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Abstract: Cold supply chains (CSCs) are critical for preserving the quality and safety of perishable
products like milk, which plays a vital role in the daily lives of a vast population, especially in
countries like India. This research centers on sustainable milk production in Northern India, with
priorities of ensuring efficiency and waste reduction within the cold supply chain. Leveraging data
from a prominent North India-based dairy company, Company ‘X’, an ARIMA model is applied for
predicting monthly milk production trends. Utilizing the Statistical Package for the Social Sciences
(IBM SPSS STATISTICS 20) software, the study forecasts Company ‘X’s monthly milk production
and identifies four distinct ARIMA models based on the autocorrelation function (ACF) and the
partial autocorrelation function (PACF). By comparing predicted and actual milk production values
(April–October 2021), sustainability metrics are integrated into ARIMA forecasts. Implications for
the dairy sector’s sustainability and alignment with the Sustainable Development Goals (SDGs) are
assessed through error terms such as R squared (R2) and mean absolute percentage error (MAPE).
The study promotes sustainable milk production practices in Northern India’s dairy sector, resonating
with the SDGs to optimize demand–supply dynamics and foster a more environmentally conscious
dairy industry.

Keywords: cold supply chain; time-series analysis; ARIMA; forecasting; milk production forecasting;
SPSS; SDGs; sustainability

1. Introduction

In the context of dairy production, particularly within a significant country like India,
CSCs assume a pivotal role of utmost importance. Dairy products hold a fundamental
place in daily life, as they contribute to more than 10% of the body’s protein requirement [1].
Throughout history, these products have evolved from being considered luxuries to becom-
ing absolute necessities. Among these dairy products, milk stands out as a natural food
source that provides all the essential nutrients required for bodily growth and develop-
ment [2]. The dairy sector serves as a cornerstone for the social and economic progress of
the nation, representing a substantial portion of the rural population [3,4]. Globally, India
holds the top position when it comes to both the production and consumption of milk,
boasting a dairy cow population of 125.34 million [5–7]. In the last ten years, India has
witnessed a remarkable increase of 237.58% in milk production, soaring from 55.6 million
tonnes in 1991–1992 to a remarkable 187.7 million tonnes in 2018–2019 [8]. This consistent
growth has averaged around 4.8% annually in the last ten years [9,10]. Simultaneously, the
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daily per capita milk availability in India has risen from 130 g in 1950–1951 to 374 g in 2017,
surpassing the estimated global average consumption for 2017 [11–13]. In fact, in 2017,
India accounted for an impressive 21.29 % share of global milk production [14]. Since dairy
accounts for one of the largest portions of agriculture’s gross domestic product (GDP), it is
essential to predict milk production in order to gauge supply and demand for milk and to
develop the best course of action for addressing any ensuing gaps [8,15,16]. Moreover, in
the dairy industry, where maintaining the integrity of CSCs is paramount, accurate predic-
tions of milk production take on added significance. These forecasts empower stakeholders
to make informed decisions that are crucial for the efficient allocation of resources and
the optimization of procurement and distribution processes, especially within cold supply
chains. Beyond their logistical importance, milk and dairy products are vital sources of
nutrition, being rich in essential elements such as proteins, vitamins, and minerals, all of
which are fundamental for human growth and development. Ensuring sustainable milk
production practices is not only a matter of meeting the surging demand for dairy products
but also safeguarding the environment and our precious natural resources [17]. The dairy
industry’s sustainability hinges on optimizing production processes, reducing environ-
mental impact, and promoting responsible consumption and production practices [18,19].
Efficient forecasting of milk production aligns with these sustainability goals by preventing
food shortages, minimizing wastage, and reducing the industry’s ecological footprint [20].
The link between milk production forecasting and the SDGs further accentuates its sig-
nificance. The SDGs encompass a set of global objectives aimed at eradicating poverty,
protecting the planet, and ensuring prosperity for all by 2030. Sustainable milk production
directly supports several SDGs, primarily within the scopes of SDG 2 (“Zero Hunger”) and
SDG 12 (“Responsible Consumption and Production”) [21].

