 

Figure 9. Block diagram of Kalman filter [37]. 

A novel approach was proposed to detect partial demagnetization faults in running 

PMSMs under nonstationary conditions. This method was developed based on tracking 

the characteristic orders of the stator current by using the VoldKalman filter, in which the 

amplitude of these fault characteristic orders was used as an indicator. The proposed 

method has been experimentally assessed and demonstrated outstanding performance in 

detecting partial demagnetization faults in PMSMs under various speed and load condi-

tions [38]. 

For diagnosing single and multiple open-switch faults in three-phase PMSM drives, 

a real-time estimation was tested based on three-phase motor currents with three Kalman 

filters. In this method, the residual signals were analyzed by comparing the differences 

between the measured and estimated stator currents for each phase. The averaged nor-

malized residual signals were defined as diagnostic criteria, which were used to identify 

the presence of open-switch faults, locate the faulty switches, and distinguish open-switch 

faults from the current sensor, for detecting open-switch faults. The main advantages of 

this method are the fast detection times, robustness to measurement noises and errors, 

and ability to handle load variations. It can be applied in both closed-loop and open-loop 

PMSM drives, and act as a subroutine in the drive control unit without requiring addi-

tional hardware. The effectiveness of the proposed method has been verified through ex-

tensive simulations and hardware-in-the-loop experiments by using a 1.5 kW PMSM and 

a low-cost microprocessor technology. The testing results indicated that, although the ex-

ecution time is relatively long, this KF-based method can serve as an efficient and reliable 

approach for diagnosing open-switch faults in PMSM drives, making it a valuable tool for 

maintenance and fault detection in motor control systems [39]. 

To reduce the execution time of the Kalman filter estimator without sacrificing the 

accuracy for sensorless control of PMSMs, an Extended Kalman filter was applied along 

with an ARM Cortex-M3 microcontroller. This study implemented various optimization 

levels to relieve the arithmetic calculation burden. Through these optimizations, the exe-

cution time of the Extended Kalman filter estimator was significantly reduced from 260.4 

μs to 37.7 μs, while maintaining the accuracy. By exploring the relationship between the 

Kalman gain frequency, covariance matrices, and the rotor electrical frequency, the simu-

lations and experimental results confirmed the effectiveness of these techniques in achiev-

ing accurate and efficient sensorless real-time control of PMSMs in resource-constrained 

environments [37]. 

While the Kalman Filter is a powerful tool for state estimation and monitoring, a few 

concerns, including the model dependency, sensitivity to model errors, initialization 

Figure 9. Block diagram of Kalman filter [37].

A novel approach was proposed to detect partial demagnetization faults in running
PMSMs under nonstationary conditions. This method was developed based on tracking
the characteristic orders of the stator current by using the VoldKalman filter, in which
the amplitude of these fault characteristic orders was used as an indicator. The proposed
method has been experimentally assessed and demonstrated outstanding performance
in detecting partial demagnetization faults in PMSMs under various speed and load
conditions [38].

For diagnosing single and multiple open-switch faults in three-phase PMSM drives, a
real-time estimation was tested based on three-phase motor currents with three Kalman
filters. In this method, the residual signals were analyzed by comparing the differences
between the measured and estimated stator currents for each phase. The averaged nor-
malized residual signals were defined as diagnostic criteria, which were used to identify
the presence of open-switch faults, locate the faulty switches, and distinguish open-switch
faults from the current sensor, for detecting open-switch faults. The main advantages of
this method are the fast detection times, robustness to measurement noises and errors,
and ability to handle load variations. It can be applied in both closed-loop and open-loop
PMSM drives, and act as a subroutine in the drive control unit without requiring additional
hardware. The effectiveness of the proposed method has been verified through extensive
simulations and hardware-in-the-loop experiments by using a 1.5 kW PMSM and a low-cost
microprocessor technology. The testing results indicated that, although the execution time
is relatively long, this KF-based method can serve as an efficient and reliable approach for
diagnosing open-switch faults in PMSM drives, making it a valuable tool for maintenance
and fault detection in motor control systems [39].

To reduce the execution time of the Kalman filter estimator without sacrificing the ac-
curacy for sensorless control of PMSMs, an Extended Kalman filter was applied along with
an ARM Cortex-M3 microcontroller. This study implemented various optimization levels to
relieve the arithmetic calculation burden. Through these optimizations, the execution time
of the Extended Kalman filter estimator was significantly reduced from 260.4 µs to 37.7 µs,
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while maintaining the accuracy. By exploring the relationship between the Kalman gain
frequency, covariance matrices, and the rotor electrical frequency, the simulations and ex-
perimental results confirmed the effectiveness of these techniques in achieving accurate and
efficient sensorless real-time control of PMSMs in resource-constrained environments [37].

