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Abstract: Monitoring the occurrence of plant diseases and pests such as fungi, viruses, nematodes,
and insects in crops and collecting environmental information such as temperature, humidity, and
light levels is crucial for sustainable greenhouse management. It is essential to control the environ-
ment through measures like adjusting vents, using shade nets, and employing screen controls to
achieve optimal growing conditions, ensuring the sustainability of the greenhouse. In this paper,
an artificial intelligence-based integrated environmental control system was developed to enhance
the sustainability of the greenhouse. The system automatically acquires images of crop diseases and
augments the disease image information according to environmental data, utilizing deep-learning
models for classification and feedback. Specifically, the data are augmented by measuring scattered
light within the greenhouse, compensating for potential losses in the images due to variations in light
intensity. This augmentation addresses recognition issues stemming from data imbalances. Classify-
ing the data is done using the Faster R-CNN model, followed by a comparison of the accuracy results.
This comparison enables feedback for accurate image loss correction based on reflectance, ultimately
improving recognition rates. The empirical experimental results demonstrated a 94% accuracy in clas-
sifying diseases, showcasing a high level of accuracy in real greenhouse conditions. This indicates the
potential utility of employing optimal pest control strategies for greenhouse management. In contrast
to the predominant direction of most existing research, which focuses on simply utilizing extensive
learning and resources to enhance networks and optimize loss functions, this study demonstrated
the performance improvement effects of the model by analyzing video preprocessing and augmented
data based on environmental information. Through such efforts, attention should be directed towards
quality improvement using information rather than relying on massive data collection and learning.
This approach allows the acquisition of optimal pest control timing and methods for different types of
plant diseases and pests, even in underdeveloped greenhouse environments, without the assistance
of greenhouse experts, using minimal resources. The implementation of such a system will result in a
reduction in labor for greenhouse management, a decrease in pesticide usage, and an improvement
in productivity.

Keywords: complex environmental control system; artificial intelligence; crop disease; insects

1. Introduction

Recent advancements in artificial intelligence models have enabled the integration of
biological and environmental information within greenhouses. This has led to extensive

Sustainability 2023, 15, 16220. https://doi.org/10.3390/su152316220 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152316220
https://doi.org/10.3390/su152316220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4478-667X
https://orcid.org/0000-0002-8621-715X
https://orcid.org/0000-0002-2665-3339
https://doi.org/10.3390/su152316220
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152316220?type=check_update&version=4


Sustainability 2023, 15, 16220 2 of 19

research on the application of disease diagnosis and crop management, aiming to enhance
the efficiency of greenhouse operations and crop production. In the field of agriculture
related to crop production within greenhouses, various tasks such as disease detection
and classification [1], analysis of crop phenotypes to identify optimal environmental con-
ditions [2], and generation of environmental information metadata for cultivation status
analysis [3] are performed using machine learning techniques. These tasks aim to pursue
increased productivity and profits through real-time feedback and compensation mecha-
nisms based on the interaction between the environment and crops. To automate operations
aimed at minimizing crop damage caused by diseases, a diagnostic model capable of ac-
quiring crop images and environmental information automatically, as well as performing
classification tasks, is necessary. Currently, the CNN (Convolutional Neural Network)
model has demonstrated excellent performance and is widely used for image classification
tasks [4]. Assuming that humans identify and resolve the problem of classifying crop
diseases, utilizing the location information of disease symptoms and the environmental
information associated with where these symptoms occur can provide greater clarity and
aid in more accurate classification. For example, when performing CNN analysis on images,
Global Average Pooling (GAP) is applied to compute the average values of the feature
maps. In this case, the detection performance of the disease symptoms is significantly
influenced by how clearly the boundaries of the symptoms in the original (RAW) image are
distinguished, as GAP employs the average values of spatial information [5]. To address
this, efforts are made from the outset to acquire a diverse set of original (RAW) images of
the specific disease symptoms for training. Data augmentation techniques are employed to
enable the model to undergo various forms of learning, aiming to enhance the detection
and classification accuracy of the model.

In particular, recent classification studies aim to design and optimize network struc-
tures to enhance feature extraction capabilities. They conduct research under the assump-
tion that the dataset’s quality remains consistent and immutable. Although these endeavors
place greater emphasis on optimizing network structures, they overlook the impact of data
quality improvement through preprocessing and augmentation techniques on the detec-
tion model.

However, empirical observations reveal significant variations in detection accuracy
for the same disease, depending on the greenhouse environment in which the model was
trained, as well as environments different from the greenhouse. The study presented
in [6] illustrates that variations in data quality can lead to differences in accuracy in the
classification of plant diseases and pests. The automation techniques in this paper propose
data-centric machine learning and seek efficient methods to automatically generate suitable
datasets to enhance the performance of artificial intelligence models. Specifically, this
research aims to establish an industrial foundation for collaborative and sustainable agri-
culture, incorporating pest control robots and improving analytical performance through
the automation of data collection and preprocessing in smart agriculture. In this paper,
inspired by these challenges, we designed and implemented a system to enhance the
classification accuracy of crop disease images in real time by utilizing an AI-based inte-
grated environmental control system that integrates images acquired in real time through a
portable imaging device at regular intervals. This system enables real-time transformation,
augmentation, and feedback of crop images, overcoming the differences in images due to
varying environmental conditions.