In light of this context, this study makes an effort to examine and predict milk produc-
tion using the established time-series modelling approach ARIMA. The effectiveness of
ARIMA models in forecasting milk production is evaluated based on the MAPE and the
coefficient of determination (R2). The MAPE quantifies the average percentage deviation
between the predicted and actual values which reflects the precision and accuracy of the
forecasting models [22,23]. A lower MAPE indicates higher forecast accuracy, with a smaller
average deviation from the actual values. On the other hand, R2 quantifies the proportion
of total variation in milk production, explained by the independent variables included in
the ARIMA model [24]. A higher R2 value denotes a more robust correlation and a better
fit of the model to the data, enhancing their predictive power. Through an investigation
of MAPE and R2 values, the paper aims to offer insights into the predictive competences
of the ARIMA models and their ability to capture underlying patterns and trends in milk
production data to facilitate sustainable decision making, hence assisting us in achieving
the SDGs. To achieve this aim, the following research objectives (ROs) were identified:

• RO1: Examine the monthly milk production trends of Company ‘X’ in North India
from April 2010 to October 2021, and identify underlying patterns and trends.

• RO2: Develop ARIMA models for forecasting milk production from April 2021 to
October 2021, and evaluate the precision of the forecasted values using MAPE and R2.

• RO3: Evaluate the implications of precise milk production forecasting for achieving
SDGs in the dairy industry.

In this study, we introduce several innovative elements that constitute the core con-
tributions of this research. First and foremost, the study pioneers the integration of CSC
dynamics into the realm of milk production forecasting. While prior studies have primar-
ily focused on predicting milk production trends, this research takes a holistic approach
by considering the intricate dynamics of the CSC. This innovation allows us not only to
generate accurate forecasts but also to evaluate the broader implications of these forecasts
in the context of sustainability within the dairy industry. Furthermore, our study extends
the conventional time-series forecasting paradigm by aligning our predictions with the
SDGs. This unique approach enables us to assess the long-term impact of milk production
forecasting on sustainability objectives. The study also emphasizes the crucial role of data-
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driven decision making in CSC management, empowering stakeholders to make informed
choices about resource allocation and distribution processes. Additionally, it sheds light on
the significance of strategic preparedness to mitigate the effects of unforeseen disruptions,
such as the COVID-19 pandemic, on milk production forecasts.

The following is the structure of the paper: Section 2 contains the method and materials
followed by the model formation in Section 3. Subsequently, Section 4 contains the results
and discussions, implications, and limitations. Eventually, the paper concludes with future
insights in Section 5.

2. Materials and Methods

Forecasting is a method that utilizes historical data as inputs to generate educated
estimates that can be used to make accurate predictions about the trajectory of future
trends [25,26]. This kind of demand forecasting is essentially a technique that makes use of
local sales history and incorporates a search for the foreseeable future [27]. Forecasting, in
its most basic form, refers to making predictions which can be carried out with or without
the assistance of historical information [28]. This study has incorporated the following
methodology, as shown in Figure 1. The paper begins with a comprehensive literature
review on forecasting using the ARIMA model, followed by data collection from Company
‘X’. The data considered for the study is from the period of April 2010–October 2021, and
an ARIMA model is formulated to predict milk production for the upcoming months.
The initial model is developed using data from April 2010 to March 2021 to predict milk
production from April 2021 to October 2021. The stationarity of the gathered data is
assessed to apply the ARIMA model, which is an extension of the autoregressive (AR) and
moving average (MA) models.
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Literature review 
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Execution of ARIMA and Formation of the model  

Selection of the best-suited model  

Comparison of forecasted value with actual value  

Figure 1. Workflow diagram.

As per the ARIMA model, the analyzed time-series data can be described as a linear
combination of their previous values and unpredictable disturbances [29–31]. This model
is characterized by three key components: p (representing the autoregressive order), d
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(indicating the order of differencing required to achieve stationarity), and q (denoting the
moving average order). Table 1 demonstrates the model’s mathematical form [32,33].

