
Citation: Leonardi, S.; Distefano, N.

Roundabout Trajectory Planning:

Integrating Human Driving Models

for Autonomous Vehicles.

Sustainability 2023, 15, 16288.

https://doi.org/10.3390/

su152316288

Academic Editor: Juneyoung Park

Received: 19 October 2023

Revised: 17 November 2023

Accepted: 21 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Roundabout Trajectory Planning: Integrating Human Driving
Models for Autonomous Vehicles
Salvatore Leonardi and Natalia Distefano *

Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6,
95125 Catania, Italy; salvatore.leonardi@unict.it
* Correspondence: natalia.distefano@unict.it; Tel.: +39-0957382226

Abstract: This research investigates the utilization of human driving models in autonomous vehicles,
particularly in scenarios with minimal or no interactions with other vehicles. Human driving models
provide valuable insights into driver behavior and play a crucial role in shaping the behavior of
autonomous vehicles, enhancing their performance and user experience. The primary focus of this
study is the creation of a planning model for autonomous vehicles when navigating roundabouts in
the absence of traffic. This model seeks to emulate human driving behavior, ensuring predictability,
safety, the optimization of traffic flow, and adaptation to various roundabout geometries. To achieve
this, the research introduces a trajectory model that takes into account geometric attributes and
speed variations within roundabouts. The model is calibrated using empirical data and generalizes
parameters through statistical regression methodologies. In particular, speed profile modeling is
evaluated for its consistency in creating plans that faithfully replicate human driving behavior in
roundabouts. While the study presents a promising approach, it acknowledges limitations related
to the model’s reliance on geometric attributes and its inability to account for external factors like
weather conditions. This research underscores the importance of bridging the gap between theoretical
research and practical application, with the aim of enhancing safety and the overall user experience
in real-world driving scenarios.

Keywords: autonomous vehicles; human driving models; roundabouts; speed profiles;
traffic-free planning

1. Introduction

In 2019, an estimated 1.35 million people died as a result of road accidents, which
corresponds to around 3700 deaths per day. Road accidents are the ninth leading cause of
death worldwide, ranking first among people aged 15 to 29. The geographical distribution
shows that 93% of road-related deaths occur in low- and middle-income countries, due to
factors such as inadequate road infrastructure, the use of unsafe vehicles and a lack of road
traffic laws [1,2].

In Italy, 165,889 road accidents with injuries occurred in 2022, an increase of 9.2% com-
pared to the previous year. The number of victims amounted to 3159, an increase of 9.9% [3].
These results are in line with those of 2019, the last year before the outbreak of the COVID-19
pandemic, with the road accident landscape in 2022 being the first in which global traffic
conditions influenced by the pandemic are considered to be almost inconsequential.

The main risk factors for road accidents include excessive speed, driving under the
influence of alcohol or drugs, distracted driving and the non-use of safety devices such as
seat belts and helmets. Autonomous vehicles (AVs) have the potential to improve road
safety in several ways [4,5]:

• Reducing human error: AVs are not prone to the same human errors that can lead to
accidents, such as distraction, fatigue and drunk driving;
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• Improve environmental awareness: AVs can use sensors to recognize road conditions
in real time, including friction conditions;

• Adjusting speed and trajectory more efficiently: AVs can use friction data to adjust
speed and trajectory more efficiently, reducing the risk of accidents.

In terms of the safety aspects associated with the risk of accidents due to human
error, autonomous vehicles can be trained to recognize and react to dangerous situations
using models derived from human behavior, much like a human would. This assertion
is supported by ongoing research in the field of autonomous driving. Engineers and
researchers are developing methods to train autonomous vehicles using driving data
collected from human-driven vehicles. These data can contain information about how
people interact with traffic, react to dangerous situations and make driving decisions [6].

Autonomous vehicles can benefit from human driving models in various ways,
whether they need to interact with other vehicles in complex situations or if interactions
with other vehicles are rare or limited [7,8]. Here’s how these models can be useful in
both cases:

(1) Interaction with other vehicles: In contexts where autonomous vehicles have to interact
with other vehicles on the roads, human driving models can provide valuable insights
into driver behavior and driving dynamics. By studying and learning from human
driver data, autonomous vehicles can learn how to behave in complex situations
such as standard intersections, roundabouts, or curves. For example, human driving
models can provide information on trajectory choices, appropriate speeds in certain
situations, and common driving habits. This information can be used by autonomous
vehicles to make safer and more predictable decisions during interactions with other
vehicles on the road.

(2) Limited interaction scenarios: Even when interactions with other vehicles are rare or
limited, human driving models can be useful for autonomous vehicles. For example, in
autonomous driving situations in rural areas or areas with low traffic density, vehicles
encounter fewer or no vehicles. Nevertheless, human driving models can provide
information on how to handle certain road elements with conditional geometry (curves,
roundabouts, highway ramps, etc.) or traffic signs or adverse weather conditions.
Additionally, human driving models can be used to provide a more comfortable and
familiar driving experience for passengers. For instance, if a human driver prefers
gradual acceleration or gentle braking in certain situations, the autonomous vehicle can
learn such habits and replicate them to provide a more human-like driving experience.

In this context, speed profiles obtained through naturalistic observations can be ex-
tremely useful for the human driving models employed in the learning phases of au-
tonomous vehicles [9,10]. Here’s why:

(a) Real-world data: Naturalistic speed profiles are based on real data collected from
vehicles in real driving conditions. These data represent the actual behavior of human
drivers in real-world situations, allowing the human driving models to learn from
authentic experiences. This helps make the models more accurate and adaptable to
various road situations.

(b) Contextual variation: Naturalistic speed profiles capture the variations in speed in dif-
ferent driving situations and contexts. This includes information about average speeds,
maximum speeds, and typical decelerations/accelerations in certain areas or types of
roads. Learning from these variations allows the driving models to guide autonomous
vehicles to behave more realistically and consistently with human drivers in different
scenarios, improving safety and efficiency in the autonomous driving system.