While the Kalman Filter is a powerful tool for state estimation and monitoring, a
few concerns, including the model dependency, sensitivity to model errors, initialization
challenges, sensitivity to nonlinearities, computational complexity, measurement noise,
limited fault detection capabilities, difficulty in handling parameter variability, limited
information about mechanical components, and challenges with multimodal noise distri-
butions, should be considered before the practical applications. First, the Kalman filter is
significantly dependent on a mathematical model that describes the system’s dynamics. If
the model cannot accurately represent the motor’s behavior, due to parameter variations,
nonlinearities, or modeling inaccuracies, the filter’s performance can be compromised,
thus sacrificing the accuracy of the estimation. Second, accurate initialization is critical
for the Kalman filter to provide reliable state estimation. If the initial state estimation is
far from the actual state, the filter may converge, thus leading to inaccuracies during the
transient phase. In addition, the standard Kalman filter is designed for linear systems, so
it may not perform well when dealing with highly nonlinear motor behaviors or abrupt
changes in dynamics. Third, Kalman filters are computationally intensive, especially for
high-dimensional systems or systems with complex dynamics. Therefore, in real-time
monitoring systems with limited computational resources, it could be confined. Finally,
the Kalman filter faces the challenges of rapid or significant changes in motor parameters,
such as sudden load variations, especially with the unimodal Gaussian distributions for
process and measurement noise, so achieving accurate state estimates during such transient
conditions can be difficult.

2.9. Adaptive Inertia Weight Particle Swarm Optimization Algorithm

The adaptive inertia weight particle swarm optimization (AIWPSO) algorithm is a
variation of the traditional particle swarm optimization (PSO) algorithm. In standard PSO,
the inertia weight is a parameter that controls the trade-off between the global and local
exploration capabilities of particles in the search space. AIWPSO introduces adaptability
to the inertia weight during the optimization process, which aims to enhance the algo-
rithm’s convergence and performance. In the realm of PMSMs, AIWPSO is employed
to tune a range of factors, including motor parameters, control strategies, and efficiency
enhancements. One of its key benefits is its ability to dynamically strike a balance between
exploration and exploitation during the optimization process. This adaptability empow-
ers the algorithm to effectively navigate the solution space, rendering it particularly well
suited for optimizing PMSMs operating under variable conditions and system parameters.
Consequently, its adaptive nature equips it to address the intricacies of PMSMs, ultimately
contributing to superior motor performance and efficiency, even when grappling with
dynamic and uncertain factors in motor design and control [40–42].

Yong introduced an approach for the online identification of electrical and mechanical
parameters in PMSMs by using an adaptive inertia weight particle swarm optimization
algorithm based on logical functions. Compared with traditional complex and ineffi-
cient methods for parameter identification, the authors leverage a logistic-function-based
adaptive inertia weight particle swarm optimization algorithm to achieve precise online
identification of both electrical and mechanical parameters in PMSMs. The experimental
results proved the algorithm’s ability to accurately identify key motor parameters in real-
time. This approach sheds light on how to realize a faster convergence with improved
accuracy [43].