Table 1. AR, MA, and ARMA equations.

Model Equations Explanation Meaning of Terms

AR (p) Yt = c + φ1Yt−1 + φ2Yt−2 + . . . +
φpYt−p + ε

In the AR model, the current
value Yt is a linear combination of

its past values up to order p.

Yt—current value of the
time-series; c—constant; φ1, φ2,

. . ., φp—autoregressive
coefficients; ε—white noise

error terms.

MA (q) Yt = c − θ1εt−1 − θ2εt−2 − . . . −
θqεt−q + ε

In the MA model, the current
value Yt depends on a linear

combination of past white noise
error terms up to order q.

Yt—current value of the
time-series; c—constant; θ1, θ2,

. . ., θq—moving average
coefficients; εt−1, εt−2, . . .,

εt−q—white noise error terms.

ARMA
Yt = c + φ1Yt−1 + φ2Yt−2 + . . . +
φpYt−p + ε − θ1εt−1 − θ2εt−2 −

. . . − θqεt−q

The ARMA model combines both
AR and MA components,

expressing the current value Yt as
a combination of past values and

past error terms.

Yt—current value of the
time-series; c—constant; φ1, φ2,

. . ., φp—autoregressive
coefficients; ε—white noise error

term; θ1, θ2, . . ., θq—moving
average coefficients; εt−1, εt−2,

. . ., εt−q—white noise error terms.

As the estimate approach is only applicable to stationary series, ensuring that the
series under consideration is stationary is the first and most crucial criterion for ARIMA
modelling [34,35]. If neither a series’ mean nor its autocorrelation change over time, it is
said to be stationary [36,37]. Using a time plot tests, one must determine whether a time-
series is stationary. A non-stationary series may be turned into or recognized as a stationary
series through distinguishing. The number of differentiations required to obtain station-
arity is indicated by the symbol d, which stands for the order of integration/difference.
To predict milk production, the ARIMA model is used once the p, d, and q values are
obtained. The statistical program SPSS is utilized in this paper’s ARIMA modelling. Data
transformation, regression analysis, variance analysis, multivariate analysis of variance,
analysis of covariance, t-tests, non-parametric tests, time-series forecasting, and many more
statistical applications may all be performed using SPSS [38–40].

3. Model Formation

The ARIMA model involves multiple processes to arrive at a final forecasting value [41].
A variety of tools are used in the forecasting process, including ACF and PACF [42], both of
which play an important role. The data obtained from Company ‘X’ is plotted in Figure 2,
revealing an increasing trend in the data followed by some decreasing trend. To prepare the
data for ARIMA analysis, a process called differencing is employed. Differencing involves
subtracting a previous observation from the current one to stabilize the data and make it
suitable for ARIMA modeling. In the case at hand, this differencing process is depicted in
Figures 3 and 4.
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As illustrated in Figure 3, an initial differencing of d = 1 is applied to the data. This
transformation is employed to remove any linear trends or periodic fluctuations in the
data. However, upon closer examination of the results in Figure 3, it becomes apparent
that the data still exhibit deviations from a consistent mean value. This indicates the
presence of further non-stationarity, prompting the need for an additional differencing
step. In Figure 4, a second differencing operation, denoted by d = 2, is executed. This
second differencing process serves to further stabilize the data by eliminating any residual
fluctuations and ensuring that the data adhere to a constant mean. The result, as depicted
in Figure 4, showcases data that appear more stationary, making them better suited for
ARIMA modeling. Consequently, ACF and PACF are used to determine the value of p
and q [43]. If the ACF is geometric and the PACF is significant to lag p, then the MA
component will be zero, i.e., p = 0, as shown in Table 2. Similarly, if the PACF is geometric
and ACF is significant to lag q, then the AR component will be zero, i.e., q = 0. However, if
both components are significant, then both p and q are considered. In this study, the SPSS
software is used for the formation of ACF and PACF, followed by the final formation of the
model. Initially, the data are input into the software, followed by integrating the difference
(d = 2) to deploy ARIMA. The p and q values are identified with the help of ACF and PACF
provided by SPSS. The ACF and PACF provided by SPSS are shown in Figures 5 and 6,
respectively. The formulation of the model is completely dependent on the values of p, d,
and q. As shown in Figure 4, d = 2 provides stationarity to the data. Moreover, the value of
p and q is determined with the help of Figures 5 and 6.