(c) Consideration of individual preferences: Naturalistic speed profiles can also reflect
individual driver preferences regarding speed and driving style. These preferences
can be learned and taken into account by the human driving models during the
learning process of autonomous vehicles. This enables autonomous vehicles to adapt
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to the preferences of human drivers or passengers, providing a more familiar and
personalized driving experience.

(d) Performance enhancement: Using naturalistic speed profiles can contribute to overall
performance improvements in autonomous vehicles. For example, they can be used to
fine-tune control algorithms, improve trajectory planning, or optimize acceleration
and deceleration strategies. Integrating real driver data into the human driving models
helps autonomous vehicles learn from realistic driving examples and develop more
effective driving strategies.

Specifically with respect to the approach of autonomous vehicles to roundabouts, the
collection of speed profiles obtained through naturalistic surveys may be particularly useful
for the following reasons [11–14]:

• These profiles help autonomous vehicles understand appropriate speeds, acceleration,
and deceleration required for safe driving.

• Contextualized speed profiles help autonomous vehicles make more informed deci-
sions based on specific road contexts. For example, they enable speed adjustment
based on the presence of other vehicles in roundabouts or traffic conditions.

• Naturalistic speed profiles allow autonomous vehicles to adapt to different roundabout
geometries, and to understand and respect the laws of physics governing the dynamic
behavior of vehicles. This includes managing centripetal force, optimizing tire friction
and grip, and maintaining stability during curves.

• Naturalistic speed profiles can be used for validation and testing of autonomous
driving systems. They allow comparing the behavior of autonomous vehicles with
known human speed profiles to evaluate the effectiveness of the autonomous system
and identify any necessary improvements.

This study proposes a model for planning the crossing of a single-lane roundabout,
based simultaneously on the specification of the geometric curve and on the generation of
the speed plane. The aim is to achieve a “human-like” planning, i.e., a planning based on
the imitation of the human driving behavior within the limits of a safe driving mode.

It should be noted that the crossing trajectory considered is the fastest trajectory in a
roundabout, i.e., the crossing trajectory without significant interference from other user
categories (vehicles, pedestrians, bicyclists, etc.). Therefore, traffic-free design results in a
crossing trajectory that considers only the geometric elements that make up a roundabout
(diameter, entry radius, exit radius, deflection angle, lane width) and ignores other road
users and other obstacles. Therefore, the crossing trajectory planning model must be able
to generate a dynamically feasible trajectory based on aspects of human driving behavior
that does not involve traffic impacts.

It is believed that this type of modeling is useful for at least the following four aspects:

â Predictable behavior: The fastest crossing trajectory with no interaction with other
road users represents a predictable and safe behavior model that has been solidified
by human driver experience. Validation and testing of autonomous vehicles on this
route allows them to learn and adopt behaviors that humans recognize as effective.

â Safety: crossing roundabouts quickly and efficiently can contribute to road safety. Mod-
eling autonomous vehicles on the fastest crossing route can verify that the autonomous
system can maintain an appropriate speed and perform the proper maneuvers to safely
traverse the roundabout, avoiding slowdowns and potential hazards.

â Optimizing traffic flow: the correct behavior of autonomous vehicles when passing
through single-lane roundabouts can help optimize traffic flow. If autonomous vehicles
follow the fastest crossing trajectory without interacting with other road users, they
can help reduce roundabout crossing times and improve traffic flow.

â Adaptation to road conditions: Naturalistic speed profiles based on the fastest crossing
trajectory can vary depending on the geometric characteristics of roundabouts. The
model to be proposed allows autonomous vehicles to adapt to different roundabout
configurations, such as diameter, entry radius, exit radius, deflection angle, and lane
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width. In this way, autonomous vehicles can learn the appropriate behavior and
be able to negotiate single-lane roundabouts safely and efficiently, regardless of the
specific geometric specifications.

In order to better understand how the authors proceeded to achieve the above goal
and what their methodological and experimental contribution was, the framework of the
analysis proposed in this paper is described below (Figure 1).

Figure 1. Framework of the proposed analysis.

The framework describes the systematic approach intended to be proposed in the
context of navigation of autonomous vehicles on single-lane roundabouts. The basic
input is derived from “Roundabout Data” obtained from a set of integrated sensors in
the autonomous vehicle. The subsequent phases of the framework include the sequential
development of the “Path Model” and the “Speed Model”. The result of the “Path Model”,
referred to as the “Reference Path”, serves as input for the subsequent “Speed Model”.
Both models culminate in specific optimization processes. The “Reference Speed Model”
goes through a tripartite procedural sequence that includes “Calibration”, “Learning”, and
“Evaluation”. This process is explained in the last segment of the framework. Importantly, it
is conducted on the basis of empirical data obtained through an experimental investigation
centered on the collection of trajectory and speed data derived from a sample set of five
single-lane urban roundabouts.

To summarize, the framework describes a cascading process that begins with the au-
tonomous vehicle gathering information about the geometric and functional characteristics
of the existing roundabouts. This process culminates in the autonomous vehicle learning
speed profiles that are modeled on human driving behavior. This is a key element not only
for improving the performance of autonomous vehicles, but also for significantly improving
their operational capabilities and the overall experience of users using this technology.

Ultimately, the original contribution of the present study can essentially be summa-
rized in the implementation of the methodological process that led to the determination
of the following two models, developed and calibrated in relation to the driving of cross-
ing trajectories on single-lane roundabouts by autonomous vehicles: (1) the Path Model;
(2) the Speed Model. Furthermore, thanks to the support provided by the experimental
investigation described in Section 5, it was possible to analytically characterize any possible
“Reference Speed Profile” based on human behaviors that, although typical of the Italian
context in which the investigation was carried out, nevertheless constitute a reference
knowledge base to extend the proposed type of analysis to other study contexts.