Recently, an enhanced optimization technique, named the hybrid particle swarm
optimization algorithm, was designed to address the parameter optimization challenges
in the development of a servo system in PMSMs. This algorithm incorporates a unique
directional mutation operation applied to the particles within the optimization process. This
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operation involves fixing the positions of specific particles to enhance their search capability
in remote regions. To complement the directional mutation operation, the algorithm also
refines the formula used for updating particle velocities. The servo system itself features
a speed control mechanism based on biological intelligence regulation and a position
controller with feedforward compensation. The servo system uses the id = 0 strategy in field-
oriented control, as shown in Figure 10. The main contribution of this study can be claimed
as follows. First, a directional mutation operation was presented to increase the searching
ability to select remote regions. Second, a linear decreasing strategy of inertia weight and a
modified velocity-updating formula were developed to control the convergence process.
Third, the biological intelligence controller and the feedforward compensation strategy
were implemented in the speed and position servo system to enhance the steady state and
dynamic performance. Finally, the algorithm can solve complex parameter setting and
coordination problems of the designed controllers [44].
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There is no doubt that the AIWPSO has great potential to be used for the online
monitoring of PMSMs; however, it has defects due to the confinement of computational
intensity, search space size, lack of physical insights, constraint handling, initialization
sensitivity, handling of noisy data, lack of real-time adaptation, limited fault detection
capabilities, convergence to local optima, and challenges in handling nonlinearities. The
following aspects could be considered as future research trends. First, the AIWPSO can
be computationally intensive, especially when facing a complex optimization process.
In real-time monitoring applications, in which quick responses are required, the heavy
computational load of AIWPSO is quite challenging, especially when the motor system is
high-dimensional or involves complex dynamics. In these high-dimensional parameter
spaces, it is difficult for the AIWPSO to explore and search such vast parameter spaces
efficiently, leading to slow convergence and suboptimal solutions. Furthermore, due to
the AIWPSO being a model-free optimization technique, the lack of physical insights
is a limitation when compared to model-based techniques that utilize known system
dynamics. Second, the AIWPSO is primarily an optimization tool and may not inherently
provide fault detection capabilities. When facing noise or measurement errors during
the online monitoring process, AIWPSO finds it difficult to present accurate parameter
estimation or control policies without incorporating additional complexity, due to the
lack of robustness to noisy input, especially the innate nonlinear behaviors when faults
occur. Furthermore, AIWPSO is typically not well suited for real-time adaptation or control
adjustments. The optimization process may take considerable time, making AIWPSO
less suitable for applications that require rapid responses to changing motor conditions.
The accuracy of the AIWPSO can be sensitive to the initial parameter settings. Weak
initializations will result in suboptimal or premature convergent solutions.



Sustainability 2023, 15, 16326 18 of 22

2.10. Artificial Intelligence Algorithms

The method of online monitoring for uniform demagnetization faults in PMSMs
based on artificial intelligence algorithms involves the use of machine learning and data
analysis techniques for fault detection and diagnosis. This method utilizes machine learning
algorithms and data analysis techniques to learn and recognize the characteristic patterns of
demagnetization faults from a large amount of data, enabling the real-time monitoring and
automatic identification of such faults. In this approach, a significant amount of operational
data are collected, including parameters such as current, voltage, speed, and temperature.
Appropriate feature extraction techniques, such as spectral features, time-domain features,
and statistical features, are applied to extract useful information from the data. Machine
learning algorithms such as support vector machines (SVMs), neural networks (NNs),
decision trees (DTs), and deep learning are then employed to train and model the extracted
features. Once the training is complete, the system can collect real-time data from the
PMSM and input them into the trained model for fault detection and diagnosis. The model
utilizes the learned patterns to determine the presence of local demagnetization faults and
provides corresponding diagnostic results [45–47].

An artificial intelligence algorithm for detecting inter-turn short-circuit faults in
PMSMs was proposed by using machine learning techniques. In this study, the machine
learning technique was leveraged to enable the early detection of minor inter-turn short-
circuit faults, facilitating the timely replacement of faulty motors. Additionally, the machine
learning technique was applied to distinguish minor, moderate, and severe faults, and
thus guide appropriate maintenance actions. By using support vector machines and Con-
volutional Neural Networks for training the diagnostic model, experimental data were
collected from laboratory tests. It was found that the SVMs could optimize training by
selecting relevant features based on the PMSM mathematical model, while the CNNs were
data-driven and typically required more extensive datasets for effective training. Both
methods exhibit impressive accuracy, but the SVMs achieve this accuracy with significantly
less data, demonstrating the advantages of a model-aided machine learning approach [48].

Model Predictive Control (MPC) has gained significant popularity as a control tech-
nique for motor drives due to its exceptional dynamic performance. Constant-switching-
frequency MPC (CSF-MPC) is a variation of MPC that offers the benefits of MPC while
maintaining a constant switching frequency. However, selecting the appropriate weight-
ing factors for the cost function in CSF-MPC can be a challenging task. To address this
challenge, a specific artificial neural network was optimized by using a genetic algorithm.
The objective of this study is to automate and expedite the selection of optimal weighting
factors for CSF-MPC in PMSM drives powered by a three-level T-type inverter. The method-
ology involves gathering key performance metrics such as the Total Harmonic Distortion
(THD) and switching frequency error through simulation. These data were utilized to train
and evaluate the algorithm. It was claimed that the trained model can automatically and
accurately select the optimal weighting factors, aiming to minimize the THD and error
under various operating conditions [8].