The structure of this paper is as follows: In Section 2, detection techniques of deep-
learning models are discussed for disease data recognition and classification. Section 3
elaborates on the plant diseases and pests monitoring devices for securing experimental
and validation data, as well as the description of experimental data collection and tomato
disease diagnosis model utilizing the mentioned devices. Section 4 tests the performance
of the disease classification system using the collected empirical data and describes the
results. Finally, in Section 5, we summarize the achievements of this paper and provide
insights into the expected outcomes and future research directions.
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2. Related Work

In this study, the data classification technique for the five types of diseases affecting
tomatoes (blight, powdery mildew, gray mold, leaf mold, and tomato yellow leaf curl virus)
is divided into two modes: object detection mode and Region of Interest (ROI) mode. The
object detection mode aims to detect both disease class and bounding box information from
the presented images based on research in plant disease recognition [7–11]. In this scenario,
the system can detect multiple categories corresponding to various diseases from the same
sample image.

As depicted in Figure 1, the Control Class, as shown, is not a priority for the system in
terms of object detection. However, during training, it serves as a class that can provide
features and information about potential anomalies. On the other hand, the Target Class
includes some classes that are part of the object detection objective. The key approach
for conducting this study involves progressively improving the performance of the main
categories (target) by training the model on the entire category (controlled) of the entire
training dataset [12].
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Furthermore, an imbalance in data quantities (imbalanced data) can generally have a
detrimental effect on the training process [13]. Hence, in the composition of the dataset,
data augmentation should be applied differently for each class to achieve a level of balance,
ensuring that the augmentation amount varies for each class to maintain an approximately
equal amount of data for the class with the maximum quantity. As shown in Table 1,
machine learning has been utilized to detect anomalies in various types of datasets. Logistic
Regression (LR) is primarily utilized for binary classification problems, classifying data into
‘normal’ or ‘anomalous’ categories. It models the relationship between the data and the
results by inputting a dataset labeled in advance as normal or anomalous into the logistic
function. In this case, if the output surpasses a specific threshold, it is classified as an
anomalous datum; otherwise, it is classified as normal data [13]. However, it assumes that
the criterion for separating data is linear. Thus, when classifying multidimensional data
such as image data, it encounters performance degradation issues [14].

Random Forest (RF) is widely used for classification and regression problems, where
it independently learns multiple decision trees and combines their results to make the final
predictions [15,16]. Although it demonstrates high accuracy for various data types and
mitigates overfitting, it tends to have slower prediction speeds compared to other models
when trained on very large datasets due to the extended training time [17].

Support Vector Machine (SVM) is a supervised learning algorithm used for data
classification. It employs a kernel function to map the data into a higher-dimensional
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space, specifying the optimal location of the decision boundary that separates ‘normal’
and ‘anomalous’ data [18]. SVM exhibits excellent performance for both linear and non-
linear data, preventing overfitting and enhancing generalization performance. However,
it tends to be time-consuming for large datasets and encounters challenges in multi-class
classification [18–20].

Variational AutoEncoder (VAE) is a type of generative model used for detecting
anomalies in image data and generating data. It learns the probability distribution of the
data to generate new data. In the encoder part, it takes image data from the UCSD dataset
as input and maps it to the probability distribution of the latent space. Mean and variance
are learned in this process, and data are generated by sampling from the latent space. In
the decoder, the generation function is restored, resulting in data being generated in a form
similar to the input data [21]. However, VAE assumes a simple parametric distribution
in the latent space and may struggle to model highly complex, multidimensional data
distributions [22,23].

Generative Adversarial Networks (GANs) are models capable of generating data that
is highly like the input data, even though they do not actually exist. They take in data and
discern the distribution of the data. Once this understanding is achieved, the generative
model creates data that is significantly similar to the distribution of the input data [24].
However, the generative model struggles to create diverse data and often encounters the
Collapse Problem, where it generates only similar data rather than a variety of data [25,26].

Faster Regions with Convolutional Neural Networks (Faster R-CNN) is one of the
deep-learning-based models known for accurately and swiftly performing tasks related to
object localization and classification. Faster R-CNN sequentially trains a Region Proposal
Network (RPN) and Region of Interest (RoI). The RPN is trained by detecting images and
the corresponding objects in the training dataset. It generates candidate regions using
Anchor Boxes and classifies each candidate region as either an object or not, adjusting
the precise position of the object. RoI extracted using RPN are transformed into fixed-
size feature maps through RoI Pooling. Subsequently, the classification of normal and
anomalous data is carried out using Fully Connected Layers [27]. However, when data
imbalance occurs, it makes training difficult and leads to biased learning of the model,
resulting in lower accuracy in detecting anomalous data.

Studies on anomaly detection in various types of datasets are listed in Table 1.