This work has been structured as follows: Section 2 outlines the review of the rele-
vant literature. Section 3 introduces suitable path and speed models aimed at capturing
human driving behavior. Section 4 elaborates on the calibration process of the speed
model. Section 5 details the experimental investigations. Sections 6 and 7 are dedicated
to presenting the outcomes of the learning process, summarizing the study, and offering
recommendations for future research.
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2. Literature Review

In recent decades, the focus of trajectory planning for autonomous vehicles has pri-
marily been on the identification of an optimal and safe spatial maneuver. Subsequently,
a rule-based velocity assignment is used to create a target trajectory that is evaluated for
collision avoidance [15,16].

Some studies have looked at the effects of road geometry on vehicle movement in
different road scenarios. For example, winding roads require a reduction in vehicle speed
to reduce the discomfort resulting from increasing lateral accelerations. In a study, a
geometry-based methodology for speed planning was proposed. This involved creating a
reference path for the autonomous vehicle by merging a smooth, peak-reduced curve with
a parameterized speed model derived from human driving data [17].

A combined approach that integrates behavior planning and trajectory planning was
also presented. In this method, trajectories are grouped based on topological properties in
the spatio-temporal domain to generate different high-level maneuver patterns [18].

For road intersections, a temporal speed planning approach was formulated by captur-
ing behavioral patterns of human drivers in a simulated experiment. Speed profiles from
intersection scenarios were extracted to generate temporal behavioral plans by applying
the k-means clustering technique [19].

Further studies have attempted to understand human driving behavior and strategies
to support decision making in complex traffic scenarios. Considering that experienced
human drivers exhibit adaptive longitudinal speed behavior and develop strategies to
effectively navigate complicated traffic scenarios, incorporating human-inspired longi-
tudinal speed control is a promising avenue for autonomous vehicle applications. This
approach offers two advantages: first, it increases the naturalness of autonomous driv-
ing [20] and facilitates seamless integration into environments with other semi-autonomous
and human-driven vehicles; second, it improves the overall driving experience, especially
in scenarios with frequent stop-start movements or roads with pronounced curves [21]. In
one particular study, a risk-aware decision-making approach was used to select human-like
longitudinal behavior profiles for navigation in a roundabout scenario. First, speed profiles
were created based on patterns derived from human driving behavior and then adapted to
the dynamic characteristics of the scenario. This work brings two innovations: first, the
generation of naturalistic profiles for human-like navigation, and second, a risk-aware,
multi-criteria decision-making approach that considers driving comfort and performance
in addition to safety. A comparative analysis with human driving data from experimental
studies showed encouraging advantages [22].

Developing an advanced driver assistance system also means learning from human
behavior to increase driving safety [23–25]. Entering roundabouts smoothly is a challenge
even for human drivers [26–29]. Several studies have proposed different approaches for
defining new decision models based on imitation learning to provide recommendations for
entering a roundabout.

A work has highlighted the capabilities of an Adaptive Tactical Behavior Planner
(ATBP) for autonomous vehicles, demonstrating its ability to emulate human-like move-
ment behavior while navigating roundabouts. This is achieved through a sophisticated
combination of naturalistic behavior planning and tactical decision algorithms [30].

In another study, a comprehensive multi-camera approach to image processing is
presented for roundabouts, employing different grid sizes to enhance accuracy and safe-
guard autonomous vehicles during roundabout entry. The utilization of multiple cameras
allows the system to replicate the visual perception of an actual driver when approaching a
roundabout, thereby facilitating human-like decision-making processes [31].

Another noteworthy contribution involves the introduction of an innovative strategy
aimed at generating diverse speed profiles for a set of path candidates. The objective is to
facilitate a merging maneuver on roundabouts based on the current traffic conditions. The
autonomous driving system, as outlined in this paper, underwent rigorous evaluation in
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real-world conditions, demonstrating its adeptness at navigating roundabouts with narrow
gaps while prioritizing both comfort and safety [32].

Drawing insights from driving data, a study proposes the application of numerical
optimization techniques to minimize travel time and enhance comfort through meticulous
motion planning and speed profiling. The investigation also delves into the analysis of
driving risks in roundabouts, seeking to influence the behavior of autonomous vehicles for
improved driving comfort and overall road safety [33]. Furthermore, a machine learning
model is trained to discern safe vehicle movements and potential exits, complemented
by the development of an optimal control method aimed at minimizing travel time and
enhancing energy efficiency. This approach takes into careful consideration the constraints
associated with collision avoidance in roundabouts [34].

Addressing the coordination of autonomous vehicles in roundabouts, researchers have
developed sophisticated control strategies integrating artificial intelligence (AI) approaches
and models to ensure safe traffic flow. Various algorithms, including support vector ma-
chine, linear regression, and deep learning, are rigorously compared for their effectiveness
in predicting vehicle speed and steering angles in roundabouts with different geometries.
Simultaneously, action rules for autonomous vehicles to execute maneuvers in roundabouts
are established [35]. Another piece of research explores the use of algorithms that predict
vehicle movements, combining dynamic Bayesian networks and sequential neural network
models [36]. Moreover, the adversarial multi-agent reinforcement learning method is ap-
plied to coordinate the passage of autonomous vehicles through roundabouts, considering
behaviors analogous to those of human drivers. This approach proves instrumental in
improving travel time and average vehicle speed [37]. Additionally, a fuzzy behavior-based
roundabout coordination algorithm is developed to calculate speed profiles for diverse
vehicles, aiming to achieve more comfortable driving profiles and reduce congestion [38].