Table 2. Model selection using ACF and PACF.

ACF PACF Model

AR (p) Geometric Significant until p lags (p, d, 0)
MA (q) Significant until q lags Geometric (0, d, q)

AR (p) MA (q) Significant until q lags Significant until p lags (p, d, q)
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After examining the ACF and PACF, it was found that both were significant to lag q (1,
2) and lag p (1, 2), indicating that both the AR and MA components needed to be included
in the model [44]. The optimal model for forecasting milk production in North India using
the ARIMA model was determined through generating and comparing all the potential
models that are described in Table 3.
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Table 3. Possible models using ACF and PACF.

AR (p) I (d) MA (q) ARIMA (p, d, q)

1 2 1 ARIMA (1, 2, 1)
2 2 1 ARIMA (2, 2, 1)
2 2 2 ARIMA (2, 2, 2)
1 2 2 ARIMA (1, 2, 2)

4. Result and Discussion, Implications, and Limitations
4.1. Results and Discussion

The first stage in time-series analysis involves visually evaluating the behaviors of
the data by plotting them. This visual representation provides a valuable insight into
the underlying patterns and trends that exist in the data. Figure 2 depicts the monthly
production of milk production of Company ‘X’ from April 2010 to October 2021 as a function
of time. This graph shows an initial upward trend followed by a sudden downward trend.
The second differentiation of the data is used to set the stationarity of the data. However,
Figure 4 displays the time plots of the differenced series, revealing that the second-order
differenced series is stagnant. Once the data have achieved stationarity, the next step is
to use ACF and PACF to identify the value of p and q. In Figures 5 and 6, it can be easily
noticed that both ACF and PACF are significant to some lags. ACF is significant to lag 1
and lag 2, which decides the value of q = 1 and 2. PACF is also significant to lag 1 and lag 2,
which decides the value of p = 1 and 2. Different values in p and q lead to the formation of
different (p, d, q) values causing the formation of various ARIMA models. Once the models
were identified, it was incorporated into the SPSS software, which generated forecasts for
all conceivable models [40]. The software generated forecasts for ARIMA (1, 2, 1), ARIMA
(2, 2, 1), ARIMA (2, 2, 2), and ARIMA (1, 2, 2), as illustrated in Figures 7–10, respectively.
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The forecasted value from April 2021 to October 2021 for each of the models is listed
in Table 4. Moreover, the actual value of the milk production from April 2021 to October
2021 is compared with the forecasted value and represented in Figure 11.

Table 4. Forecasting results.

Month Actual Production
(Kgs) ARIMA (1, 2, 1) ARIMA (2, 2, 1) ARIMA (2, 2, 2) ARIMA (1, 2, 2)

