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Rud̄era Boškovića 32, 21000 Split, Croatia
* Correspondence: damir.jakus@fesb.hr; Tel.: +385-21-305-807

Abstract: The European Union is committed to both lowering greenhouse gas emissions and pro-
moting the adoption of electric vehicles (EVs) on its roads. To achieve these goals, it is imperative to
speed up the development of the charging infrastructure as well as to ensure the effective integration
of the charging infrastructure into distribution networks. Given that EV charging costs significantly
contribute to the total cost of owning an EV, it is important to hedge against rising electricity prices
and ensure affordable charging for the end users. Connecting solar power plants and battery storage
to the electric vehicle charging stations (EVCSs) serves as a measure of hedging against potential
future electricity price increases but also as an option that can contribute to reducing impact on the
distribution network loading. In addition to this, connecting EVCS through grid connections of exist-
ing consumers (office/residential buildings, shopping malls, etc.) can reduce grid connection costs for
EVCS but also contribute to electricity cost reduction for both EVCS and existing end consumers. Ad-
ditionally, by integrating advanced charging strategies like the vehicle-to-everything (V2X) approach,
the overall charging costs can be reduced even further. This paper focuses on optimizing the power
supply and operation of EVCS by considering strategic investments in grid connection, photovoltaic
plants, and battery energy storage. The research explores the potential savings derived from reduced
energy/charging costs, along with the reduction in peak power expenses for different power supply
options. In addition to this, the research explores the effect of different EV charging strategies as well
as EVCS grid connection on optimal investments and total system costs. The combined investment
and energy management problem is focused on determining the optimal EVCS power supply and
operation while minimizing total investment and operation expenditures over the project lifetime.
The underlying optimization problems for different supply scenarios are cast as mixed-integer linear
programming problems that can be solved efficiently. The results show the influence of different
grid connection options and EV charging strategies on the joint operation and costs of EVCS and
existing buildings.

Keywords: electric vehicle (EV) charging; mixed-integer linear programming (MILP); cost
optimization; microgrid; optimal scheduling; photovoltaic (PV) system; stationary battery energy
storage system (BESS); smart charging; vehicle to everything (V2X); vehicle to building (V2B)

1. Introduction

The European Union (EU) has established a challenging target to achieve by 2030: a
55% reduction in greenhouse gas emissions from passenger cars, accompanied by putting a
minimum of 30 million EVs on the streets [1–3]. By 2035, most European countries plan
to prohibit the sale of new vehicles with Internal Combustion Engines (ICEs), marking a
significant shift towards greener transportation [3–6]. Despite challenges posed by global
events in the last two to three years, an increased share of newly registered EVs in Europe
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shows a positive trend in achieving these goals [3–6]. However, realizing these goals
requires addressing crucial obstacles hindering widespread EV adoption.

One major hurdle is the higher initial cost of EVs compared to ICE vehicles, primarily
due to low demand affecting production efficiency [7–11]. The cost of batteries, a signifi-
cant component, has dropped over the years, but recent increases in metals like lithium,
nickel, cobalt, and manganese have caused battery prices to rise [7,12–14]. However, with
emerging battery technologies and growing demand, future EV prices are expected to
decrease [15–18]. The cost of purchasing them will be even lower due to numerous country,
local and EU incentives. While existing subsidies help, additional tax benefits, especially
for lower-income individuals, and enhanced public education are essential to encourage
adoption [4,11].

An even more important aspect is building the necessary charging network infras-
tructure in time, i.e., it is critical to expand the current infrastructure because existing
charging stations are insufficient to meet the rising EV demand, and their growth rates
might not meet EU targets [4,8,11]. So, the crucial question is where to place the charging
stations and how many. Most charging events, especially those at night, take place in
private individual households [4,5,8,19,20], which will mostly stay the same in the future
due to the daily travel patterns of the population. Furthermore, as EVs have a relatively
short range, i.e., low mileage, it is necessary to set up a dense and efficient charging station
network. To optimize the charging network, prioritizing public, office, and commercial
parking lots is crucial, focusing on high-traffic areas like apartments, garages, shopping
centers, and highways [10,19,20]. Additionally, the efficient utilization of charging stations
requires a thorough approach, considering factors such as charging duration and customer
engagement. The third main barrier is the longer EV charging duration compared to
charging ICE vehicles [8]. The fastest vehicle charging is achievable with fast DC chargers,
for which charging a battery fully takes around 30–45 min, while charging with the most
commonly installed and used (slow or fast) AC chargers takes about four hours (2–6 h) on
average [19,20]. However, most vehicles usually do not charge to total capacity, except at
home or work—this affects the utilization of charging points.

To drive higher electric vehicle (EV) adoption rates, it is imperative not only to address
existing barriers but also to highlight the advantages EVs offer, particularly concerning
cost reduction and energy independence. Recent trends in the world, including Europe,
driven by inflation and volatile prices of raw materials and energy resources, have spurred
an increased interest in EVs [4,5,9]. While fuel price rises influence the population to look
more and more towards EVs, the increased prices of electricity and other energy resources
motivate them to seek ways to minimize expenses and pursue partial or complete energy
self-sufficiency. The synergy between charging stations and increasingly affordable PV
plants [21] , when combined with BESS, presents a promising option for reducing EV
charging costs. By integrating these components intelligently, optimal operation strategies
can be devised, enhancing the efficiency of both the charging station and the connected
building. This integration not only ensures a more sustainable and economical charging
process for EV owners but also holds the potential for substantial savings in the joint
operational expenses of EVCSs and adjacent buildings. Exploring these integrated solutions
offers a pathway toward affordable and efficient EV charging, thus fostering a more rapid
and widespread transition to electric vehicles.

In this paper, a comprehensive optimization model was developed to address the
challenge of reducing charging costs associated with EVCS and adjacent buildings when
connected over the same point of common coupling (PoC). The model provides a way to
make optimal investment decisions in the PV plant, BESS and grid connection while consid-
ering the effect of these investment decisions on EVCS operational aspects. By leveraging
advanced optimization techniques, the study also explores various EV charging strategies,
such as smart charging, V2V, V2B and V2G and its effect on optimal system design and
investment decision variables. The objective is twofold: to minimize the costs of EVCS and
adjacent building while simultaneously reducing the operational expenses over the project
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lifetime. By strategically determining PV plant and BESS capacity and grid connection
capacity with the specific energy needs of both the EVCS and the buildings, the research
aims to achieve a harmonious balance between affordability, efficiency, and sustainability.

Given that the proposed models try to determine a set of unknown binary decision
variables (decision to invest in PV, BESS) as well as continuous variables (PV capacity, BESS
capacity and operation, grid connection power, EVCS operation, CAPEX/OPEX costs, etc.)
based on the well-defined model with a set of clear mathematical constraints and objectives,
the proposed models are formulated as mixed-integer linear programming models. MILP
algorithms are designed to find the global optimum of a problem, ensuring that the solution
obtained is the best possible solution within the specified constraints. Although MILP
problems can be computationally intensive, modern solvers and algorithms have signifi-
cantly improved the efficiency of solving large-scale MILP problems. Additionally, MILP
solvers can exploit problem-specific structures to enhance computational speed. The other
approaches, such as metaheuristic algorithms, are not suitable for handling well-structured
problems with a high degree of complexity like the one proposed in this paper.

1.1. Literature Overview

In recent years, numerous research studies have been focused on using smart charging
or V2X methods (mainly V2G and V2B, with V2H usually as a variant of V2B) to either
optimize the energy bills or decrease the impact on the distribution grid and, in that way,
increase savings and achieve the system’s greater self-reliance and self-sufficiency.

The usual way to optimize energy expenses is by using electrical appliances when
electricity is cheaper, during off-peak pricing, based on the Time-of-use pricing model [22].
The same approach is proposed for EV charging by Kannan in [23]. The authors suggest
that in pair with the neural network model for predicting future load, charging should be
transferred to low-tariff off-peak periods at night to fill the demand valley while simul-
taneously achieving peak shaving during high demand periods. In the case of EVs, this
naturally occurs because most charging events are already happening during the night
in private households [19,20,24], so this can only be useful for shifting “dumb” charging
cases, where EVs connect for charging the moment they arrive home, which creates an
unnecessary peak even in the low-tariff period. For public charging, this is the case only
for charging points near apartment buildings and hotels and in residential garages. For
charging at an office, educational institutions, etc., that is often not viable because charging
occurs mainly during business hours, i.e., during the base period pricing, and cannot easily
shift to the off-peak period.