Numerous research works leverage Model Predictive Control (MPC) strategies grounded
in analytical calculations of driving time and the design of speed profiles, showcasing their
efficacy in ensuring the secure operation of autonomous vehicles in roundabouts. The control
designs incorporate various constraints such as speed limits, acceleration limits, and maxi-
mum cornering speeds to uphold safety standards [39]. Another study proposes a method
addressing the roundabout merging problem, incorporating a target trajectory generated by
Bezier curves in conjunction with the MPC method [40]. Furthermore, a study introduces
a controller for trajectory tracking within roundabouts. Given the choice of exits, the MPC
tracking controller is employed to assess the impact of weight parameters and target speed on
the performance of the tracking controller [41].

In another study, a controller for roundabout trajectory tracking was presented. Given
the choice of exits, the MPC tracking controller is used to test the effects of weight parame-
ters and target speed on tracking controller performance [41].

3. Model Design

In this section, models are proposed that adapt to human maneuver data and efficiently
generate both the geometric curve for crossing a single-lane roundabouts and the speed
plan. In order to efficiently achieve these two objectives, the path and speed models are
developed and explained independently.

3.1. Path Model

The autonomous vehicle must always be able to detect the presence of the roundabout
on the road using sensors such as cameras, LiDAR, or radar. This allows the system to
detect the position and shape of the roundabout to adapt to the predefined path. The
following steps must be followed to model the path:

(1) A priori definition of the path: It is necessary to define in advance the path that the
autonomous vehicle must follow to cross the roundabout. The path can be mapped
based on appropriate assumptions, e.g., assuming that the vehicle must follow a
curved path within the lane, maintaining a constant distance from the inner edges
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of the circulatory roadway. To achieve this goal, this study uses the fastest path
for crossing a single-lane roundabout, as described in accordance with guidance in
NCHRP Report 672 [42].

(2) Waypoints generation: The predefined path can be represented by a series of control
points (waypoints) that indicate the ideal position of the vehicle along the path. These
waypoints can be generated manually or by algorithms that take into account the
geometry of the roundabout and the formulated assumptions. The waypoints should
be arranged to ensure smooth and safe navigation through the roundabout.

(3) Least squares optimization: Using the Levenberg–Marquardt algorithm, it is possible
to optimize the through path based on the least squares formula. In this case, the
objective is to minimize the difference between the desired path (represented by the
waypoints) and the actual path of the autonomous vehicle. The Levenberg–Marquardt
algorithm iteratively updates the model parameters to approach the optimal solution.

Operationally, the three steps described above can be translated into the following
procedural process:

â Path definition: The path for crossing the roundabout is determined following the
NCHRP model of path [42]. This model is based on the concept of the “fastest
through route”, which is determined by the geometry of the roundabout and sets the
negotiation speed for each movement—entry, circulation around the central island
and exit. This path represents the smoothest and flattest trajectory possible for a single
vehicle, assuming there is no other traffic and the lane markings are disregarded.
Figure 2 illustrates the construction of the fastest vehicle path in a single
lane roundabout.

Figure 2. Construction of the fastest through path according to the NCHRP model. In this example:
a = 1.0 m, b = 1.5 m, c = 1.5 m.

The fastest path for through traffic consists of a sequence of counter turns, namely a
right curve followed by a left curve and another right curve. When describing this path, it
is important to include tangents between the successive curves to account for the time it
takes a driver to turn the steering wheel. In particular, three critical radii completely define
the fastest passage path:

• Entry path radius (R1): this is the minimum radius on the fastest through path
before reaching the entry line;

• Radius of the circulation path (R2): this is the minimum radius on the fastest
through path as the vehicle circulates around the center island;

• Exit path radius (R3): this is the minimum radius on the fastest transit path as the
vehicle leaves the island.

In the context of a vehicle, it is assumed to be 2 m wide and maintain a minimum
distance of 0.5 m from the centerline of the roadway or a concrete curb, following a painted
edge line. Consequently, the centerline of the vehicle is marked with certain distances to
various geometric features as follows:

• 1.0 m from a painted edge line;
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• 1.5 m from a concrete curb;
• 1.5 m from a roadway centerline.

â Parametric representation of the path: To describe the path through the roundabout, a
parametric representation is used (Figure 3). In polar coordinates, where r is the radial
distance from the center of the roundabout and θ is the angle relative to the horizontal
axis, the path is expressed as

r(θ)= r0 + a·θ2

where r0 represents the initial distance from the roundabout, a governs the curvature
of the path, and θ varies from the entry angle (θentry) to the exit angle (θexit).

â Least squares formulation: The objective is to minimize the error between the calcu-
lated path (pcalculated) and the desired path (pdesired). The objective function is the sum
of squared differences:

Objective =
N

∑
i=1

(
pcalculated(θi)− pdesired(θi)

)2

where N is the number of sampled points along the through path.

Figure 3. Parametric representation of the fastest through path.

â Levenberg–Marquardt Algorithm: The Levenberg–Marquardt algorithm is employed
to minimize the objective. During iteration k, the model parameters (r0 and a) are
updated using the Jacobian matrix of partial gradients. The updates are given by

∆r(k)0 =
(

J(k)Tcalculated·J
(k)
calculated + λ(k)·diag

(
J(k)Tcalculated·J

(k)
calculated

))−1
·J(k)Tcalculated·∆r

∆a(k) =
(

J(k)Tcalculated·J
(k)
calculated + λ(k)·diag

(
J(k)Tcalculated·J

(k)
calculated

))−1
·J(k)Tcalculated·∆a

where J(k)
calculated is the Jacobian matrix in iteration k, λ(k) is the regularization parameter,

and ∆r and ∆a are the parameter changes in iteration k.

â Iteration and convergence: The Levenberg–Marquardt algorithm continues iteratively
until acceptable convergence is achieved or a maximum number of iterations is reached.
In each iteration, parameters are updated according to the algorithm’s formulas, and
the objective is gradually reduced.

â Path Model output: After completing the optimization with the Levenberg–Marquardt
algorithm, the optimal values of parameters r0 and a which define the fastest through
path of the roundabout are obtained. These parameters constitute the optimized path
for the autonomous vehicle. The final output of the path model consists of these
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optimal values, enabling the vehicle to safely and efficiently cross the roundabout
while adhering to the NCHRP model of the path [42].