April 2021 7,276,530 7,915,560 7,883,079 7,990,791 7,995,746

May 2021 7,284,150 7,420,933 7,401,705 7,844,204 7,577,291

June 2021 7,428,660 6,885,345 6,874,768 7,500,731 7,134,018

July 2021 6,240,510 6,385,984 6,383,390 7,278,260 6,714,827

August 2021 4,304,730 6,385,984 6,002,114 7,057,491 6,390,933

September 2021 4,006,170 5,793,478 5,804,899 6,943,595 6,216,954

October 2021 3,665,070 5,849,720 5,865,956 6,947,270 6,259,852

All four models show a consistent downward trend in milk production. However, it is
crucial to note that the accuracy of these models varies across different months. For the
initial months, spanning from April 2021 to July 2021, all four models performed relatively
well, with their predictions closely aligning with the actual production data generated by
Company ‘X’ (Figure 11). However, this accuracy begins to decline after July 2021. The
abrupt shift in forecast accuracy post-July 2021 can be primarily attributed to the significant
disruptions caused by the second wave of the COVID-19 pandemic. The sudden change in
procurement processes within the cold supply chain (CSC) had a profound impact on milk
production and distribution, making it challenging to accurately predict production levels
during this period. Besides the COVID-19-related disruptions, several other factors might
contribute to the difficulty in accurate predictions. These may include seasonality, changes
in consumer preferences, variations in cattle health, or shifts in feed availability [45].
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Furthermore, the models are checked for validation using MAPE and R2. The forecast-
ing model with an optimized value between MAPE and R2 was chosen as the best model to
predict milk production in North India using the ARIMA model [46]. Table 5 represents the
results of four different ARIMA models, each evaluated using two performance measures:
the MAPE and the R2 value. The ARIMA models are differentiated by their order, which
specifies the number of autoregressive, integrated, and moving average terms used in the
model. For example, ARIMA (1, 2, 1), which has one autoregressive term, two differences,
and one moving average term. However, the MAPE indicates the average percentage
deviation of the forecasted values from the actual values for each model [47]. For instance,
the ARIMA (2, 2, 1) model has a MAPE of 21.3%, indicating that, on average, the predicted
values exhibit a difference of around 21.3% compared to the actual milk production values.
The R2 shows the proportion of the variance in the actual values that is explained by the
forecasted values. As an illustration, the ARIMA (2, 2, 2) model achieved an R2 value
of 0.818, indicating that approximately 81.8% of the variation in the actual values can be
accounted for by the forecasted values [48]. While the ARIMA (2, 2, 2) model may have a
higher R2 value, indicating a better explanatory power, it also has a higher MAPE value,
suggesting a higher average percentage deviation between the forecasted and actual values.
This higher MAPE value indicates that, on average, the ARIMA (2, 2, 2) model’s forecasts
deviate more from the actual values compared to the ARIMA (2, 2, 1) model. In forecasting
scenarios, it is crucial to strike a balance between accuracy and practicality. Although the
ARIMA (2, 2, 1) model has a marginally lower R2 value, it exhibits a lower MAPE value,
signifying superior overall accuracy in predicting milk production values [49]. This model’s
forecasts exhibit a smaller average percentage deviation from the actual values compared
to the ARIMA (2, 2, 2) model. Therefore, considering both the R2 value and MAPE, the
decision to choose the ARIMA (2, 2, 1) model as the best-performing model is based on
its ability to provide more accurate and sustainable forecasts, which is ultimately more
valuable in practical applications.
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Table 5. Forecasting error.