Dukpa and Butrylo [25] improve the idea by adding a solar PV system and BESS
to the commercial off-grid EV charging station and including them in the mathematical
model. That ensures that EVs can charge at any time with the power generated by the PV
system, during the day, directly from the system and, when solar production is unavailable,
with stored energy from the battery. Li and Li in [26] also look at isolated microgrids with
renewable energy generation and develop a novel method of optimizing EV charging and
microgrid’s net cost while demonstrating that using intelligent EV charging for demand
response achieves greater EV drivers’ participation in the microgrid scheduling. In contrast
to them, Kucevic et al. [27] do not consider renewables and BESS, while they examine a
system of intelligently controlled charging stations and their effect on the grid. Moreover,
they find that controlled charging enables a significant reduction in BESS capacity without
impacting peak load reduction at the PoC. While intelligent EV charging is valuable for
peak shaving optimization by acting as adjustable loads, using EVs for the grid and cost
optimization can further be improved by implementing the V2X approach. According
to [28,29], in order to take the large-scale scenario into account, the optimal scheduling of
microgrids should consider applications of distributed techniques. This approach can be
applied in scenarios involving multiple agents/entities within a microgrid with different
and often conflicting objectives. In the approach presented in this paper, we assume that
the EVCS operator oversees all aspects, including EV charging/discharging, Battery Energy
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Storage System (BESS), and the photovoltaic (PV) plant, with the objective of minimizing
total system costs. This ensures a unified objective without conflicting interests, so we do
not employ a distributed approach.

The most basic V2X example is connecting the EVs and giving back electricity directly
to the power grid in the V2G model. O’Malley et al. [30] propose an improved model for
charging fleet EVs that incorporates vehicles’ daily and weekly driving patterns. The model
for (dis)charging optimization demonstrates V2G capability in significantly reducing CO2
emissions and system costs. The authors compare basic and smart charging methods with
the V2G concept and examine the fleet size correlation and frequency response, which
they find is the most significant contributor to the value of using EVs, especially with the
included wind energy generation. Meenakumar et al. [31] further examine this concept
and develop an optimization model focusing on maximizing revenues and achieving
commercial viability. They find that the role of the EV aggregator is critical in realizing
value from using the V2G method and stress the importance of the careful consideration of
driving behaviors in building any business case that may increase or decrease net revenues.
Borghetti et al. [32] and Maigha and Crow [33] focus on specific cases that have significant
potential for implementing the V2G approach effectively. In [32], Borghetti et al. consider
the feasibility of using local electrical public transport buses with the V2G and they find
that for large-scale services like this, revenues cannot come from the energy trade, and the
viability of this type of case depends on possible incentives from the electric grid operator.
Maigha and Crow [33], on the other hand, develop a day-ahead transactive model for
long-term airport parking, which focuses on leveraging a large aggregated EV fleet for
the maximal utility of parked vehicles, minimal battery degradation, maximal profit for a
parking lot operator and high customer satisfaction, with the additional benefit to the grid.
In addition, Tahir [34] considers intermediary V2G, where vehicles connect in some other
manner, like V2B or V2H, but where the returned power ultimately aims at minimizing
the charging costs for both electric vehicles and utilities, while also reducing the main
grids’ adverse effects that could happen due to the increased added load that EVs pose
by themselves.

Whereas V2G facilitates an opportunity for utilizing the EVs for power grid balance,
V2B enables a further decrease in cost and impact on the grid by focusing on local buildings’
nano or microgrids. Nazari et al. [35] state in their survey on V2B that, combined with BESS
and renewable energy sources (RES), it also enables self-sufficient “net or nearly zero-energy
buildings” with minimum imported energy from the grid. In [36], Turker and Colak present
the smart building algorithm that ensures the green charging of a single EV through the
maximization of solar production self-consumption while also minimizing the grid supply
of energy and enables V2G and V2B (in [36] denoted as load) to achieve optimal energy bills.
Furthermore, according to Nazari et al. [35], deploying EV fleets in the V2B modus operandi
presents a lucrative way to lower peak demand, diminish expenses or provide a backup in
case of a power outage. For example, Aparicio and Grijalva [37] evaluate its application on
employee EVs in increasing the savings of a medium-sized business by optimally lowering
the building demand. Similarly, Dagdougui et al. [38], who explore the case of a university
campus, and Foroozandeh et al. [39], with the case of an apartment building, consider
using V2B to decrease the peak load and reduce grid overloads. They have added BESS
and PV systems, which also reduce electricity consumption expenses and the amount of
grid-imported energy, allowing greater system self-reliance. Dagdougui et al. [38] achieve
a similar outcome with an energy management system based on a dual tracking control
problem, as do Foroozandeh et al. [39] with a mixed binary linear programming smart
building model and flexible approach to each apartment’s power contracts.

Van Kriekinge et al., Becker et al., Dai et al. and Moura et al. approach the topic in
uniquely different ways and build on it. In [40], Van Kriekinge et al. present different
algorithms for the arrangement of charging schedules, combining the uni-directional
and bidirectional EV charging modes. They compare four optimization strategies for
minimizing electricity bills and reducing peak power and find that minimum state of
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charge has an essential effect on peak reduction and that oversized PV systems amplify
the model’s performance. Becker et al. in [41] approach V2B through the case of an
electric school bus fleet and perform analysis using e-buses with RES to reduce the school’s
electric utility bill. Their techno-economic model achieves a break-even cost per bus
that is enough to buy e-buses and the required charging infrastructure. Dai et al. [42]
aim to minimize energy costs in the iron and steel plant by using the combined V2B,
V2L, and V2G approaches (presented singularly in the paper as V2G) by considering the
shift-working model, which removes uncertainty in the available aggregated EV battery
capacity. Moura et al. in [43,44] seek to use V2B to better match on-site solar production
and local demand, increase the self-consumption of local RES generation, reduce building’s
electric utility bills and optimize tariffs and (dis)charging schedule. They develop models
considering the country’s legislations and restrictions they pose by focusing on parking
service while offering charging and V2B as added value.

1.2. Research Issues and Contributions

The majority of research on optimal power supply for EVCS reveals several notable
shortcomings that collectively hinder the comprehensive development of sustainable and
efficient charging infrastructures. The main drawback lies in the limited scope of exist-
ing studies, which predominantly focus on solving optimal charging problems, usually
addressing peak power reduction issues and grid integration problems. Most of these
approaches focus on specific power supply options, which usually consider the PV plant
and BESS supply separately, failing to integrate vital considerations, such as investment
and operational challenges, into their methodologies. Moreover, a significant gap emerges
from the omission of exploring diverse charging strategies, including the V2V, V2B, and
V2G charging strategy, and their influence on the design and efficiency of charging systems.
Furthermore, most research efforts tend to overlook the holistic perspective of the project
lifespan, often concentrating on short-term analyses without considering the net present
value of all future costs. This limitation neglects the long-term sustainability and economic
viability of the implemented solutions. Additionally, the interaction between the EVCS
and the building to which it is connected is frequently disregarded, a critical factor that
significantly impacts both the design and operation of the charging system. Addressing
these gaps in the literature is essential to developing holistic and practical approaches
that encompass investment considerations, diverse charging strategies, long-term cost
evaluations, and the synergistic relationship between the EVCS and building infrastructure.

The presented paper contributes to the domain of EVCS power supply optimization,
emphasizing several key aspects. First and foremost, the research aims to establish the most
efficient method of supplying power to EVCS. It achieves this objective by formulating
mathematical expressions as the MILP optimization model, effectively minimizing both
the capital expenditure (CAPEX) and operational expenditure (OPEX) over the considered
project lifetime. Unlike many existing models, this study takes a comprehensive approach,
considering not only the optimal EV charging schedule but also the integration of BESS and
PV systems and its influence on EVCS operation and costs. Another notable contribution
lies in the consideration of profit maximization through the inclusion of V2G operations
and surplus energy sales to the grid. Unlike some prior works that involve charging fees
within their models, this study adopts a broader perspective, focusing on minimizing
expenses, while allowing for the potential addition of charging or parking compensation in
the future. By doing so, this research provides a more versatile and adaptable framework,
accommodating various charging scenarios and business models. The uniqueness of
this research lies in its evaluation of four distinct yet universally applicable model cases,
encompassing smart charging, the V2B, V2G, and V2V methods, each combined with BESS
and PV systems. Additionally, the paper substantiates its findings through a rigorous
analysis of optimal solutions. Real measured data are applied to a test case, albeit with
a higher per-charger utilization rate, offering practical insights into the feasibility and
effectiveness of the proposed models.
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Key contributions of the paper can be summarized as follows:

1. The formulation of the MILP model used to minimize the net present value of both the
operational and investment costs of EVCS over its life timespan. This includes determining
the optimal EV charging schedule strategy as well as making informative investment
decisions regarding EVCS power supply options while considering the interconnected
buildings, such as office buildings, universities, or similar establishments.

2. Comparison of four generally applicable model cases that combine smart charging,
V2B, V2G and V2V methods with BESS and PV systems.

3. The analysis of the optimal solutions for a test case, applied to each of the four
model variants, using the real measured data but applied for a higher per charger
utilization rate.

The organization of the remainder of the paper is as follows: Section 2 outlines the
four distinct EVCS model schemes that were considered in the paper, and presents the
mathematical formulations of the proposed approach. Section 3 introduces the case study
under investigation and provides a thorough analysis and discussion of the obtained results.
Finally, the relevant findings and conclusions are provided in Section 4.