3.2. Speed Model

The uniform reference path generated for crossing a single-lane roundabout represents
the main input for generating the specific speed model for that path.

A dual-phase speed model has been formulated with the aim of accurately replicating
human driving patterns. In the initial phase, data concerning the geometric attributes of
the reference path are harnessed to craft a foundational speed profile specific to the through
maneuver, particularly tailored for the scenario of a single-lane roundabout.

In particular, the most appropriate speed profile in response to the geometry of the
path must take into account the sequence of three critical radii that characterizes the path
itself (Figure 2). In these cases, in order to model the driving behavior, it is necessary to
take into account that the decelerations at entry, due to the effect of the critical radius R1,
occur from a distance from the entry that varies according to the caution adopted by the
human drivers, and that the accelerations required to approach the circulation radius (R2)
and the exit radius (R3) are also very different according to the behavior of the drivers
when approaching these maneuvers.

To model this guidance pattern, the various path features are first marked to position
the speed profile by referring to the NCHRP template described in Section 3.1. In particular,
the proposed MRoundabout speed model is based on the speed profile shown in the lower
part of Figure 4, whose construction requires the following steps:

(1) The entire path is divided into three main “Turning Regions”: TR1 starts at the point
before entering the roundabout, from which the vehicle decelerates, and ends in the
middle of the section passed under acceleration, between the first and second circular
arcs of the path; TR2 starts at the end of the previous region and ends in the middle of
the section that is passed under acceleration, between the second and third circular arcs
of the path; TR3 starts at the end of the previous region and ends at the point where
the user varies their speed (accelerates) after passing the last section with constant
curvature of the crossing path.

(2) For each of the “Turning Regions”, the longitudinal distance Lsi is defined (i = 1, 2,
3) between the starting point of the region and the point where the speed value si
is reached (with i = 1, 2, 3), which on average remains constant along the maneuver
radius within the region itself.

(3) For each of the “Turning Regions”, the longitudinal distanc ∆Si (i = 1, 2, 3) is defined
between the central point of the region and the point where the travel starts at constant
speed si (i = 1, 2, 3). Thus, ∆Si = TRi/2 − LSi.

(4) In addition:

• s0 = characteristic speed of the road before and after the roundabout. It could
also be indicated by vertical signs, and for a particular design there may be
other relationships. For example, a curve before the entrance (with radius R0)
can determine the speed that can be reached at the entrance. An entry coming
from a parking lot may have a much lower speed than an entry coming from a
high-speed rural road, even with the same entry geometry [42]. Therefore, the
speed s0 may be a constraint that the autonomous vehicle must learn.

• d01 = deceleration from speed s0 to speed s1 typical of the circumference of radius
R1 within region TR1.

• a12 = acceleration from speed s1 to speed s2 typical of the circumference of radius
R2 within region TR2.

• a23 = acceleration from speed s2 to speed s3 typical of the circumference of radius
R3 within region TR3.
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Finally, the formulation of the speed profile {si} proposed to describe the crossing
trajectory of a single-lane roundabout in parametric form:

{si} = Mroundabout({r(θ)}, Q)

where

• {r(θ)} describes the entire through path;
• Q = [s0, s1, s2, s3, d01, a12, a23, ∆S1, ∆S2, ∆S3]T defines the shape of the speed profile.

Figure 4. Speed model (MRoundabout) to describe the speed profile during the crossing maneuver of a
single-lane roundabout.

It is important to observe that the suggested speed model, denoted as MRoundabout, has
the potential to generate speed profiles featuring non-smooth transition points (indicated
by a high value of longitudinal jerk) that connect linear segments. In order to enhance the
smoothness of the speed profile, the subsequent phase involves an iterative process where
the numerically estimated jerk is constrained until the maximum jerk value is reduced
below a predefined threshold (jerklon). ∣∣..s∣∣ ≤ jerklon

4. Model Calibration

The presented model necessitates the calibration of numerous parameters using data
obtained from human driving. Specifically, the path model is tasked with optimizing
two criteria associated with the geometric attributes of the path through a roundabout:
smoothness and the seamless connection between the three successive turning regions
within the fastest crossing path. It is assumed that a typical human driving pattern in-
herently seeks to optimize these two aspects. Consequently, the adjustment of the path
model (followed by subsequent learning) becomes unnecessary in such circumstances. As a
result, this section is primarily dedicated to ascertaining the parameters for the MRoundabout

speed model.
The parameters for the MRoundabout model, denoted as Q, can be determined through

an optimization process aimed at minimizing the least square error between the MRoundabout

model and the human driving data:

Q̂ = argmin
Q

∥∥∥{ shuman
i

}
−MRoundabout({r(θ)}, Q)

∥∥∥
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In this equation, {si
human} represents the dataset comprising human driving speeds

along the fastest through path. The parameter si (where i = 1, 2, 3) in Q can be readily
derived by examining the human driving data for fitting purposes. The previous equation
is then employed to determine the remaining six parameters in Q.

The “argmin” function used in the equation signifies the argument that minimizes
the subsequent expression. In this context, it identifies the set of parameters Q (denoted
as Qˆ) that results in the smallest least square error when comparing the MRoundabout

model’s predictions with the observed human driving data. This optimization process
effectively tunes the parameters of the MRoundabout model to align it as closely as possible
with real-world human driving behavior along the specified path.

In Figure 5, an illustrative through maneuver in a roundabout, utilizing the afore-
mentioned optimization routine, is presented. The human driving data concerning the
roundabout crossing maneuver illustrated in the figure were obtained from the dataset
collected as a result of the experimental study described in Section 5 of this manuscript.
It is evident that the profiles generated by the model align quite closely with the actual
speed data collected. Notably, the incorporation of jerk smoothing further enhances the
precision and faithfulness of this alignment, as evidenced by the distinctive blue curve.
This underscores the effective adaptation of the proposed speed model (MRoundabout) to
human driving behavior, even though it cannot fully replicate it.