Table 1. Studies on Anomaly Detection in Various Types of Datasets.

Detection Technique Study Dataset Performance

LR Wright, R. E., et al. [13]
Wang, X., et al. [14] Not defined Not defined

RF
Breiman, L., et al. [15]

Kim, K., et al. [16]
Park, H., et al. [17]

BGP [6,16]
Sensor [17]

Acc: 0.9959 [16]
Acc: 0.99 [17]

SVM
Noble, W.S., et al. [18]

D. Wei., et al. [19]
García, S., et al. [20]

UCI [19]
CUT-13 [20]

Acc: 0.9937 [19]
Acc: 0.5 [20]

VAE
An, J., et al. [21]

Ghosh, P., et al. [22]
Xu, J., et al. [23]

UCSD [21]
Mnist [22,28]

CIFAR-10 [22,29]
CELEBA [22,30]

PTB [23,31]

Accuracy: 0.99 [22]

GAN
Goodfellow, I.J., et al. [24]

Park, S.W., et al. [25]
Pei, S., et al. [26]

Mnist [24,28]
KDD 99 [24]

CIFAR-10 [26,29]
Accuracy: 0.9975 [26]

Faster R-CNN Benjdira, B., et al. [27] Not defined Not defined
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This paper not only emphasizes approaches to the data discussed previously but also
describes devices operating as part of the implementation of various useful solutions, such
as real-time monitoring and production system support, farm management systems, farm
monitoring systems, geographic information systems, and decision support systems for
weather conditions. As discussed by Latino’s research in [28], drones, robots, and UAVs
can be used not only for data collection but also for automating various activities such
as material management and related cost savings. Additionally, they are employed in
discovering crop diseases or evaluating food quality through image recognition. Farmers
can achieve more efficient production and improve environmental monitoring through
digital technology, big data, and analytical applications. Radogna’s research in [29] involves
the development of low-cost framework devices embedded in embedded systems to
automatically detect food contamination. They used Molecularly Imprinted Polymer (MIP)
detection technology to continuously monitor the environment and identify problems in
the pesticide treatment stage. Although the targets and detection methods differ from
those covered in this paper, the study addresses technology for early response through
monitoring, reducing costs, and preventing damage. It also contributes to achieving
sustainable agriculture by increasing production efficiency through this approach. The
analytical technology covered in this paper is built into a system that supports manual
shooting and input using general cameras, enabling the use of artificial intelligence models
at a low cost in conjunction with robot automation. According to Ghobakhloo’s research
in [30] and Ejsmont’s research in [31], it is predicted that the introduction and collaboration
of technology for efficiency and sustainability through the Fourth Industrial Revolution,
including the artificial intelligence technology discussed in this paper, will be possible in
all fields in the future.

3. Design and Implementation of Tomato Disease Classification Using Real-Time
Augmented Data

The two main methods proposed in this paper are the automation technology for
plant disease and pest monitoring and a system for preprocessing and augmentation
transformations for improving the analysis performance of plant disease and pest data
combined with automation technology, as depicted in Figure 2. The integrated platform
for plant disease and pest diagnosis discussed in this study has the following structure.
In the case of a greenhouse with a favorable image-capturing environment, image-based
analysis is performed in real time in normal mode. If data suspected as disease symptoms
persistently detected at specific locations (not identified as normal leaves) in normal mode,
augmented data are generated in conjunction with environmental information, and analysis
is conducted at the locations indicating abnormal signs.

The process is demonstrated wherein analysis is conducted when abnormal signs are
detected, even for diseases not well known to the user, as depicted in Figure 3.

The disease image collection system used in this study utilized a crop image acquisition
device developed by the Rural Development Administration’s Smart Farm Development
Division. The basic structure is depicted in Figure 4. The image acquisition device, as
shown in Figure 5, consists of a robot arm-mounted PTZ-supported RGB camera used for
disease recognition in crops, an adjustable lift, a light measurement sensor, temperature
and humidity sensors, RTK-GPS for autonomous movement within the greenhouse, a linear
motor, and a line-scan barcode scanner integrated into a mobile platform.
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The basic deep-learning architecture of the model used in this study utilizes the Faster
R-CNN structure of the VGG-16 feature extractor, as illustrated in Figure 6. This Faster
R-CNN consists of a CNN backbone, RoI Pooling layer, and a fully connected layer, with
two branches for classification and bounding box regression. RPN is executed with an
image input into the backbone convolutional neural network. The network learns whether
there is an object at a given location in the input image and estimates its size for all points
on the feature map outputted from the CNN backbone. The bounding box proposals of the
Region Proposal Network (RPN) are employed for pooling features by the ROI (Region of
Interest) pooling layer on the backbone feature map. The operational principles of the RoI
Pooling layer are as follows:
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(a) selecting the regions corresponding to the proposals of the backbone feature map.
(b) dividing these selected regions into a fixed number of sub-windows.
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(c) performing max pooling over the sub-windows to achieve a fixed-size output. The
currently implemented model can detect various tomato diseases, including blight, leaf
mold, gray mold, white powdery mildew, and yellow leaf curl virus [32].