2. Mathematical Model

This section describes the EVCS system, depicts four power supply model variants,
presents the used nomenclature, and gives mathematical formulations with the highlighted
differences between the models.

2.1. System Description

The observed system comprises four parts connected to the grid, the EVCS, PV system,
BESS and a building as presented in Figure 1. The charging controller centrally manages
the EVCS, with available chargers at every parking lot. It coordinates the charging oper-
ations based on the data received from users, such as arrival and departure time, energy
requirement, battery capacity, and the initial state of charge.

Electric vehicles can have any initial state of energy and can be empty, near empty, full
or something in between. Optimization determines the inclusion of BESS and PV systems
in the model. The way the model will include the building depends on the individual
variant. Besides smart charging, the V2X methodologies in the model, shown in Figure 1,
are V2B, V2G and V2V. The EVCS is connected to the grid via the common coupling point,
which provides the necessary power and receives excess energy from the EVCS microgrid.

Figure 2 showcases four observed model variants. The initial configuration, illustrated
in Figure 2a, examines the EVCS and the building as separate entities since they are linked at
distinct points of common coupling. This setup explores the potential integration of Battery
Energy Storage Systems (BESS) and photovoltaic (PV) systems as supplementary power
sources for charging electric vehicles, in addition to the grid supply. The methodology
exclusively applied in this model is vehicle smart charging, which takes into account the
existing tariff scheme and focuses on minimizing overall costs. The optimal decisions
regarding the investment in PV plant and BESS are made solely from the perspective of
EVCS. The building is supplied solely from the grid, and the model neither optimizes the
building’s power source nor influences the electricity costs associated with the building.
Since this scenario determines EVCS and building costs separately, the model avoids
complex interdependencies, making it easier to understand and implement. Also, in order
to determine the optimal EVCS power supply and operation, we do not need to have a
detailed representation of the building consumption. Throughout this paper, this particular
variant will be denoted as the smart charging model or Model 1.
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GRID

BESSPV

BUILDING

CHARGING STATION

......

V2G

V2B

Only models 1 & 2
Only models 3 & 4
All models

V2V
V2X}

Figure 1. System used in this paper with smart charging and V2X options noted in colored markers:
V2V (blue), V2G (green) and V2B (red).

Model 2, or the V2V&G model, can be seen in Figure 2b. It builds on the smart
charging model by adding the V2V and V2G capabilities to the microgrid. If some vehicle
needs to leave the EVCS quickly but the available local energy generation, or energy stored
in BESS, is not enough, other vehicles can supply the necessary power to the leaving vehicle
and later charge to full capacity. In the test case, scenarios related to sudden EV departure
are indirectly modeled through the short time available for EV charging with relatively
high energy demand. In Model 1, in order to meet these charging requirements, the model
will increase the grid contracted peak power, BESS or PV plant capacity. However, by
integrating the V2V charging options, we can potentially reduce the necessary capacity
of this equipment as well as the EVCS operational costs. Similar to Model 1, the EVCS
and the building act as separate entities since they are connected to distinct points of
common coupling.

Model 3 or the smart building model, seen in Figure 2c, builds on Model 1 by incorpo-
rating the building into the EVCS microgrid while orchestrating the EV charging activities,
among other things, also in alignment with the building’s energy requirements. In this
setup, the surplus energy generated by the PV system can be utilized by the building to
reduce the overall energy demand and costs, particularly during periods of peak demand,
rather than selling the PV energy surplus to the grid at reduced energy prices. In Model 3 as
well as Model 4, given that the PV plant and BESS contribute to the energy supply of both
the EVCS and building, their optimal capacities are determined from the joint perspective
of both EVCS and building demand. Given that the building’s contracted peak power is
usually higher than its maximum peak power, connecting the EVCS through the PPC of
the existing building can help reduce EVCS grid connection costs but also the total energy
and peak power costs of the EVCS and building.
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GRID

BESSPV

BUILDING

Nanogrid

CHARGING STATION

......

MODEL 1

(a) Smart EV charging.

GRID

BESSPV

BUILDING

Nanogrid

CHARGING STATION

......

MODEL 2

(b) Smart EV charging with V2V and V2G capabilities.

GRID

BESSPV

BUILDING

Nanogrid

CHARGING STATION

......

MODEL 3

(c) Smart EV charging coordinated with building demand.

GRID

BESSPV

BUILDING

Nanogrid

CHARGING STATION

......

MODEL 4

(d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 2. Visualization of the four models observed in this paper: Models (a,b) analyze building
and EVCS separately and in models (c,d) EVCS is part of the building. Also, models (b,d) have V2X
capabilities in contrast to (a,c).

Model 4, or the V2B model, depicted in Figure 2d, incorporates the building in
Model 2, which includes all the capabilities of previous models with the bonus of the V2B
methodology. The grid supplies the core building demand, and when it is high, the BESS,
PV system and EVCS contribute to lowering the peak while ensuring the full charge of
the EVs. Given that the building and EVCS are connected over the same PoC, the model
additionally optimizes the system power supply and operation to limit the increase in the
total grid connection power and associated costs.

The four model variants cover basic EVCS microgrid schemes that can occur. This
paper compares them, but each is applicable in the real world in various scenarios.

2.2. Mathematical Formulations
2.2.1. Objective Function

The objective function minimizes the total net present costs, and determines the
optimal power for BESS and PV systems as well as the optimal charging schedule and
power supply for the microgrid:

min
Ψ

(Ctotal + Cvariations) (1)

Due to the relatively large degree of freedom in the case of ToU tariffs, it is necessary
to introduce an additional term in the objective function to reduce the EV charging and
BESS charging/discharging variability. In order to reduce these variations, we introduce an
additional term (Cvariations) in the objective function with an appropriate weight in order to
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reduce the impact on the objective function while reducing EV charging and BESS operation
variations. The function minimizes over a set of variables Ψ that slightly differ for different
model variants. To avoid repeating formulations that are the same for every variant, Model
4, the most complex of them, is used for explanation. Where differences between models
appear, they are mentioned and explained.

Total costs Ctotal include both the net present CAPEX and OPEX, and the total profit,
calculated over the project lifetime:

Ctotal = Cinvest + Cloan + Cmaintenance + CEE
operational + CBESS

replacement − Cpro f it (2)

where there are five separate cost categories: total investment costs (Cinvest), total project
financing/loan costs (Cloan), total equipment maintenance costs (Cmaintenance), total opera-
tional costs (CEE

operational) and total equipment replacement costs (CBESS
replacement). In (2), Cpro f it

represents only the income from selling excess energy to the grid. Profit here does not
consider the income from the parking lots or charging EVs. Those represent additional
income defined by consumer behavior and set by the microgrid or the owner of the parking
lots. With the exclusion of possible extra income, the model can have broader applications.

2.2.2. Investment and Loan Costs

Total investment costs in (3) represent an investment in the BESS, PV system, grid
connection and EVCS. Because the building is not a part of the investment, the equation
does not include it:

Cinvest = (cPL
var · NPL + cPV

var · PPV
install + cBESS

var · EBESS
capacity + cGrid

connect · PEVCS
contracted) · (1− f ) (3)

cPL
var, cPV

var and cBESS
var represent variable costs of investment for NPL parking lots, for a

PV system and stationary battery storage. PPV
install stands for the maximum install power for

the PV system, while EBESS
capacity represents the maximum capacity of the BESS. PEVCS

contracted is the
grid connection power for the EVCS or EVCS and building, depending on the model. When
multiplied by the grid connection price (cGrid

connect), it represents an investment in the grid for
the EVCS. Only a part of the total investment is self-financed, and the rest comes through
a long-term loan represented with parameter f . Equation (4) uses the same expressions
from (3) for the calculation of annuities required to return the loan,

Cannuity =
(cPL

var · NPL + cPV
var · PPV

install + cBESS
var · EBESS

capacity + cGrid
connect · PEVCS

contracted) · f · k
1− (1 + k)−Nloan

(4)

where the loan terms that the calculation uses are Nloan and k. k stands for the interest rate,
and Nloan represents the loan payback period, in which annuities are paid through a series
of payments at equal annual intervals. Equation (5) then uses the annuity costs to calculate
the net present value of the loan for the EVCS and, if included in the final optimized model,
for the BESS and PV systems:

Cloan = ∑
l∈Nloan

Cannuity

(1 + d)l (5)

2.2.3. Equipment Maintenance and Replacement Costs

The present value of total maintenance costs over a period of Y years is given with the
following equation:

Cmaintenance = ∑
y∈Y

CPV
maintenance + CBESS

maintenance + CPL
maintenance

(1 + d)y (6)
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where CPV
maintenance, CBESS

maintenance and CPL
maintenance respectively represent the annual mainte-

nance costs for the PV system, BESS and EVCS parking lots and equipment. The PV system
maintenance costs,

CPV
maintenance = cPV

var · PPV
install · α

PV
oper (7)

are proportional to PV install power PPV
install and depend on the system’s variable cost

per kW and operational cost as a percentage of the investment costs (αPV
oper). The BESS

maintenance costs (8) are proportional to the battery capacity EBESS
capacity in combination with

both the variable energy costs per kWh and the system’s operational costs ratio (αBESS
oper ):