Figure 5. Example of fitting a speed profile by the proposed model (MRoundabout).

5. Experimental Investigation

To substantiate the claims made in this paper, an experimental investigation was con-
ducted. The purpose of this investigation is twofold: (1) to explain the results of parameter
learning for the proposed speed model (MRoundabout); (2) to evaluate the MRoundabout by
comparing the results of the model with actual human driving data.

5.1. Selection of Roundabouts

The roundabouts of the experimental investigation are located in Italy in the district
of San Giovanni Galermo (northwest of Catania) and in the municipality of Mascalu-
cia (which is part of the metropolitan city of Catania and about 12 km from it). In the
area of S. Giovanni Galermo, 3 of the 5 roundabouts are located (respectively named
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“Roundabout n.1”, “Roundabout n.2” and “Roundabout n.3”). These roundabouts are
arranged along the same route in a rather homogeneous territorial context. The other two
roundabouts (“Roundabout n.4” and “Roundabout n.5”), located in the municipality of
Mascalucia, are also arranged one after the other and are located along the Provincial Road
10 (SP10), the so-called “Via Alcide de Gasperi”, which is used by many inhabitants of the
neighboring municipalities.

The geometrical characteristics of the roundabouts are shown in Table 1. In detail, the
following parameters are given: the number of legs, diameter, and width of the circulatory
roadway. In addition, the widths of the entry leg and exit leg in Table 1 refer to the legs of
interest for the crossing paths analyzed in this study.

Table 1. Geometrical characteristics of the roundabouts subject to the experimental investigation.

Roundabout Through Path Number of Legs Diameter (m) Circulatory Roadway
Width (m) Entry Width (m) Exit Width (m)

1 Leg A–Leg B 3 40 6.70 3.70 4.10

2 Leg C–Leg A 3 30 5.50 3.40 3.70

3
Leg B–Leg D

4 40 7.50
3.70 3.90

Leg D–Leg B 3.60 4.50

4
Leg B–Leg D

4 35/33 7.00
4.30 4.70

Leg D–Leg B 4.30 4.70

5
Leg B–Leg D

4 35 8.00
4.20 5.10

Leg D–Leg B 4.40 6.60

Figure 6 shows the aerial photographs of the five roundabouts subject to the experi-
mental investigation.
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5.2. Data Collection

The experimental study on crossing maneuvers in roundabouts was conducted with a
sample of 15 drivers between the ages of 23 and 62 (7 men and 8 women).
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The drivers were recruited by the University of Catania via an announcement posted
on the Department of Civil Engineering and Architecture’s website. The advertisement
contained details about the study and a questionnaire for participant recruitment. To be
eligible, drivers had to be between twenty-one and sixty-five years old and have held
a valid driver’s license for at least three years. Before participating in the experiment,
participants gave their informed consent. They were assured that all data collected would
be treated confidentially and used exclusively for research purposes.

Participants were explicitly informed that their driving skills would not be assessed
and that the sole focus of the study was to collect data on distances traveled, which
included trajectories and speeds. The study complied with ethical guidelines and followed
the principles of the Declaration of Helsinki. The protocol was approved by the DISS—
Center for Road Safety of the University of Parma, as evidenced by the decision of the
Steering Committee (Protocol 211117/2021 of 24 February 2021).

The 15 test drivers performed the planned routes in summer and at low-traffic times,
i.e., in the time windows between 10:00 and 11:00 a.m. and between 3:00 and 4:00 p.m., so
that the conditions for performing the maneuvers were always little affected by interactions
with other vehicles. Survey data (position, direction and curvature of the path, longitudinal
speed and accelerations) were collected using a tracking system based on the differential
GPS placed in the center of the rear axle of the vehicle and used from time to time by the
driver involved in the test. It should be noted that each driver performed the test using
their own vehicle so that their behavior was as natural as possible. The surveys, conducted
in the time windows indicated above, spanned several days until the complete database of
all 15 drivers was available. Each driver performed all the crossing maneuvers indicated in
Table 2. In cases where the maneuvers were affected by other vehicles or external events,
drivers were asked to repeat the maneuver. A total of 9 trajectories per driver were validly
recorded, for a total of 135. In detail

Table 2. Main data from the experimental investigation.

Roundabout Through Path
Number of Trajectories Acquired

For Learning For Evaluation

1 Leg A–Leg B 15 1

2 Leg C–Leg A 15 2

3
Leg B–Leg D 15 2

Leg D–Leg B 15 1

4
Leg B–Leg D 15 3

Leg D–Leg B 15 1

5
Leg B–Leg D 15 2

Leg D–Leg B 15 3

Total 120 15

â Each test driver performed all 8 planned crossing maneuvers. The resulting
120 trajectories were considered for the parameter learning phase of the model (see
Section 6.1).

â Each test driver was asked to repeat one maneuver from those already performed. In
this way, the parameters for an additional 15 trajectories were acquired to be used for
the evaluation phase of the model (see Section 6.2). These additional maneuvers are
adequately specified in Table 2.

Figure 7 shows the speed profiles described by each of the 15 test drivers involved in
the experiment for each of the through paths considered. The diagrams for each through
path are divided into two parts. The upper part contains the experimentally determined
speed profiles, each represented with a different color corresponding to one of the 15 test
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drivers. The lower part represents the average profiles and the profiles determined by
adding and subtracting the standard deviations (σ): in particular, the average profiles is
depicted in black, while the profiles determined by adding and subtracting the standard
deviations (σ) are represented in red and green for the average profiles with +σ and average
profiles−σ, respectively. All curves representing the speed variation show the characteristic
trend of speeds approaching roundabouts, which is characterized by a minimum point at
the entry section.