The Faster R-CNN possesses analyzable features independent of camera types and
image sizes, enhancing object recognition performance by extracting regions where objects
are likely to be through region proposal. The proposed fully convolutional network has a
structure, as shown in Figure 7.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 
Figure 6. Faster R-CNN Architecture. 

The Faster R-CNN possesses analyzable features independent of camera types and 
image sizes, enhancing object recognition performance by extracting regions where ob-
jects are likely to be through region proposal. The proposed fully convolutional network 
has a structure, as shown in Figure 7. 

 
Figure 7. The proposed fully convolutional network structure. 

The summary of the parameters used is as follows: 
Parameters: 

• Approximately 100,000 iterations over 50 h 
• Utilization of the VGG16 network architecture 
• Cross-validation using 80% of the data for training, 10% for testing, and 10% for val-

idation (excluding 308 unseen data used in the final experiment from the set) 
• Fine-tuning a pre-trained model with the ImageNet dataset 
• Implementation of Data Augmentation 
• Application of Batch Normalization 

Figure 7. The proposed fully convolutional network structure.

The summary of the parameters used is as follows:
Parameters:

• Approximately 100,000 iterations over 50 h
• Utilization of the VGG16 network architecture
• Cross-validation using 80% of the data for training, 10% for testing, and 10% for

validation (excluding 308 unseen data used in the final experiment from the set)
• Fine-tuning a pre-trained model with the ImageNet dataset
• Implementation of Data Augmentation
• Application of Batch Normalization
• Use of ReLU as the activation function

In this study, we performed the setting of Regions of Interest (ROI) and object detection
within disease images through a process as shown in Figure 8. One of the significant
considerations in this paper was how to enhance detection performance as closely as
possible, even when farms and environments change. To train a deep-learning model
robust to diverse environments, we employed a method where the user selects areas of
interest, considering the changes in the environment, specifically focusing on image regions
less affected by environmental changes. These selected areas were designated as unknown
regions, and an ensemble technique was applied through iterative processes. Consequently,
for five types of disease areas, we achieved an average classification accuracy level of at
least 88%, reaching an average of 94%.
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In this study, experiments on object detection mode were conducted as follows. Ini-
tially, the bounding boxes and labels of the existing dataset were modified and used as a
baseline dataset. The entire model was trained using this dataset, and the performance was
evaluated. Figure 9 illustrates the detection results of the baseline dataset.
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The performance of the learning model is directly associated with high-quality datasets
in terms of both qualitative and quantitative aspects. However, it is challenging to collect a
large amount of actual data from various environments to learn the changes within and
between classes of the disease targets due to their characteristics. Therefore, during experi-
ments in the real environment, the system typically encounters data it has not been trained
on since it is exposed to unseen data in real-world applications. Constructing a dataset that
covers all possible scenarios is challenging. To enable the system to adapt, the learning
model needs to be trained on new information. Furthermore, to address situations where
the system encounters new diseases or patterns that it has not learned, techniques such as
generating augmented data using methods like CycleGAN or minimizing/distorting image
distortions through physical (reflectors) or software-based optical reflectance corrections
should be employed. This is crucial for handling suspected regions representing new
diseases (Unknown) during real-world scenarios.

The strategies for handling these diseases are as follows:
(1) First, create new classes to handle the information on the novel diseases.
(2) Separate classes for the background area around the crops, physically undamaged

healthy leaves, and cases showing distinct forms based on the specific disease.
(3) Design units of learning feature responses before the final classifier. This approach

helps prevent misclassification by the system until it obtains responses for the new diseases.
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In this paper, we propose a system that collects disease data along with greenhouse in-
formation during disease data collection. Based on the greenhouse information, the disease
data in the images are transformed and augmented to aid in classification. The proposed
design is a system that utilizes a standard-based integrated environmental control system
with an AI model integrated with a disease image automatic acquisition device. This system
acquires and analyzes images and environmental data in real time by being connected to the
disease image automatic acquisition device. To achieve this, we constructed a pilot device
incorporating a Faster R-CNN-based disease image classifier, crop image acquisition device,
and JETSON NX Board, including sensor nodes and an AI-based integrated environmental
control system. Furthermore, in this study, we conducted design modifications to the
entity-relationship modeling of the Smart Farm system’s DB for integrating a cloud-based
Smart Farm system for preprocessing images and an integrated DB for disease diagnosis
services. This modification was aimed at enabling seamless integration of Smart Farm
system data, preprocessing data for disease diagnosis, and new disease classes for future
Smart Farm system data and disease preprocessing data, allowing for an organic service
configuration. The integration of disease diagnosis-related information into the database
involved modifications and development of entity-relationship modeling, focusing on
information closely related to disease occurrence, such as cultivation, environmental, man-
agement, and facility-related data in the Smart Farm. The entity-relationship diagram
(ERD) for storing disease diagnosis information and results was designed to consider farm
facilities and the environment, as shown in Figure 10.
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To recognize disease imagery devices, we devised a system by integrating the current
artificial intelligence models into a standard-based compound environmental control sys-
tem. This system processes greenhouse environmental information and disease image data
to enhance the accuracy of undetected data detection and disease diagnosis classification
through data transformation, augmentation, and feedback. The composite environmental
control system considered in this research adheres to the KS X 3267 [33] and TTAK.KO-
10.1172 [34] standards-based interface for device compatibility. It employs a Plug and Play
(PnP) approach to recognize imaging devices and integrates a CNN model implemented in
Python code, enabling environmental data collection and image analysis. Additionally, the
system is based on open-source technologies and incorporates a 4-channel relay module
and sensor nodes within the Arduino environment. To process images, a classification sys-
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tem was established to handle unknown new diseases. Images that fall under the unknown
classification, i.e., unclassified image data, were augmented to create an enhanced dataset.