Model MAPE R2

ARIMA (1, 2, 1) 22.6 0.739
ARIMA (2, 2, 1) 21.3 0.790
ARIMA (2, 2, 2) 37.4 0.818
ARIMA (1, 2, 2) 28.4 0.793

4.2. Implications

The implications of accurate milk production forecasts presented in the study, com-
bined with the assessment of the cold supply chain, are of great significance for the dairy
industry, with far-reaching effects on sustainability and the achievement of the SDGs [21].
The dairy sector plays a critical role in supporting food security, responsible consumption
and production, economic growth, and environmental sustainability [50–52]. Moreover,
the efficiency and sustainability of the cold supply chain, a vital component of the dairy
industry, directly impacts these aspects [53,54]. Forecasting accuracy using ARIMA models
can act as a powerful tool in promoting efficiency, resilience, and better decision making
within the industry. Considering this comprehensive perspective, the study’s findings have
significant implications (Figure 12), which are detailed below.
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1. Resilience amidst disruptions: The stark deviations observed between the forecasted
and actual production values, particularly evident post-July 2021, attest to the dairy
industry’s vulnerability to unforeseen disruptions like the COVID-19 pandemic. This
pronounced impact underscores the paramount importance of accurate milk pro-
duction forecasts [55,56]. Furthermore, the cold supply chain’s role in maintaining
product quality and safety during such disruptions cannot be underestimated. By
harnessing the insights offered by ARIMA models, stakeholders can proactively nav-
igate challenges, restructure supply chains, and avert supply gaps, bolstering the
resilience of the CSC alongside industry-wide resilience [57]. This strategic prepared-
ness is in direct harmony with the essence of SDG 9—“Industry, Innovation, and
Infrastructure”—ensuring industry resilience against unexpected upheavals.
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2. Sustainable resource management: A closer examination of the disparities revealed in
the comparison highlights a significant area of focus for dairy sector resource manage-
ment. The fluctuations between predicted and actual values underscore the criticality
of judiciously managing resources such as water, energy, and feed [58,59]. Effective
resource management within the CSC is vital for energy-efficient refrigeration and
transportation. By narrowing the variance, dairy producers and the CSC can minimize
waste, optimize resource utilization, and actively contribute to the realization of SDG
12—“Responsible Consumption and Production”. This alignment fosters a sustainable
approach while balancing milk production demands [60].

3. Supporting food security: The juxtaposition of forecasted and actual values accentu-
ates the dairy industry’s crucial role in upholding food security, particularly in the face
of global disruptions. The disparities between predicted and actual production pat-
terns during challenging periods underscore the potential of precise milk production
forecasts to mitigate food shortages and prevent wastage [61–63]. Considering SDG
2—“Zero Hunger”—this alignment becomes a cornerstone in ensuring consistent cold
supply chain [64,65], supporting nutrition needs, and stabilizing communities [66].

4. Economic recovery and poverty reduction: The disparities observed, particularly in
times of disruption, delineate the dairy industry’s significance in promoting economic
recovery and reducing poverty [67–69]. The accuracy of forecasts empowers decision
makers to navigate uncertain terrain effectively. This strategic clarity, in alignment
with SDG 1—“No Poverty”—becomes pivotal in safeguarding livelihoods, bolstering
economic stability, and fostering long-term prosperity within the dairy sector.

5. Environmental impact: The discernible variations between forecasted and actual
values underscore the industry’s journey towards environmental stewardship. These
deviations reflect the direct influence of forecasted trends on resource utilization,
waste generation, and sustainability practices. By achieving a closer accord between
predictions and actual outcomes, the dairy sector contributes to the principles of SDG
12, culminating in more sustainable production patterns [70].

6. Data-driven decision making: The disparities unveiled by the comparison between
forecasts and actuals substantiate the dairy industry’s progression towards data-
driven decision making. These deviations act as a compass, guiding industry stake-
holders to better comprehend production dynamics, identify opportunities, and
address bottlenecks. This strategic transformation, in consonance with the core tenets
of the SDGs, underscores the pivotal role of data-driven policies in steering the sector
towards sustainable development [71–73].

The convergence of these implications, borne out of the comparison between fore-
casted and actual production values, underscores the dairy industry’s trajectory towards
sustainability and SDG alignment. The responsive strategies, guided by insights from accu-
rate predictions, amplify the industry’s commitment to responsible practices and enduring
growth in the face of disruptions. However, to improve sustainability and the achievement
of the SDGs in the face of such disruptions, the dairy industry needs to adopt a holistic
approach, as follows [66]:

• Investment in technology and innovation: Embracing technology and innovation can
improve production efficiency and reduce the industry’s environmental footprint.
For instance, advanced data analytics and IoT technologies can optimize resource
utilization and enable real-time decision making.

• Sustainable practices and certification: Encouraging and incentivizing sustainable
farming practices can promote responsible production. Certifications such as “organic”
or “sustainable” can help consumers make more sustainable choices and contribute to
achieving SDG 12.