However, it is evident that the speed reduction varies depending on the geometrical
characteristics of the roundabouts and their influence on the deflection of the trajectory: For
example, in roundabouts n.3 and n.4, where trajectories experience noticeable deflection,
minimum speeds are about 20 km/h lower than in the first sections (i.e., the sections
furthest from the roundabout entrance). In contrast, the curves in the diagram in Figure 7
for roundabout n.5 are flatter (less pronounced deflections), and the minimum speed values
are about 15–17 km/h lower than in the sections furthest from the entrance.
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6. Results and Discussion
6.1. Learning Results and Discussion

The proposed speed model incorporates parameters such as s1, s2, s3, d01, a12, a23,
∆S1, ∆S2, and ∆S3, all contingent upon the reference path that underpins the model, as
elucidated in the paper’s initial section. The objective of this study is to discern and
unveil the fundamental attributes intrinsic to the human driving model. This facilitates
the adjustment of the theoretical speed model, referred to as MRoundabout, to accommodate
the fluctuations in human behavior observed during navigation through the three turning
regions delineated within the path model.

Consequently, it becomes imperative to identify the nine parameters within the
MRoundabout speed model that can be tailored to align with the driving conditions that
result from the approaches taken by human drivers when maneuvering through various
crossing paths. To achieve this, a statistical regression methodology was employed, wherein
the nine parameters for model adaptation, denoted by an asterisk, were statistically derived
using data from the experimental study outlined in prior sections.

Symbolically, this can be represented as

Q∗ =
[
s*

1, s*
2, s*

3, d*
01, a*

12, a*
23, ∆*

s1, ∆*
s2, ∆*

s3

]T

From an operational point of view, the learning took place as follows:

(1) For each of the 120 crossing paths experimentally performed by the test drivers, the
three characteristic radii of the path (R1, R2 e R3) that characterize the curvature of
the three turning regions (TR1, TR2 e TR3) were evaluated, again as a function of the
geometric characteristics of the roundabouts;

(2) With respect to each of the trajectories obtained through the experimental study, the
average speed values (s1, s2, s3) corresponding to the radii that make up the turning
regions were also obtained;

(3) For each trajectory, the average values of the deceleration (d01) characteristic of the
first turning region and of the accelerations (a12 and a13) for the two following turning
regions were calculated;

(4) The distances ∆S1, ∆S2 and ∆S3 were also determined starting from the data of the
trajectories obtained experimentally, after determining for each trajectory the extent
of each turning region and the transition points between the sections covered with
deceleration/acceleration and those covered with constant speed;

(5) The nine parameters of the speed model evaluated experimentally for each of the three
curve regions were plotted in different scatter plots as a function of the values of the
characteristic radii;

(6) Linear regressions were used to learn the correlations between the parameters of
interest and, consequently, to explain the formulations describing the variability of the
statistically learned parameters.

Figure 8 shows, for each of the three turning regions, the scatter plots on the nine
parameters assessed after the experimental tests and the corresponding regression lines
with the associated R2 determination coefficients.

Below are the various representative formulations of the linear regressions obtained
for the statistically learned parameters:

s*
1(R1) = 2.619·R1 − 40.65

s*
2(R2) = 1.202·R2 − 7.488

s*
3(R3) = 0.824·R3 + 3.586

d*
01(R1) = −0.0928·R1 + 3.227
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a*
12(R2) = 0.0386·R2 − 0.571

a*
23(R3) = 0.0299·R3 − 0.596

∆*
s1(R1) = −0.1193·R1 + 10.284

∆*
s2(R2) = −0.1059·R2 + 15.882

∆*
s3(R3) = −0.0968·R3 + 20.371

The analyzed parameters showed correlations ranging from very strong to very weak.

Figure 8. Scatter plot of the speed model MRoundabout parameters. From subfigure (a–i), blue symbols
are the scattered parameter values after model fitting. Black lines are the results after linear regression.

The closer their coefficients of determination (R2) are to 1, the stronger the linearity
can be concluded. Upon examination of scatter plots for each parameter (Figure 8), certain
discernible human driving patterns emerged, which can be statistically elucidated:

â Strong linearity in s1, s2, and s3: The analysis showed a strong linear correlation
between the speeds s1, s2, and s3 and the radii of curvature characterizing the three
turning regions. In other words, as logically expected, as the radius of curvature
decreased, the speed of execution of the maneuver to also decrease [28,29]. Specifically,
it was observed that the highest degree of linearity was evident at speed s1 when the
radius values R1 fell within the range of 25 m to 28 m (with a variation of ∆R1 = 3 m).
This corresponds to a speed change ranging from 23 km/h to 40 km/h (with a variation
of ∆S1 = 17 km/h). With respect to speed s2, the strongest linearity occured for values
of R2 between 34 m and 44 m (∆R2 = 10 m), where the speed varied between 27 km/h
and 46 km/h (∆S2 = 19 km/h). When examining speed s3, it becomes evident that
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no pronounced linearity exists within the spectrum of radius values R3 (with a total
variation in ∆R3 equivalent to 21 m). As a result, the speed variance in the third
turning region spanned the complete range between 25 km/h and 51 km/h (with a
total variation of ∆S3 equal to 26 km/h). Thus, it is noteworthy that the ∆S and ∆R
intervals, which are linked to the growing significance of the correlations between radii
and speed, exhibited substantial expansion as the final turning region was approached.
This means that road users felt more influenced on the first approach and therefore
adopted a more cautious behavior. Conversely, drivers approaching the last part of the
trajectory (the exit part) felt less constrained and therefore tended to adopt variable
speeds within a very wide range.