As depicted in Figure 11, the detection and classification stages of this study can be
described as follows [35]:

- This study focuses on recognizing 5 diseases (baseline dataset).
- The deep-learning model is designed to recognize these 5 diseases. However, during

testing, if the input image does not match the features of the developed model, it is
recognized as “unknown”.

- When data are identified as “unknown” by the model, the system can adapt to new
diseases with the support of domain experts. Subsequently, more data corresponding
to the new disease needs to be collected.

- To build an expanded dataset, new classes can be added to the baseline dataset, and
the deep-learning model is trained using this expanded dataset.

- This process involves fine-tuning the hyperparameters using the existing deep-learning
model to learn the parameters.

- Whenever new unknown data are inputted, the above procedure is repeated to extend
the baseline model. The system recognizes diseases from the baseline dataset, and
new diseases are incrementally added.
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The light data for correcting the images acquired using the image analysis device
shown in Figure 12 was measured based on solar radiation (W/m2), and an estimation
formula for solar radiation was utilized to analyze the lighting conditions based on the
weather. The analysis of the solar radiation incident on the surface can be derived from
extraterrestrial solar radiation, denoted as I0. In the following equations, Equation (1)
represents I0 as a function of latitude, solar declination, and hour angle, denoting the solar
radiation before passing through the atmosphere. Equation (2) expresses the coefficient
KT related to cloud cover, representing the ratio of solar radiation reaching the surface,
denoted as I, to the solar radiation before passing through the atmosphere, I0. This can be
expressed by the following equation [32].

I0 =
12 × 3600

π
Gsc

(
1 + 0.033cos

360n
365

)
×
[

cosφcosσ(sinω2 − sinω1) +
π(ω2 − ω1)

180
× sinφsinσ

]
(1)
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φ : The latitude of the area(◦, degree )

σ : Day declination
(

σ = 23.45sin
(

360 × 284+n
365

))
n : Julian date
ω1, ω2 : Time angle(15◦/h)
Gsc : Solar constant

(
1367 Wh/m2)

I0 : Insolation before passing through the atmosphere
(
MJ/m2)

I0 is an expression for estimating the amount of insolation before passing through the
atmosphere by calculating a function using latitude, solar declination, and time angle.

KT =
I
I0

(2)

KT may be expressed as a ratio of I0 to I by an equation representing clearness.

Id
I
=


1.0 − 0.09KT 0 < KT ≤ 0.22
0.9511 − 0.1604KT + 4.388K2

T 0.22 < KT ≤ 0.8
−16.638K3

T + 12.336K4
T

0.165 KT > 0.8

(3)

I : Actual value of insolation reaching the surface as measured insolation(
MJ/m2)in the area (measured by means of a sensor)

Id : Sky insolation (MJ/m2)
KT : Clearness

The image data are initially analyzed based on the RAW format. If detection does not
occur within 10 s or if the similarity of the suspected region in the feedback of detection
results is below 50%, adjustments to the image brightness are made in three stages (clear
sky, partly cloudy, overcast) based on the solar radiation estimation formula according to
the light conditions. Additionally, up to eight augmented data per image, including 90, 180,
and 270-degree rotations, as well as vertical and horizontal flips, are utilized. This allows
for verification of whether there is a 10% or more improvement in similarity based on the
detection or feedback data [36].

The light intensity measurement information collected in the greenhouse, the ratio of
direct and scattered light, and the light saturation point information for each season and
crop were reflected in the insolation estimation information obtained through the above
formula, as shown in Table 2. In addition, it was attempted to improve the recognition
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rate by determining whether and how to process image augmentation by recognizing an
environment in which disease occurs easily.

Table 2. Complex environment information for data preprocessing.