CBESS
maintenance = cBESS

var · EBESS
capacity · α

BESS
oper (8)

In case that the algorithm decides not to include the BESS and PV systems in the
optimized model, both CBESS

maintenance and CPV
maintenance will be 0 because the PV install power

and battery capacity will be 0 due to (28) and (31). The annual maintenance costs for the
parking lots are given with:

CPL
maintenance = cPL

var · NPL · αPL
oper NPL ∈ N (9)

Due to BESS having a shorter lifespan than the project lifetime, for making an optimal
long-term investment decision, the calculations include replacement costs for the system:

CBESS
replacement =

cBESS
var · αBESS

replacement · E
BESS
capacity

(1 + d)Nreplacement
(10)

where αBESS
replacement is the BESS replacement ratio and Nreplacement represents the year of the

project when the system replacement should happen. The battery life expectancy depends
on the number of cycles of charging and discharging. The BESS warranty covers only a
specific period for which manufacturers can guarantee a high-enough energy retention
percentage of the initial battery capacity. BESS replacement costs reduce over time as the
technology used in it matures. Because of that, the total BESS replacement costs in (10)
represent the net present replacement cost only calculated if the optimized model includes
the BESS. The project only considers replacing the BESS. However, the same can be applied
to EVCS equipment and other components if their lifespan differs from the project’s.

2.2.4. Operational Costs

The present value of the EVCS operational costs (11) is calculated from the EVCS
yearly energy and power costs over the project lifetime Y. In the calculation, we assume
that the energy price and peak power price have a fixed annual increase rate r:

CEE
operational = ∑

y∈Y

CEE
annual · (1 + r)y

(1 + d)y (11)

The EVCS annual energy and peak power costs are calculated as follows:

CEE
annual = ∑

t∈T
CEE

hourly,t + cGrid
peak · ∑

m∈M
PGrid

max,m (12)

The first term calculates the annual energy costs for energy imported from the grid
during the T time period. The second term calculates the annual peak power costs as
the sum of the monthly peak power costs. The hourly energy costs are given with the
following equations:

CEE
hourly,t = cEE

tari f f · P
Grid+
t · ∆t (13)
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where cEE
tari f f is the energy tariff price currently in use, further defined with:

cEE
tari f f =

{
cEE

high + cGrid
high + cRES

incentive if tariff is high

cEE
low + cGrid

low + cRES
incentive if tariff is low

(14)

In the test case, we use a tariff scheme that is in use in most of Croatia’s households and
businesses. For the use of the model for the tariff schemes of other countries, it is easy to
adjust the equation to their requirements. This scheme uses two daily prices, peak and base
load tariffs, considering the power demand level. Therefore, cEE

high is a high energy tariff,

cGrid
high is a high grid use tariff, and both apply to the peak demand time, which corresponds

to work day hours. Similarly, cEE
low and cGrid

low are respectively the low-energy and grid use
tariffs in use during the base load demand hours of the night and early morning. cRES

incentive
is the RES support tax cost, which is not dependent upon the time of use and can decrease
if the energy imported from the grid is reduced (using PV power).

2.2.5. Profit

The present value of total profit is the sum of the discounted annual profits over the
project lifetime Y:

Cpro f it = ∑
y∈Y

Cpro f it
annual · (1 + r)y

(1 + d)y (15)

As costs increase over the years, so does the profit with the same fixed annual rate r.
The annual profit (16) represents the total hourly profits over a single year, i.e., over a time
period T:

Cpro f it
annual = ∑

t∈T
Cpro f it

hourly,t (16)

The hourly profit (17) depends on whether the current applied tariff is high or low:

Cpro f it
hourly,t =

{
αexport · cEE

high · P
Grid−
t · ∆t if tariff is high

αexport · cEE
low · P

Grid−
t · ∆t if tariff is low

∀t ∈ T (17)

and it is generated only from the power exported to the grid (PGrid−
t ) for the specific time

interval ∆t. αexport represents the ratio applied to the exported energy price. At that price,
in Croatia, the energy supplier should buy the excess amount of energy that the grid user
(charging station owner) supplied to the distribution grid. The source of the exported
energy depends on the model variant. It also depends on what the algorithm calculates
as the optimal power supply for achieving the optimization objective at time t. Possible
contributors to the exported power are excess energy from the PV system, energy previously
stored in BESS, and the energy from the EVs exported using the V2G methodology. All of
that is visible in the power balance equation.

2.2.6. Charging/Discharging Variations Penalization

Charging/discharging BESS/EV cost Cvariations represents the cost of EV and BESS
operation variations that do not contribute to EVCS cost minimization. It minimizes the
large variations in power fluctuations that occur during charging and discharging actions
for both BESS and EVs. The cost is calculated as the net present value sum of annual
variations costs over the project lifetime Y:

Cvariations = ∑
y∈Y

∆variations
annual · αvariations

penalty

(1 + d)y (18)
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where αvariations
penalty represents the penalty cost parameter which multiplies the annual power

variations. The annual BEES/EV power variations are calculated as follows:

∆variations
annual = ∑

t∈T
∑

i∈PL
∆EV

i,t + ∑
t∈T

∆BESS
t (19)

where ∆BESS
t and ∆EV

i,t are differences at time t for BESS and for ith EV, respectively. Both
are calculated as a difference between the current (at time t) and previous (at time t− 1)
charging or discharging power values in a way that minimizes differences as can be seen in
Equations (20)–(27). It is important to note that the moment of EV arrival at a charger is
skipped in calculations because there is no charging or discharging value before EV arrival:

PBESS
ch,t − PBESS

ch,t−1 ≤ ∆BESS
t ∀t ∈ T | t > 1 (20)

−(PBESS
ch,t − PBESS

ch,t−1) ≤ ∆BESS
t ∀t ∈ T | t > 1 (21)

PBESS
ds,t − PBESS

ds,t−1 ≤ ∆BESS
t ∀t ∈ T | t > 1 (22)

−(PBESS
ds,t − PBESS

ds,t−1) ≤ ∆BESS
t ∀t ∈ T | t > 1 (23)

PEVch
i,t − PEVch

i,t−1 ≤ ∆EV
i,t ∀t ∈ T when EV connected to charger i (24)

−(PEVch
i,t − PEVch

i,t−1) ≤ ∆EV
i,t ∀t ∈ T when EV connected to charger i (25)

PEVds
i,t − PEVds

i,t−1 ≤ ∆EV
i,t ∀t ∈ T when EV connected to charger i (26)

−(PEVds
i,t − PEVs

i,t−1) ≤ ∆EV
i,t ∀t ∈ T when EV connected to charger i (27)

2.2.7. Power Balance Equation

The energy/power balance in the simulated EVCS microgrid must be in equilibrium
at all times for the system to operate adequately. That means that the power supply and
demand for every time interval in the observed data timespan must be equal. The equation:

PGrid
t + PPV

t + PBESS
ds,t + ∑

i∈PL
PEVds

i,t = ∑
i∈PL

PEVch
i,t + PBESS

ch,t + POD
t ∀t ∈ T (28)

represents the power balance equation for Model 4, which is the most complex of the
models. The power supply encompasses all sources of energy feeding into the microgrid,
comprising PV power (PPV

t ), power from the BESS (PBESS
ds,t ), total discharged power from

EVs (∑i∈PL PEVds
i,t ) at time t, and grid imported energy (PGrid

t ) if there is any. The power

demand consists of the total power used for EV charging (∑i∈PL PEVch
i,t ) at time t, the power

for charging the BESS (PBESS
ch,t ) and the power demand of the observed building (POD

t ). PGrid
t

is not just power imported from the grid. It is rather the combination of power exported to
the grid with the power imported from it as presented below:

PGrid
t = PGrid+

t − PGrid−
t ∀t ∈ T (29)

Model 3 differs from 4 in not having EV-discharged power because it does not include
any of the V2X methodologies:

PGrid
t + PPV

t + PBESS
ds,t = ∑

i∈PL
PEVch

i,t + PBESS
ch,t + POD

t ∀t ∈ T (30)
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Model 2 has V2G functionality, just as Model 4 does, but it observes the EVCS sepa-
rately from the building:

PGrid
t + PPV

t + PBESS
ds,t + ∑

i∈PL
PEVds

i,t = ∑
i∈PL

PEVch
i,t + PBESS

ch,t ∀t ∈ T (31)

Model 1 neither has V2X capabilities nor observes the building as part of the microgrid.
In that way, it represents the simplest of the model variants:

PGrid
t + PPV

t + PBESS
ds,t = ∑

i∈PL
PEVch

i,t + PBESS
ch,t ∀t ∈ T (32)

2.2.8. Grid Constraints

The peak power for each month is calculated with the following:

PGrid+
t + PGrid−

t ≤ PGrid
max,m ∀t ∈ T, ∀m ∈ M (33)

while the optimal grid connection power for EVCS, which defines the grid connection costs,
is calculated with the following equation:

PGrid
max,m ≤ Pcontracted ∀m ∈ M (34)

Given that the objective function, among other goals, minimizes the grid connection
costs and peak power, the above expressions will limit the monthly peak power to the
exact maximum power imported from the grid in each month and set the EVCS grid
connection power to the value that is equal to the maximum power imported or exported
(whichever value is bigger) to the grid in the simulated year. The contracted power consists
of two parts:

Pcontracted = PEVCS
contracted + POD

contracted (35)

where PCS
contracted is the power contracted for the EVCS, and POD

contracted is the power contracted
for the building. If the variant does not include the building, then the equation is changed to:

Pcontracted = PEVCS
contracted (36)

In the model that analyzes joint PoC for both the building and EVCS, we assume
that the building POD

contracted is a known parameter and only look at the costs related to the
increase in contracted power due to the EVCS connection.