The AI-based approach offers high accuracy and robustness, capable of adapting to
different operating conditions and fault modes; however, there are challenges in using AI
algorithms for online monitoring of local demagnetization faults. Sufficient training data
and appropriate feature selection are necessary to ensure the accuracy and reliability of the
model. Additionally, the design and optimization of the algorithm need to consider real-
time performance and computational complexity. The robustness and generalizability of
the model also require thorough validation and testing. With the continuous development
and improvement of AI technology, the AI-based method for online monitoring of local
demagnetization faults is expected to find widespread applications in industrial practice,
providing more effective solutions for motor fault diagnosis and maintenance. Due to
the rapid development and the advantages of artificial intelligence algorithms, as well as
their reduced dependency on motor parameters and mathematicalphysical models, an
increasing number of research studies have focused on fault diagnosis in the field. AI-
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based diagnostic methods involve the collection and processing of appropriate signals
to extract fault feature vectors from the motor. Then, using the autonomous learning
and predictive capabilities of artificial intelligence, the methods diagnose and identify
the motor fault modes. However, this approach requires extensive training and involves
significant computational complexity. Implementing diagnostic methods based on artificial
intelligence algorithms can be challenging.

3. Concluding Remarks, Challenges, and Future Trends

Automated monitoring of demagnetization faults in PMSMs is a complex task that
involves addressing challenges related to early fault detection, data collection, data com-
plexity, noise and interference, modeling, temperature effects, complex operating con-
ditions, fault classification, real-time implementation, integration with control systems,
maintenance planning, and cost considerations. Successfully overcoming these challenges
requires a multidisciplinary approach, combining expertise in electrical engineering, signal
processing, data analysis, and industrial maintenance practices. The following areas might
be considered as the future research focus to solve the above-mentioned problems.

1. In most cases, demagnetization faults develop slowly, and their effects may not be
immediately apparent in motor performance or monitoring data. As a result, detecting
demagnetization faults at an early stage is crucial for preventing further damage and
ensuring motor reliability.

2. Gathering the necessary data for monitoring demagnetization faults requires special-
ized sensors and data acquisition systems capable of measuring magnetic properties
and temperature variations within the motor. The data generated by sensors for
monitoring demagnetization faults can be complex and high-dimensional. Analyzing
and interpreting these data in real-time can be computationally intensive and may
require advanced signal-processing techniques.

3. Sensor measurements may be susceptible to noise and electromagnetic interference,
which can impact the accuracy of demagnetization fault detection algorithms. Filtering
out noise while preserving relevant information is a non-trivial task. Demagnetization
faults are often associated with temperature increases in the magnets. Monitoring
and interpreting temperature variations within the motor are critical but challenging
tasks, as temperature sensors may not be uniformly distributed or easily accessible.

4. Developing accurate models for PMSMs and establishing baseline data for normal
operation are essential for detecting deviations caused by demagnetization. Model-
based approaches require a thorough understanding of motor behavior and parame-
ter variations.

5. Identifying the specific type and extent of demagnetization (e.g., partial or complete)
can be difficult. Developing algorithms capable of classifying and quantifying the
severity of demagnetization is essential for maintenance decisions. Real-time monitor-
ing and decision making are critical for preventing further damage. Implementing
real-time demagnetization fault detection algorithms can be resource-intensive and
require fast computational platforms.

In conclusion, automated monitoring of uniform demagnetization faults in PMSMs
represents a vital component of modern motor maintenance and reliability strategies. Uni-
form demagnetization faults, which occur due to temperature variations or mechanical
stress, gradually weaken the permanent-magnet materials in the motors. This degradation
will lead to a reduction in efficiency of motors, an increase in energy consumption, and po-
tentially catastrophic failures. To tackle this issue, automated monitoring systems must be
developed to continuously assess the health conditions of PMSMs. These systems employ a
combination of sensors, data analysis algorithms, and real-time monitoring techniques. In
this review article, typical automated monitoring methods, including the Recursive Least
Squares method, current or voltage injection estimation, nonsingular terminal sliding-mode
control algorithm, sliding mode observer, Luenberger observer, Model Reference Adaptive
System observer, Kalman filter, adaptive inertia weight particle swarm optimization algo-
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rithm, and artificial intelligence algorithm, were summarized. The main contributions and
defects of these methods were analyzed and the future research trends were discussed as
well. It is beneficial to manufacture highly effective and sustainable permanent-magnet
synchronous motors.
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