Environmental Information Standard Discrimination

Greenhouse light transmittance 70% ±10, ..%

Crop light saturation point Tomato:
1400 µmol·m−2·s−1 Transmittance × Insolation

Season Summer, Winter Whether the light saturation point is met
+ seasonal information

Direct sunlight to scattered light ratio Cloth material, 50%
Considering season, insolation, light

transmittance + direct sunlight,
scattering ratio

According to the light environment is classified into 3 stages (clear sky, intermediate
sky, and overcast sky) based on the solar radiation estimation formula and environmental
information. If image data are not detected within 10 s after analysis based on RAW data,
or if the similarity is less than 50% in the detection result feedback, data augmentation is
determined using the light environment information and disease occurrence probability
information. Data augmentation generates up to 9 augmented data per image, such
as adjusting image brightness and rotating 90, 180, 270 degrees, up/down, left/right
inversion, etc., as shown in Figure 13. It was designed to verify whether there is a similarity
improvement of 10% or more based on the feedback data after attempting detection with
the augmented data.
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As shown in Figure 14, the AI-based integrated environmental control system auto-
matically adjusts the environment (temperature, humidity, moisture, light, etc.) according
to the optimal environmental settings for crop cultivation after verifying disease diagnosis.
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4. Experiment
4.1. Collecting Tomato Disease Image Data

In this study, we collected over 3000 expert-verified tomato disease image data for AI
training. The training process involved utilizing a total of over 8000 RAW images, includ-
ing approximately 5000 images from previous disease diagnosis research and 3000 new
images. This extensive dataset enabled the successful advancement and refinement of the
AI model for disease classification and diagnosis. An additional 300 unlabeled images
were collected and validated separately for verification. Figure 15 and Table 3 show the
collection and provision of tomato blight images by the National Institute of Horticultural
Specialty Sciences.
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Table 3. New tomato blight image history.

Disease Name Counts Proportion

Canker 507 16.0%

Leaf blight 921 29.1%

Ashy mold 865 27.3%

Tomato chlorotic leaf curl
virus 409 12.9%

Powdery mildew 468 14.8%

4.2. Validation of Tomato Blight Image Classification System Using Field Data

Collect Validation Data
For the demonstration of the AI disease reading inference engine obtained by learning,

a new data set was constructed with the goal of verifying the system’s performance in new
environments and conditions. Tests were conducted using data obtained from seven new
farms to validate the learning model in an empirical environment. The number of data
collected is shown in Table 4.

Table 4. Number of newly acquired empirical data (7 farms in Jeonbuk and Chungbuk Province).

Type of Disease/File Number of Images

Tomato TYLCV4_Jeonbuk
Jangsu-gun_Wanju-gun 62

Tomato leaf mold disease7_Chungbuk
Cheongju-si 46

Tomato ashy mold disease 8_Chungbuk
Cheongju-si 59

Tomato ashy mold disease7_Chungbuk
Cheongju-si 75

Tomato Powdery Mildew7_Chungbuk
Cheongju-si 48

Tomato Powdery Mildew 8_Jeonbuk Iksan-siG 18

Total 308

Only four classes of images (yellow curl, leaf mold, canker, and powdery mildew)
were available for the field test, and in the case of canker, we used a part of the unlabeled
dataset that was not used for the original training, as it is difficult to verify in the field what
occurs in general farmers’ fields, as the disease is rare and usually removed immediately
after the outbreak.

4.3. Performing Validation Tests and Results

As mentioned above, to verify the robustness to the changed environment by empirical
testing, we conducted experiments using data other than the original data extraction loca-
tion or data that was not used for training. Figure 16 shows an example of the experimental
results on empirical data.
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Figure 16. Example of experimental results on empirical data (*: Canker uses an existing training
dataset).

As a result of the empirical test, a satisfactory result of 95.2% was achieved, resulting
in a result exceeding the 92.5% level of accuracy when discriminating data before pre-
processing. In the case of the existing Keras R-CNN model, which was compared, the
classification performance barely exceeded 90%, as shown in Figure 17, and the improved
model using augmented data also showed a classification accuracy of 92.5%. However, the
model adjusted for transformation, augmentation, and parameters using solar radiation
and greenhouse environment data showed an average classification accuracy of 95.2%.
This was determined using image data collected in a general greenhouse rather than at the
laboratory level, and considering the classification accuracy in the empirical environment,
it can be considered a very high level. The confusion matrix of the final empirical test is
shown in Figure 18.
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Among the parameters identified in this study, the factor that had the most significant
impact on discriminative ability was the variation in illuminance values based on the shoot-
ing direction and solar incidence angle during the acquisition of tomato plant disease and
pest images. Additionally, situations were observed where the analyzed results persisted
even in tomato images without plant diseases and pests and instances where the analysis
images were detected in categories beyond the classification classes. To eliminate such
errors, outliers in color codes were removed in the image analysis process of the analysis
model, effectively excluding areas unrelated to plant diseases and pests, and rectifying
errors and missing data. Moreover, concerning illuminance-related aspects, color codes
were referenced during shooting, and considering seasonal and temporal factors, as well as
diffused light based on greenhouse material, a standard value was calculated to exclude
backlighting. Only images with values within the normal discriminant range were consid-
ered, and classes beyond the analysis category of the acquired image were automatically
re-captured. To address misdiagnoses caused by powdery mildew as the background in ac-
quired images, the analysis model was adjusted to exclude related color codes, preventing
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classification into the class. The meta-architecture utilized in this study, VGG-16, while not
markedly superior in feature extraction performance compared to deeper networks such
as ResNet, demonstrated satisfactory performance for real-time analysis with augmented
transformations, proving suitable for fast multi-detection.
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5. Conclusions