• Collaboration and knowledge sharing: Collaborating with stakeholders, including
governments, NGOs, and research institutions, can foster knowledge sharing and
best practices. This collective effort can enhance the industry’s sustainability and
contributions to the SDGs.
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• Addressing social impact: The COVID-19 pandemic’s socioeconomic effects high-
lighted the importance of considering the social impact of dairy production. Ensuring
fair wages, safe working conditions, and community engagement can align the indus-
try with SDG 8—“Decent Work and Economic Growth”.

4.3. Limitations

One limitation of this analysis presented in the above discussion is its potential inability
to accurately predict unexpected or sudden changes in the data. For instance, the second
wave of COVID-19 caused a significant disruption in the procurement process, leading
to deviations between forecasted and actual values after July 2021. This highlights the
challenge of capturing abrupt shifts or anomalies in the data using the ARIMA models,
potentially limiting their effectiveness in certain dynamic scenarios. Moreover, it is essential
to recognize that the time-series analysis in this study focuses solely on a single variable,
which is the milk production data. Though the ARIMA model is valuable in capturing
time-related patterns, they may not account for other external factors that could influence
milk production sustainability. Factors such as weather conditions, shifts in government
policies, and evolving consumer preferences can also impact milk production levels and
the dairy industry’s ecological footprint.

5. Conclusions and Future Perspective

This study has demonstrated the power of time-series analysis, particularly the ARIMA
models, in forecasting and managing monthly milk production within the complex land-
scape of the CSC. By meticulously examining historical data from April 2010 to March
2021 and making projections up to October 2021, we have gained valuable insights into
the dynamics of milk production for Company ‘X’. The findings reveal the strengths and
limitations of various ARIMA models, with ARIMA (2, 2, 1) standing out for its remarkable
accuracy in predicting milk production, boasting a low MAPE value of 21.3. On the other
hand, ARIMA (2, 2, 2) demonstrated a superior R2 value of 0.818, indicating a robust align-
ment with observed production trends. However, it also exhibited a higher MAPE of 37.4,
highlighting the challenges that are encountered in capturing and predicting unforeseen
disruptions. Additionally, the study’s timing coincided with the COVID-19 pandemic’s
second wave, which significantly impacted the CSC in the study area. This disruption
serves as a stark reminder of the need for robust forecasting that considers external factors,
especially within the context of supply chain management. The study underscores the
importance of visual analysis, data stationarity, and thoughtful model selection as essential
tools in refining predictions for CSCs. These steps are pivotal in ensuring reliability in dairy
industry forecasts and facilitating informed decision making, ultimately contributing to the
sustainability of the cold supply chain. Furthermore, our research has contributed to the
growing body of knowledge in time-series analysis within the dairy sector. It highlights
the potential of data-driven approaches, especially pertinent in the context of the CSC,
where accurate forecasts are critical not only for supply but also for effective storage and
distribution. Beyond its technical contributions, this study emphasizes the broader implica-
tions for sustainability and alignment with the SDGs within CSCs. The dairy industry’s
commitment to incorporating sustainability principles, making data-driven decisions, and
addressing the impacts of disruptions positions it as a crucial player in resilience-building
activities and environmental stewardship. In a post-pandemic context, the dairy sector
within the studied CSC is well-positioned to lead the way in sustainable development,
optimizing the demand–supply dynamics of this essential commodity while contributing
positively to society and the global community. As we move forward, further exploration
of advanced forecasting models and continued adaptation to changing dynamics will be
essential in ensuring the long-term success of the dairy industry within CSCs.

In terms of future perspectives, the present study suggests exploring seasonal ARIMA
(SARIMA) models and machine learning algorithms, specifically within the cold supply
chain. SARIMA models are adept at handling seasonal variations in milk production;
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this is crucial for managing dairy products that require temperature control. Machine
learning, especially neural networks, can be harnessed to decipher intricate relationships
within CSCs. This entails optimizing the storage, transportation, and distribution of dairy
products under controlled temperatures. These advanced techniques promise more precise
and sustainable predictions, enhancing efficiency and minimizing waste. By integrating
these technologies into the cold supply chain, the dairy industry can become aligned with
sustainability objectives, enabling it to contribute more effectively to the SDGs.
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