2.2.9. PV System Constraints

The PV system production at time t is given with:

PPV
t = PPV

install · α
PV
production,t ∀t ∈ T (37)

where PPV
install represents the optimal PV plant install power, and αPV

production,t is the relative

solar production data. PPV
install is determined during the optimization with equation:

0 ≤ PPV
install ≤ PPV

max · bPV (38)

where bPV presents a binary decision variable that indicates investment in a PV system.
Further, the PPV

max limits, formed by different factors, restrict the available area for the PV
system placement.

In case that the model finds the inclusion of BESS and PV systems to be optimal, the equation:

PGrid−
t ≤ PPV

t ∀t ∈ T (39)
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limits the power export to the grid to an amount less than or equal to the PV power
production at time t to ensure that the EVCS efficiently utilizes all of its resources and to
prevent BESS arbitrage for higher profit during peak tariff times of day.

2.2.10. BESS Constraints

In power balance Equations (28) and (30)–(32), PBESS
ch,t and PBESS

ds,t represent power
at time t for charging or discharging the battery system. Their values are constrained
with (40) and (41), where PBESS

max,t is the upper power value limit at that time for both the
charging and discharging operations:

0 ≤ PBESS
ch,t ≤ PBESS

max,t ∀t ∈ T (40)

0 ≤ PBESS
ds,t ≤ PBESS

MAX ∀t ∈ T (41)

PBESS
ch,t and PBESS

ds,t are both equal to 0 if the model decides that the inclusion of BESS in the
EVCS power supply is not optimal for achieving the main objective. Whether the model
will include it or not determines the binary variable bBESS in

0 ≤ EBESS
capacity ≤ EBESSmax

capacity · b
BESS (42)

If the model chooses to invest in the BESS, the energy capacity EBESS
capacity is optimally

set to be less than or equal to the maximum battery system capacity.
At every time t, the BESS energy level (EBESS

t ) has to be in between the Depth of
Discharge limit (αBESS

DoD ) and the BESS install capacity:

EBESS
capacity · α

BESS
DoD ≤ EBESS

t ≤ EBESS
capacity ∀t ∈ T (43)

In the simulated period at first (44) and subsequent hours t (45), the model calculates
the BESS state of energy considering the charging and discharging powers and efficiencies
for the time interval ∆t.

EBESS
1 = EBESS

capacity · α
BESS
DoD + (PBESS

ch,1 · η
BESS
ch −

PBESS
ds,1

ηBESS
ds

) · ∆t ∀t = 1 (44)

EBESS
t = EBESS

t−1 + (PBESS
ch,t · η

BESS
ch −

PBESS
ds,t

ηBESS
ds

) · ∆t ∀t ∈ T (45)

The maximum possible charging or discharging power of acquired BESS is propor-
tional to the battery capacity:

EBESS
capacity · Crate = PBESS

MAX (46)

where Crate represents the BESS charging rate at which a battery can be fully charged or
discharged. BESS can charge in two modes of operation: the constant current (CC) and the
constant voltage (CV). When the voltage and level of energy are below the CC-CV threshold,
BESS uses CC mode with a gradual increase of voltage and, at time t, it assumably charges
with maximum power PBESS

MAX :

PBESS
max,t ≤ PBESS

MAX ∀t ∈ T (47)

That changes when the system voltage reaches the CC-CV threshold (αCC−CV
threshold). Then,

to protect BESS, the charging operation switches to CV mode with constant voltage and
exponential reduction of charging current. When using CV mode, charging to the maximum
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battery capacity takes more time, and with each time interval, maximum charging power
at time t PBESS

max,t is smaller than the maximum power PBESS
MAX :

PBESS
max,t ≤

EBESS
capacity − EBESS

t

Crate · (1− αCC−CV
threshold)

∀t ∈ T (48)

2.2.11. EV Constraints

PEVch
i,t and PEVds

i,t in the power balance Equation (28) are respectively charging and
discharging power for ith vehicle. At every time t when there are no vehicles connected at
the charger i, both operations are 0:

PEVch
i,t = 0 ∀t ∈ T when no EV at charger i (49)

PEVds
i,t = 0 ∀t ∈ T when no EV at charger i (50)

The same applies to the energy state of the EV’s battery:

EEV
i,t = 0 ∀t ∈ T when no EV at charger i (51)

When the EV connects to the ith charger, its state of energy can be between 0 and the
maximum EV battery capacity at any time t:

0 ≤ EEV
i,t ≤ E

EVcapacity
i,t ∀t ∈ T when EV connected to charger i (52)

EV state of charge is given with the following equation:

EEV
i,t = E

EVcapacity
i,t · αEVon arrival

i,t + (PEVch
i,t · ηEV

ch −
PEVds

i,t

ηEV
ds

) · ∆t ∀t ∈ T when EV arrives at charger i (53)

EEV
i,t = EEV

i,t−1 + (PEVch
i,t · ηEV

ch −
PEVds

i,t

ηEV
ds

) · ∆t ∀t ∈ T when EV connected to charger i (54)

where initial EV battery state of charge (αEVon arrival
i,t ) is assumed to be known alongside its

capacity (E
EVcapacity
i,t ). The model also assumes to know EV arrival times, parking duration

and the total energy demand, mostly presumed to come from the EV owner before or
on arrival and via some mobile or web application. Requested energy demand reqEV

i,t
represents the battery state of charge upon vehicle departure at previously set time t. When
the algorithm optimizes EV charging, it also aims to satisfy owner energy requirements.
It schedules charging and discharging so that, on departure, if it is not a sudden one, the
EV battery state of charge is approximately equal to the requested one and within a ±5%
range of the requested amount. The constraint that defines it is:

reqEV
i,t · 0.95 ≤ SOEEV

i,t ≤ reqEV
i,t · 1.05 ∀t ∈ T when EV disconnects from charger i (55)

where SOEEV
i,t represents the relative EV state of charge and, concerning the EV battery

capacity, the model calculates it using the following equations:

SOEEV
i,t =

EEV
i,t

E
EVcapacity
i,t

∀t ∈ T when EV connected to charger i (56)

0 ≤ SOEEV
i,t ≤ 1 ∀t ∈ T when EV connected to charger i (57)
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EV maximum discharging power is defined with:

0 ≤ PEVds
i,t ≤ PEV

max ∀t ∈ T when EV connected to charger i (58)

while charging the EV battery uses the same CC-CV method as charging the BESS, charging
the EV with maximum power in CC mode:

0 ≤ PEVch
i,t ≤ PEV

max ∀t ∈ T when EV connected to charger i (59)

and charging with a slower rate in CV mode after reaching the CC-CV threshold:

0 ≤ PEVch
i,t ≤

PEV
max · (1− SOEEV

i,t )

1− αCC−CV
threshold

∀t ∈ T when EV connected to charger i (60)

Figure 3 shows the mentioned EV charging characteristic, which also applies to BESS
charging. It is necessary to mention that in the case of Models 1 and 3, constraints (53) and (54)

omit discharging part (
P

EVds
i,t
ηEV

ds
) in them, and constraints (50) and (58) are both excluded from the

optimization model.
The problem, formulated in this section as a MILP problem, is solved using the Gurobi

solver with the Pyomo, a Python-based optimization modelling language. While consid-
ering the constraints (2)–(60) and objective function (1), it has the objective to minimize
EVCS present costs while accounting for EV energy requirements.

C
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W
)

State of Energy (%)

State of Energy (MWh)0

P
EV

max

E
CC-CV

threshold E
EV

i,t

capacity

100%αCC-CV

threshold

Figure 3. Linear approximation of EV maximum power charging characteristic (ECC-CV
threshold is Energy

at αCC-CV
threshold).