This study raised the disease diagnosis accuracy to 92.5% as a gradual learning study
on the existing disease diagnosis engine. In addition, the preprocessing technology re-
search that combines external light environment information and environmental informa-
tion utilization prediction information for disease occurrence in the greenhouse showed
95.2% accuracy in the demonstration stage of disease symptoms occurring in the actual
greenhouse environment. In other words, it has been shown that crop disease diagnosis
technology that has stayed at the laboratory level can be discriminated against with high
accuracy through real-time pre-treatment technology in the field. When the surrounding
environment sensitively affects the identification, such as disease diagnosis in a greenhouse,
there is a limit to increasing the identification accuracy through gradual learning. In ad-
dition, when learning a specific class, it may affect the existing disease diagnosis engine,
resulting in a decrease in identification accuracy.

In addition, in this paper, a complex environment control system including a reference
sensor node that can acquire images using a mobile imaging device and process image and
environmental information in a complex manner is configured, and an artificial intelligence
classification model is used in the control system to classify and feedback the augmented
image data according to environmental changes in real time to prevent the disease from
being unclassified due to image loss due to the light environment. By utilizing a standard-
based composite currency system equipped with an artificial intelligence model that is
linked to an automatic image acquisition device, the system acquires and analyzes images
and environmental data in real time, which will contribute to improving the sustainability
of the greenhouse.

From a scientific perspective, examining the plant disease diagnosis service reveals
that by applying artificial intelligence in agricultural fields instead of human cognition,
time and costs can be reduced. Additionally, the future integration of agricultural robot
technology could lead to the development of intelligent robots that autonomously recognize
crop diseases and perform pest control.
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In terms of pure technological contributions, overcoming the limitations of existing
research that require substantial resources and data was achieved through performance
improvement via preprocessing combined with environmental information.

From a societal standpoint, farmers with limited farming experience or those ventur-
ing into new crops due to climate change can make swift decisions for greenhouse pest
management, enabling stable smart farming.

In future research, we would like to build a system that can analyze environmental
information such as temperature and humidity, as well as literature information on signs of
disease so that disease classification and prevention can be performed.

Author Contributions: Conceptualization, T.K. and D.S. (Dongkyoo Shin); funding acquisition, T.K.;
methodology, T.K., J.B., M.K. and D.I.; design of machine learning algorithm, T.K., H.P. (Hansol Park)
and D.S. (Dongkyoo Shin); supervision, D.S. (Dongkyoo Shin); validation, H.P. (Hyoseong Park) and
D.S. (Dongil Shin); writing—original draft preparation, T.K. and H.P. (Hansol Park); writing—review
and editing, D.S. (Dongkyoo Shin). All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the Korea Institute of Planning and Evaluation for Technology
in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through
Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture,
Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development
Administration (RDA) (grant number: 421005-04(=PJ016443)).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fuentes, A.F.; Yoon, S.; Lee, J.; Park, D.S. High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests

Diagnosis System with Refinement Filter Bank. Front. Plant Sci. 2018, 9, 1162. [CrossRef] [PubMed]
2. Fiorani, F.; Schurr, U. Future Scenarios for Plant Phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [CrossRef] [PubMed]
3. Suarez, P.L.; Angel, D.S.; Boris, X.V. Leaning image vegetation index through conditional generative adversarial network. In

Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6.
4. Szegedy, C. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 1602, arXiv:160207261v2.

[CrossRef]
5. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400.
6. Li, Y.; Chao, X. Toward sustainability: Trade-off between data quality and quantity in crop pest recognition. Front. Plant Sci. 2021,

12, 811241. [CrossRef]
7. Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and

Guided Filters. Remote Sens. 2018, 10, 144. [CrossRef]
8. Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests

recognition. Sensors 2017, 17, 2022. [CrossRef]
9. Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30,

3212–3232. [CrossRef]
10. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
11. Heuvelink, E. Tomatoes; CABI: Glassglow, UK, 2018; Volume 27.
12. Fuentes, A.F.; Yoon, S.; Park, D.S. Deep learning-based phenotyping system with glocal description of plant anomalies and

symptoms. Front. Plant Sci. 2019, 10, 1321. [CrossRef] [PubMed]
13. Wright, R.E. Logistic regression. In Reading and Understanding Multivariate Statistics; American Psychological Association:

Washington, DC, USA, 1995.
14. Wang, X.; Wang, X.; Sun, Z.N. Comparison on Confidence Bands of Decision Boundary between SVM and Logistic Regression. In

Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, Seoul, Republic of Korea, 25–27 August 2009;
IEEE (CS): Piscataway, NJ, USA, 2009; pp. 272–277.

15. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

https://doi.org/10.3389/fpls.2018.01162
https://www.ncbi.nlm.nih.gov/pubmed/30210509
https://doi.org/10.1146/annurev-arplant-050312-120137
https://www.ncbi.nlm.nih.gov/pubmed/23451789
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.3389/fpls.2021.811241
https://doi.org/10.3390/rs10010144
https://doi.org/10.3390/s17092022
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.3389/fpls.2019.01321
https://www.ncbi.nlm.nih.gov/pubmed/31798598
https://doi.org/10.1023/A:1010933404324


Sustainability 2023, 15, 16220 19 of 19

16. Kim, K.; Jang, J.; Park, H.; Jeong, J.; Shin, D.; Shin, D. Detecting Abnormal Behaviors in Dementia Patients Using Lifelog Data: A
Machine Learning Approach. Information 2023, 14, 433. [CrossRef]

17. Park, H.; Kim, K.; Shin, D.; Shin, D. BGP Dataset-Based Malicious User Activity Detection Using Machine Learning. Information
2023, 14, 501. [CrossRef]

18. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
19. Wei, D. Anomaly detection for blueberry data using sparse autoencoder-support vector machine. PeerJ Comput. Sci. 2023, 9, e1214.

[CrossRef]
20. García, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput. Secur. 2014, 45,

100–123. [CrossRef]
21. An, J.; Cho, S. Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability; Technical Report; SNU Data Mining

Center: Seoul, Republic of Korea, 2015.
22. Ghosh, P.; Sajjadi, M.S.M.; Vergari, A.; Black, M.; Schölkopf, B. From Variational to Deterministic Autoencoders. arXiv 2020,

arXiv:1903.12436.
23. Xu, J.; Durrett, G. Spherical Latent Spaces for Stable Variational Autoencoders. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 4503–4513.
24. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. arXiv 2014, arXiv:1406.2661. [CrossRef]
25. Park, S.W.; Huh, J.H.; Kim, J.C. BEGAN v3: Avoiding Mode Collapse in GANs Using Variational Inference. Electronics 2020, 9,

688. [CrossRef]
26. Pei, S.; Xu, R.Y.D.; Xiang, S.; Meng, G. Alleviating Mode Collapse in GAN via Pluggable Diversity Penalty Module. arXiv 2021,

arXiv:2108.02353v4.
27. Benjdira, B.; Khursheed, T.; Koubaa, A.; Ammar, A.; Ouni, K. Car detection using unmanned aerial vehicles: Comparison between

faster r-cnn and yolov3. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS),
Muscat, Oman, 5–7 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

28. Latino, M.E.; Menegoli, M.; Corallo, A. Agriculture Digitalization: A Global Examination Based on Bibliometric Analysis. IEEE
Trans. Eng. Management. 2022, 1–16. [CrossRef]

29. Radogna, A.V.; Latino, M.E.; Menegoli, M.; Prontera, C.T.; Morgante, G.; Mongelli, D.; Giampetruzzi, L.; Corallo, A.; Bondavalli,
A.; Francioso, L. A Monitoring Framework with Integrated Sensing Technologies for Enhanced Food Safety and Traceability.
Sensors 2022, 22, 6509. [CrossRef] [PubMed]

30. Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [CrossRef]
31. Ejsmont, K.; Gladysz, B.; Kluczek, A. Impact of Industry 4.0 on Sustainability—Bibliometric Literature Review. Sustainability 2020,

12, 5650. [CrossRef]
32. Gonzalez-huitron, V.; Le, A.; Amabilis-sosa, L.E.; Ramírez-pereda, B.; Rodriguez, H. Disease detection in tomato leaves via CNN

with lightweight architectures implemented in Raspberry Pi 4. Comput. Electron. Agric. 2021, 181, 105951. [CrossRef]
33. KS X 3267; RS485 MODBUS Interface between Sensor/Actuator Node and Greenhouse Controller in Smart Greenhouse. National

Radio Research Agency: Naju-si, Republic of Korea, 2022.
34. TTAK.KO-10.1172; Modbus/RS485-Based Smart Greenhouse Node/Device Registration Procedures and Description Specification.

Telecommunications Technology Association: Seonnam-city, Republic of Korea, 2019.
35. Geng, C.; Huang, S.J.; Chen, S. Recent advances in open set recognition: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43,

3614–3631. [CrossRef]
36. Jang, S.T.; Chang, S.J. Exploration of a light shelf system for multi-layered vegetable cultivation. KIEAE J. 2013, 13, 61–66.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/info14080433
https://doi.org/10.3390/info14090501
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.7717/peerj-cs.1214
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1145/3422622
https://doi.org/10.3390/electronics9040688
https://doi.org/10.1109/TEM.2022.3154841
https://doi.org/10.3390/s22176509
https://www.ncbi.nlm.nih.gov/pubmed/36080972
https://doi.org/10.1016/j.jclepro.2019.119869
https://doi.org/10.3390/su12145650
https://doi.org/10.1016/j.compag.2020.105951
https://doi.org/10.1109/TPAMI.2020.2981604

	Introduction 
	Related Work 
	Design and Implementation of Tomato Disease Classification Using Real-Time Augmented Data 
	Experiment 
	Collecting Tomato Disease Image Data 
	Validation of Tomato Blight Image Classification System Using Field Data 
	Performing Validation Tests and Results 

	Conclusions 
	References