â Low linearity in d01, a12, and a23: For the MRoundabout model, there was a low level
of linearity observed in the parameters d01, a12, and a23. Moreover, the values of the
coefficients of determination R2 for all three correlations were almost identical in the
scattering diagrams (d, e, and f) shown in Figure 8. A closer analysis of the three
diagrams also shows that in none of the diagrams is there such a density of data that
highlights a stronger linearity in one part of the diagram compared to other parts.
This result suggests that accelerations/decelerations can vary significantly and may be
influenced by factors that are hard to quantify, such as the driver’s mood. This finding
aligns with the argument presented in [43].

â Weak linear correlation in ∆s1, ∆s2, and ∆s3: The analysis showed a weak linear
correlation between ∆s1, ∆s2, ∆s3, and their respective reference radii. This indicates
that as the radius of curvature of the crossing trajectory decreased drivers tended to
behave more cautiously by slowing down earlier. Essentially, when faced with smaller
radii, human drivers tend to exhibit more conservative driving behavior. This also
means that drivers are less predictable when navigating through turning regions with
small radii. These considerations were stronger in the case of turning maneuvers
that took place in the first region. Indeed, Figure 7g shows a lower dispersion of the
data and a higher R2 coefficient compared to the behavioral situations described in
Figure 7h,i. This confirms that all the correlations found describe more accurately the
human behavior in the first approach phase to roundabouts, i.e., in the entry phase.

6.2. Speed Model Evaluation and Discussion

The evaluation of the learned model, known as MRoundabout, involved the generation
of speed plans and their comparison with the behavior observed in 15 human driving
processes learned during the experimental study phase (as described in Section 5.2, the test
drivers were used for further trajectory measurements, in addition to the 120 whose results
were used for learning the parameters). Parameter Q, representing this model, was specifi-
cally tailored to capture the characteristics of navigation through roundabouts. The objec-
tive of this evaluation is to gauge the model’s ability to replicate human driving behavior.

In Figure 9, the outcomes of the comparison between the speed plans generated by
the MRoundabout model and the driving data of test drivers No. 3, No. 10, No. 13, and
No. 14 are presented. The remarkable alignment between the speed profiles generated by
the model and the actual profiles is readily apparent. Notably, for drivers 3 and 10, the
congruence between the speed profiles derived from the model and the real counterparts
is nearly flawless. Conversely, for drivers No. 13 and No. 14, there are more substantial
deviations between the two curves, even if the degree of overlap is still very considerable.

This study highlights an important aspect: despite the difficulties of achieving a
perfect one-to-one match with individual human data points, traffic-free reference plans
are successfully generated.

These reference plans are designed to capture the essential characteristics of human
behavior during roundabout crossing maneuvers, albeit in a statistical sense. In other
words, while the generated plans may not precisely replicate any specific human instance,
they encompass the core features commonly observed in such situations.
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Figure 9. Learned speed model evaluation results. In the subfigures from (a–d), some emblematic
examples are shown for the comparison between four generated speed plans and as many human
driving processes.

Furthermore, the use of the learned model MRoundabout offers significant advantages in
the context of autonomous vehicle planning. By incorporating statistical representations of
human-like behavior into the planning algorithms, the resulting plans are characterized by
fluidity and predictability. This means that autonomous vehicles can navigate roundabout
crossings in a manner that not only aligns with common human patterns but also ensures a
smooth and predictable driving experience.

In summary, while the generated plans may not have achieved perfect matches with
random human data, the study demonstrates the ability to capture essential human driving
characteristics statistically. This contributes to the development of autonomous vehicle
planning systems that prioritize smooth and predictable driving maneuvers during round-
about crossings, ultimately enhancing both safety and the overall driving experience for
passengers and other road users.
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7. Conclusions

This research was an exploration into enhancing the user experience within the domain
of autonomous driving. The primary objective is the development of a planning model
that operates without the influence of traffic, aiming to mimic human driving behavior,
especially when navigating roundabouts.

The central focus of this research primarily revolved around traffic-free planning,
which entails a deep understanding of how individuals navigate roundabouts in isolation
from other vehicles. To accomplish this, a trajectory model was introduced as a solution to
accurately represent the path that a vehicle takes within a roundabout, taking into account
variations in speed. The process involved the identification of the various parameters
governing this trajectory model. This undertaking was structured as a least square opti-
mization problem, aiming to derive parameter values that align optimally with empirical
data observations. Subsequently, statistical regression methodologies were employed to
generalize these parameters. This stage served to define the speed model (referred to as
MRoundabout) and assesses the sensitivity of each parameter to the inherent unpredictability
that characterizes human driving behavior. The model’s effectiveness was then assessed by
subjecting it to a new dataset, with the goal of gauging its consistency in generating plans
that closely emulate human driving behavior within roundabouts.

However, it is of paramount importance to acknowledge a substantial limitation
inherent in this study. The model’s reference speed is solely determined by the geometric
attributes of the roundabout and does not account for external factors, such as weather
conditions or the state of the road surface, which can significantly impact human driving
behavior. As a result, the model’s adaptability to real-world driving scenarios may have
been subject to constraints.

In terms of future research directions, the authors intend to outline several procedural
and operational initiatives. Foremost among these is a clear intention to transition from
a theoretical research concept to practical implementation. This entails the integration of
the model into the planning system of an operational autonomous vehicle to contribute
to tangible advancements in autonomous driving technology. Additionally, there is a
recognized need to explore the development of planning models that take into account
the presence of traffic and are designed to seamlessly adapt to dynamic environments
where other vehicles are concurrently in operation. This adaptability is particularly crucial
in scenarios where effective vehicular interactions and decision making are fundamental
aspects of a comprehensive and adaptable autonomous driving system.

These proposed intentions underscore the significance of bridging the divide between
research endeavors and practical implementation. They emphasize the urgency of address-
ing the intricate complexities that characterize real-world driving scenarios, characterized
by varying traffic dynamics and dynamic environments. The pursuit of these intentions
aims to advance the ultimate objective of creating a resilient and versatile autonomous
driving system that enhances safety and enriches the overall user experience.
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