3. Case Study and Results

This section provides information on the data, describes the use case applied to every
model variant, and presents the optimization results and their analysis. Implementing
mathematical programming models especially for making long-term investment decisions,
while powerful, does come with its challenges. The main issues faced in the implementation
include extensive data requirements, initial model assumptions as well as the influence of
potential changes in these assumptions on optimal results, and computational problems.
The proposed optimization model requires extensive and accurate data so gathering or
simulating realistic data on EV energy demand, building energy demand and compo-
nent/electricity costs is crucial. Challenges arise when such data is unavailable, incomplete,
or prone to inaccuracies. Long-term planning often involves multiple decision variables,
constraints, and objectives, leading to large and complex mathematical models, especially
in the case of models with high time resolution. Solving such models can become computa-
tionally intensive, requiring substantial time and computational resources. In addition to
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this long-term decisions are made in an environment that is dynamic and uncertain. Market
conditions, technology advancements, regulatory policies, and consumer preferences can
change over time. In the proposed model, we assume that all investment decisions are made
in the first year of the project and once set, the EVCS power supply remains unalterable
throughout the project’s duration. However, this static approach may lead to suboptimal
solutions, especially considering the potential influence of technological advancements
and cost reductions over the project’s lifespan. These factors can impact equipment sizing,
investment choices, and subsequently, the EVCS power supply and operation.

The proposed method is tested on the case study in Croatia. The test case includes
EVCS with eight commonly used AC 22 kW chargers considered for possible installation at
a rotational parking lot with eight parking spaces. The method is tested on data sampled
with a resolution of one representative year. The representative year is a non-leap year with
365 days.

3.1. Data and Parameters

The standard time interval for determining peak power in the Croatian power system
is 15 min, so every model variant is run with a 15-minute time resolution with accordingly
sampled input data.

3.1.1. EVCS Data and Parameters

To model EV energy demand patterns accurately, real measurements from publicly
accessible university and business EVCS data were utilized [45–48]. These measurements
have been extensively referenced and validated in prior research by Lee et al. [49], Amara-
Ouali et al. [50], Akil et al. [51], and Šolić et al. [52]. By utilizing this data, probability
density functions of electric vehicle arrivals/departures and energy requirements were
defined. These functions were instrumental in simulating realistic EV charging requests.
Figure 4 shows the modelled demand pattern for 19 January. The characteristics that model
variants use, as presented in the figure, include a time of arrival or departure, initial vehicle
state of charge (SOC) on arrival, requested SOC on departure, charger occupancy period,
and vehicle battery capacity. For each EV capacity, the figure displays energy capacity
numerically as the value in kWh and visually as a portion of the highest EV battery capacity
during this day. As depicted in the Figure 4, most vehicle arrivals happen in the early
morning and rarely in the afternoon. Company vehicles have different patterns and usually
charge overnight or when unused, as seen in the figure for charger 1 and partly for chargers
5, 6 and 7. Similarly, demand patterns and characteristics are generated for each day
throughout a representative year, following the same approach used for 19 January.

There are eight parking lots, each with its own vehicle charger. Investment costs per
single parking lot amount to 1000 EUR/lot, while maintenance costs equal only 3% of the
investment. EV parameters like (dis)charging efficiency, CC-CV mode switch threshold and
charger maximum rated power depend on the EV. However, in this model, it is assumed
that they are the same for every EV using EVCS at some time. The building contracted
power, as well as parameters for charging stations (CS) and electric vehicles (EV), are
specified in Table 1.

3.1.2. BESS System Parameters

If the optimization model includes BESS in the EVCS power supply, the financial model
includes its costs, considering the battery system’s lifetime of 10 years. The investment
costs amount to 200 EUR/kWh, while replacement costs are significantly lower than the
investment due to BESS cost decline projections. Table 2 shows charging and discharging
efficiency, Depth of Discharge and other BESS parameters.

3.1.3. PV System Data

Model variants use existing time series data from an actual PV plant near the potential
EVCS location to realistically model the PV system power production. Data are normalized
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according to the PV plant installed capacity to enable the use of relative solar production
data in the proposed optimization method. Figure 5 shows the relative production per time
in a day and per day in a year.

Table 1. Building, CS and EV technical and financial parameters.

Parameter Unit Value Description

NPL – 8 Number of EV
chargers/parking lots

ηEV
ch p.u. 0.95 EV Charging

efficiency

ηEV
ds p.u. 0.95 EV Discharging

efficiency

αCC−CV
threshold p.u. 0.9 EV CC-CV mode

switch threshold

PEV
max kW 22 EV charger maximum

rated power

cPL
var EUR/lot 1000 Investment variable

costs per lot

αPL
oper % investment 3 Parking maintenance

cost ratio

POD
contracted kW 150 Building contracted

power

Figure 4. CS demand pattern and characteristics for the representative day in a year, 19 January.
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Table 2. BESS technical and financial parameters.

BESS system parameter Unit Value Description

EBESSmax
capacity kWh 1000 Maximum capacity

ηBESS
ch p.u. 0.95 Charging efficiency

ηBESS
ds p.u. 0.95 Discharging efficiency

αBESS
DoD p.u. 0.1 Depth of Discharge (DoD)

αCC−CV
threshold p.u. 0.9 CC-CV mode switch threshold

cBESS
var EUR/kWh 200 Investment variable costs

αBESS
oper % investment 2 Maintenance cost ratio

Nreplacement year 10 System replacement year, i.e.,
system lifetime

αBESS
replacement p.u. 0.3 Replacement cost ratio

Figure 5. Heatmap of relative PV system production for the representative year from existing PV
plant near the potential CS location.

Regarding the financial model, investment costs amount to 1500 EUR/kWp, while
operational costs equal 2% of total investment costs. Furthermore, the PV system lifetime
equals the project lifetime of 25 years, so the optimization model does not consider PV
system replacement. The proposed method determines optimal PV system capacity given
the top plant limit of 60 kWp based on the system’s potential construction location. Table 3
presents an overview of all PV system parameters.

Table 3. PV system technical and financial parameters.

PV System Parameter Unit Value Description

PPV
max kW 60 Maximum installable power

cPV
var EUR/kW 1500 Investment variable costs

αPV
oper % investment 2 Maintenance cost ratio
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3.1.4. Building Load Data and Parameters

Models 3 and 4, in which the EVCS and the building are connected to the grid through
the same PoC, employ the modified power demand data from a representative university
building. These data help simulate the demand patterns of an office building object more
realistically. Figure 6 shows the building demand heatmap for a representative non-leap
year. The heatmap shows visible areas of peak demand during the coldest and the hottest
days of the year. There are also visible areas with low demand corresponding to the
collective vacation period, enabling testing models on different cases that can occur in
real life.

To effectively present data and outcomes from various models, the results from a
specific representative day of the year, coinciding with the peak building power demand,
are displayed. Peak demand appears on the 19th day, i.e., January 19th, and amounts
to 118 kW. The heatmap shows it in a dark red color. Contract with a local distribution
system operator limits peak demand. If a building uses more power from the grid than the
contracted power, that will increase the electricity costs. That is what smart building and
V2B models try to prevent. The building’s contracted power is 150 kW (Table 1).

Figure 6. Heatmap of representative building power demand data for a representative year.

3.1.5. Grid and Tariff Parameters

In Croatia, the Time-of-use (ToU) tariff model is used, in which tariff costs are higher
during peak demand hours than during low demand periods. The grid connection costs
are incurred as a one-time payment during the initial grid connection and are defined by
the annual peak power, while the peak power costs are paid monthly. When surplus energy
from the photovoltaic (PV) system is sold back to the grid, it is reimbursed at a slightly
reduced rate compared to the standard energy consumption tariff. Details, including this
ratio and other tariff and grid parameters, are provided in Table 4.

3.1.6. Financial Parameters

As indicated in Table 5, the project’s duration spans 25 years and is financed in part
through a loan, which accounts for only 30% of the overall investments. The repayment of
the loan occurs over a ten-year period with an annual interest rate of 5%.
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Table 4. Time-of-use tariff costs for industrial consumers in Croatia.

Parameter Unit Value Description

cEE
high EUR/kWh 0.285854 EPC 1-high tariff

cEE
low EUR/kWh 0.16815 EPC 1-low tariff

cGrid
high EUR/kWh 0.029199 GUC 2-high tariff

cGrid
low EUR/kWh 0.013272 GUC 2-low tariff

cRES
incentive EUR/kWh 0.014 RES tax

cGrid
peak EUR/kW 5.176 Peak Power Costs-PPC

αexport p.u. 0.8 Exported energy cost ratio

r % 2 EPC, GUC and PPC
annua increase

cGrid
connect EUR/kW 225 Contracted grid

connection cost
1 EPC—energy production costs. 2 GUC—grid usage costs.

Table 5. Project financial parameters.

Parameter Unit Value Description

Y years 25 Project lifetime
d % 7 Discount rate
f /(1− f ) % investment 30%/70% Loan/self-financing ratio
k % 5 Loan interest rate
Nloan years 10 Loan payback time

3.2. Workflow

Figure 7 shows the entire process involved in this work. Using Python programming
language, input data defined in the previous subsection are loaded and preprocessed
according to the required usage. The input data cover the EVCS component, which is also
presented in Figure 7. Next, using the Pyomo library, a concrete model is defined based
on the algorithm formulations defined in Section 2.2. The concrete model is then used
in the model construction. The constructed model is forwarded to the solver program
interface alongside the preprocessed input data. For the optimization process, the Gurobi
optimization solver is employed, chosen for its leading position in terms of both speed and
performance. The optimization process produces results, which are then processed into
appropriate model outputs. Model outputs are then analyzed and presented as plot figures,
which are used in the Results section.

3.3. Results and Analysis

The analysis looks at all EVCS power supply/grid connection variants or separate
pairs depending on the common factor, e.g., Models 2 and 4 both include V2X modes, while
Models 3 and 4 consider joint EVCS and building connection. With that noted, Model
4 is the most complex variant and includes everything the other three variants have. In
the optimization process, each model opts for incorporating both BESS and PV systems.
Interestingly, all variants suggest the installation of a PV system with the highest available
capacity of 60 kWp. The optimal BESS capacity differs between the variants, as seen in
Table 6, with each having a different BESS storage capacity and corresponding maximum
(dis)charging power. It is noticeable how models tend to increase the PV system capacity,
which goes hand in hand with the conclusions by Van Kriekinge et al. [40]. On the other
hand, models tend to decrease the BESS capacity, which is probably due to the BESS having,
in total, higher costs because of a lifespan that is shorter than the project’s. It is important
to note how, in this paper, BESS degradation is not directly included in the formulations
but indirectly through BESS replacement every ten years.
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Input data

Results

Solver interface

Concrete model

Model construction

BUILDING

Building contracted power,  
building power demand

Input data

GRIDEnergy production costs high 
and low tariff, grid usage costs 
high and low tariff, RES tax, 
Peak power costs, exported 
energy cost ratio, grid costs 
annual increase, contracted 
grid connection cost

Input data

Model output
Monthly peak grid power, 
total grid power, imported 
and exported grid energy, 
total grid contracted power

CHARGING STATION

......

Number of chargers, EV 
charging and discharging 
efficiency, EV CC-CV mode 
switch threshold, charger 
maximum rated power, 
investment costs per lot, 
parking maintenance cost ratio, 
EV arrival/departure time, EV 
energy requirements, EV initial 
state of charge

Input data

Model output
EV charging and discharging 
power per lot and per 
timestep, EV energy, relative 
EV state of energy, EV 
variations

BESS

Maximum possible BESS 
capacity, BESS charging and 
discharging efficiency, Depth-
of-discharge, BESS CC-CV 
mode switch threshold, BESS 
investment and maintenance 
costs, BESS lifetime, system 
replacement cost ratio

Input data Model output
BESS energy per timestep, 
BESS charging and 
discharging power per 
timestep, maximum BESS 
charging and discharging 
power, BESS energy capacity, 
BESS variations

PV

Maximum installable power, 
PV system investment and 
maintenance costs, relative 
PV system production

Input data

Model output
PV installed power capacity, 
PV power per timestep

Figure 7. Project workflow: complete process involved in the work.

When a model incorporates V2G, V2B, or V2V functionalities, it becomes apparent
that the BESS capacity is reduced compared to a scenario involving solely smart charging,
aligning with the findings presented by Kucevic et al. [27]. The same also applies to
the maximum battery power for charging and discharging. Figure 8 shows this for the
representative day in a year for each of the microgrid variants studied in this paper.

Table 6. Optimal BESS and PV variables.

Model Variant PPV
install [kW] EBESS

capacity [kWh] PBESS
MAX [kW]

1 (Smart charging) 60.0 40.38 10.1
2 (V2G and V2V) 60.0 24.19 6.0
3 (Building) 60.0 290.37 72.6
4 (V2B, V2G and V2V) 60.0 247.33 61.8

The blue line in Figure 8 represents the maximum charging power, which varies
depending on the CC-CV mode constraint, and the red line represents the maximum
discharging power. While the red lines are constant, the CC-CV blue line depends on
the BESS SOC, with the power decreasing as the SOC comes closer to 100%, and the
power increasing as the SOC decreases. The maximum powers in each subplot correspond
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to the values in Table 6. All four variants charge the BESS at night and use it during
the day, i.e., during the time of day with peak tariffs, with variant 1 using it when most
vehicles leave (around 3–7 p.m.). Models 3 and 4, which include the building in the
microgrid optimization, have a more evenly BESS discharging process than Models 1 and
2. Considering the SOC, the state never reaches below the DoD, and for every model,
BESS reaches 100% right before the bulk of vehicles connect to the CS, which is around
5–8 a.m. Most of the time, this happens throughout the representative year as shown in
Figure 9. Occasionally, certain days deviate from this typical pattern, especially in models
without buildings. These deviations involve either shifting the daily trend or maintaining a
relatively consistent SOC throughout the entire day. Furthermore, Figure 10 broadens the
insight into the overall charging trend of BESSs.

(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 8. BESS optimized maximum and real dis/charging powers and optimal SOC during the
representative day: (a) Model 1, (b) Model 2, (c) Model 3 and (d) Model 4.

Figure 10 shows BESS charging and discharging power during a single representative
year. The discharging process mainly happens between 07:00 h and 22:00 h, with the
starting and ending times shifting during the middle of the year due to advancing clocks
(and high-tariff active periods) for daylight savings time (or summer time) and falling
back to the standard time for the rest of the year. During the night and early morning,
the BESS usually charges itself. The exceptions are days with larger solar production than
consumption, which mostly happens only for Models 1 and 2 and can be seen in the figure
as the bright yellow marks during the middle of the day.

Regarding the V2X methods, they minimally affect the BESS system operation. This
is evident from the almost identical plots for Models 1 and 2 as well as Models 3 and 4,
indicating minor differences, except for the reduced power in the model variants with
V2X capability.



Sustainability 2023, 15, 16073 24 of 33

(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 9. BESS SOE heatmap during the representative year: (a) Model 1, (b) Model 2, (c) Model 3
and (d) Model 4.

(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 10. BESS charging and discharging power heatmap: (a) Model 1, (b) Model 2, (c) Model 3 and
(d) Model 4.
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Figure 11 likewise shows the BESS power differences between the models, alongside
the visualization of all other power inputs and outputs constituting the power equilibrium
in the microgrid. The figure also has marked periods of low and peak tariffs, corresponding
to Croatia’s grid tariff and the main office hours of the university or business building.
As Figure 11 confirms, the BESS charges mainly during the night from the grid, and its
power is used to charge EVs (every model) or to lower the building demand (models 3
and 4) during the peak tariff period. Considering solar power, variants 1 and 2 use it for
charging EVs or selling excess power to the grid for profit in cases of excess production,
while Models 3 and 4 use it to charge EVs and supply building demand. Models 2 and 4
with V2X capabilities also apply V2V and V2B methods (green dotted line) to either charge
leaving or suddenly departing vehicles, or respond to the building demand by lowering
grid power import amount and, consequently, the grid cost. This also achieves greater
utilization of CS, i.e., when EVs would usually stay idle, they are used for helping the
microgrid as manageable loads. Model variants 3 and 4 also have a more even grid power
distribution because of the constantly available building demand and BESS operation
to minimize the total peak power of both building and EVCS. Models 1 and 2 do not
follow that behavior, as they have higher grid demand right before and after the peak
tariff period, while during it, it is very low, given that EV charging is coordinated with
the PV production. EV charging from the grid during the low-tariff period and from the
BESS, PV system and the grid during the peak demand period, as well as discharging some
of them to lower the building demand in Models 3 and 4, helps to reduce the peak grid
power. This, however, does not achieve net or nearly zero-energy building as in the work
of Nazari et al. [35]. To reach that goal, larger solar production or other renewables would
be needed, which depends on the area available for the construction of a PV plant or other
RES of the required capacity.

As depicted in Figure 11, the V2X operation mode is typically employed prior to
the activation of a low-energy tariff. This mode is initiated by EVs departing from EVCS
sometime after the low-energy tariff has been activated. During periods of high-energy
tariffs, EVs are usually discharged just after high-tariff activation. This process is triggered
by EVs that were previously charged during periods of low energy costs and still have
ample charging time left, enabling them to recharge using solar energy from photovoltaic
(PV) plants.

If comparing models with the V2X approach, only model 4 shows negative,
i.e., discharging values. There are two reasons for this. Firstly, model 2 mostly applies
the V2V method to decrease costs, achieve profit and charge departing vehicles, which is
why charging overpowers and nullifies the discharging power in total. Secondly, Model
4, besides using V2V for cases like in Model 2, also applies the V2B method to lower the
building’s grid demand effectively, so all rarely occurring discharging events in Figure 12d
represent the application of V2B. That is also why models with V2X have, at a glance, fewer
charging events than models without it. For this use case, it is important to note how
vehicle demand patterns are applied for a higher per-charger utilization rate due to the
current small percentage of EV owners in Croatia, and consequently, these results represent
EV charging characteristics in the future or near future scenario. Figure 13 illustrates the
total power imported and exported to the grid throughout the representative year.

Imports and exports to the grid in Figure 13 reveal key patterns within the microgrid
for different operating models. It is possible to see the peak grid power demand occur dur-
ing January. Moreover, the PV system’s patterns are observable, mainly because only excess
solar power can be sold to the grid for profit. In Models 3 and 4, this only happens during
the period with low building demand during the spring with mild temperatures or during
August when, for this use case, most employees are on their collective annual summer
vacation. The same spring and summer pattern can also be seen in Figures 10 and 12.
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(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 11. All microgrid input and output powers for: (a) Model 1, (b) Model 2, (c) Model 3 and
(d) Model 4.

Figure 14 shows the optimized resulting costs for the representative day for each
15 min interval. Models 1 and 2 only show the CS costs, excluding the building costs,
which increase the daily expenses. With that in mind, it is observable that, considering the
CS, the most significant part of the costs for variants 1 and 2 occur during the low-tariff
period, while for Models 3 and 4, the highest costs are reached during the day due to the
building having its highest power demand during that time. It can also be seen that daily
costs for models with implemented V2X methodology do not differ significantly from those
without it.

The same is true for the monthly peak grid powers (Figure 15) and the total costs
(Figure 16). Examining the monthly peak powers per model, it is evident that Models 3 and 4,
incorporating both a building and the charging station in the optimization model, out-
perform the building on its own in terms of monthly peak power. Models 1 and 2 are
suboptimal because they involve independent management of the EVCS and the building,
focusing solely on optimizing the EVCS peak power costs without incorporating them into
the building’s existing power demand. Managing and optimizing EVCS together with the
building leads to an average decrease in the monthly peak power by around 34% regarding
the building itself, while separate managing leads to an increase by around 44%. Moreover,
the monthly peak powers and associated costs for Models 1 and 2 are approximately twice
greater than for Models 3 and 4.
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(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 12. EV total charging power (charging-discharging) heatmap: (a) Model 1, (b) Model 2, (c)
Model 3 and (d) Model 4.

(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 13. Total grid power (imported - exported) heatmap: (a) Model 1, (b) Model 2, (c) Model 3
and (d) Model 4.
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(a) Smart EV charging. (b) Smart EV charging with V2V and V2G capabilities.

(c) Smart EV charging coordinated with building demand. (d) Smart EV charging with V2V, V2G and V2B capabilities.

Figure 14. Daily costs/profits for the representative day for: (a) Model 1, (b) Model 2, (c) Model 3 and
(d) Model 4.

While the models employing V2X methodology exhibit higher peak powers compared
to those without it, as indicated in Figure 15, the opposite holds true for total costs. The
slight increase in peak power in models incorporating V2X operation is attributed to the
lower optimal BESS capacity determined by the model. This reduced BESS capacity limits
the microgrid operational flexibility and the potential for reducing peak power.

Figure 16 gives an overview of the main cost components contributing to the net
present cost of the entire project over its 25-year lifespan.

It is evident that in Models 3 and 4, the costs within each category are higher, mainly
because these models include building energy costs in the optimization model. Neverthe-
less, the overall total costs in models 3 and 4 still outperform those in models 1 and 2, as
well as the building energy costs when operating separately from EVCS. The primary factor
behind the substantial cost reduction in Models 3 and 4 is the direct utilization of PV energy
to supply EVCS but also building demand, thereby reducing the excess energy exported to
the grid at lower selling prices (in relation to load supply prices). While incorporating V2X
operation does contribute to overall cost reduction, its impact is not as significant.

Comparing the models with V2X and those without it, V2X contributes to the higher
profit, which ensures more considerable savings for the microgrid using V2X methodologies.
Model 4 with V2B, V2G and V2V is in every aspect better than Model 3. Model 2 has greater
operational costs than Model 1, but due to the larger profit, its total cost is lower than that
of Model 1, where the larger profit is a consequence of employing V2G and V2V, allowing
the sale of excess solar production during the day directly to the grid. Lower investment,
loan, maintenance and replacement costs in models with the V2X approach result from the
smaller BESS capacity selected in the optimization process. With all that information in
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mind, the most optimal smart microgrid model is Model 4, the most complex model of
all variants considered in this paper. Table 7 shows the total costs per model for a more
detailed comparison and insight into the exact cost differences amount.

Figure 15. Monthly peak power demand.

Figure 16. Total costs and profit per model variant.

It is evident from Figures 11, 13–16 how large-scale services cannot generate any, or at
least any significant, revenues from direct energy trade, just as Borghetti et al. [32] claim.
However, it is clear that applying this approach, specifically Models 3 and 4, achieves
significant savings in the long run, similar to Aparicio and Grijalva [37]. To generate
additional profit in cases when it is applicable and appropriate, a fee can be imposed,
whether on charging EVs themselves or on a parking service, like Moura et al. propose
in [43,44], depending on the circumstances.
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Table 7. Total costs and cost difference per model variant.

Model Variant Total Cost [EUR]
Cost Increase or Decrease in
Comparison with Building
Only Cost [EUR] 1

Cost Difference between
Models Paired Considering
with and without Building
Included (1 vs. 3; 2 vs. 4)
[EUR] 2

1 1.216.199 39.350 245.358
2 (V2G and V2V) 1.211.409 34.560 253.022
3 (With building) 970.840 −206.008 −245.358
4 (V2B, V2G and V2V) 958.387 −218.461 −253.022
Only building (no CS) 1.176.849 – –

1 Positive values—cost increase; negative values—cost decrease. 2 Positive values: model 1-model 3,
model 2-model 4; negative values: model 3-model 1, model 4-model 2.

Regarding the influence of V2X methodologies on the total cost, it is important to
note that even though this work determines optimal EVCS (dis)charging management, the
main goal of the model is to optimally dimension potential power sources and to estimate
the EV charging cost with optimal EVCS mode of operation for the total of the project’s
lifetime considering both investment and operational costs, which can be seen in Table 7.
Therefore, the algorithm does not explicitly consider all stochastic scenarios, e.g., the
sudden departure of one or more EVs from the EVCS. Those scenarios are rather indirectly
modeled into the simulation by using real data from existing EVCS in the arrival/departure
scenario generating process. Because of that, in the mentioned scenarios, depending on
the selected power supply method, the model independently determines in which way to
satisfy the user’s charging request in that short period of time. The model itself determines
the (dis)charging strategy to implement in a given situation, depending on the possibilities
and the general impact of each action on the total costs. An example of such an action,
implementing V2X, can be seen in Figure 11b model 2, which is not influenced by building
demand, where at the end of the working day, when most vehicles are departing, the
charging and discharging of EVs simultaneously occur. Generally, the possibilities of
meeting the requests of users who, unannounced, stop the charging operations are limited
due to the limited time and power constraints. Furthermore, it is also questionable whether
there is an obligation to comply with the request of the user who suddenly changes the
initial charging requests. In this case, it is rather difficult to achieve. This is difficult to
achieve even in the case of a per-day-basis EVCS and EV-charging management, but in that
case, it would be possible if EVs frequently visit the EVCS and, therefore, if modeling the
data includes identification information about particular EVs. That, however, is not the
focus of this work and would require a different and more complex approach.

4. Conclusions

In summary, this study presents an innovative method employing mixed-integer linear
programming formulation, aiming to achieve three key goals. These goals include optimiz-
ing charging schedules and power supply strategies for EVCSs while integrating seamlessly
with existing building demand. Additionally, the approach focuses on minimizing the net
present value of both the capital investment and operational costs of EVCS. The study also
assesses the impact of smart charging, V2X techniques, and grid connection alternatives,
aiming to reduce overall charging costs effectively.

The study compares four model variants, some employing smart charging alone and
others integrating V2X methods. Additionally, the presence or absence of a building within
the microgrid context is explored. The results reveal that models that consider a joint grid
connection of EVCS and building, despite having higher costs within individual categories
due to the inclusion of building energy expenses, demonstrate superior performance in
terms of overall total costs over the project’s lifespan. This cost reduction is primarily
attributed to joint power supply optimization and the direct utilization of PV energy
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for both EVCS and building demand, minimizing excess energy exports to the grid at
lower prices. Furthermore, while the incorporation of V2X operations does contribute to
cost reduction, its impact is comparatively modest. The total cost reduction will also be
influenced by incentives that end consumers receive for participating in such operations but
also by operational costs related to the management and maintenance of the V2B, V2V and
V2G charging infrastructure. This suggests that the direct integration of renewable energy
sources, particularly PVs, plays a pivotal role in achieving significant cost savings and EV
charging cost reduction. Given that the V2G option in combination with the optimal BESS
offers the potential for providing ancillary services and the generation of extra income,
future research will focus on extending the proposed model to include these aspects in
the EVCS power supply optimization problem. Additionally, understanding the intricate
balance between EV consumer incentives and operational costs in V2B, V2V, and V2G
charging strategies is crucial. In this sense, future research will also focus on determining
the levelized cost of EV charging for different charging strategies as well as on policy
recommendations that stimulate EV participation.

In conclusion, this research not only sheds light on optimal charging strategies and
power supply methods for EVCS but also emphasizes the critical importance of integrating
renewable energy sources efficiently. By leveraging renewable energy directly for both
building and EVCS needs, substantial reductions in overall project costs can be achieved,
paving the way for a more sustainable and economically viable electric vehicle infrastruc-
ture with reduced grid impact.
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