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Abstract: Freeway crashes represent a significant and persistent threat to road safety, resulting in 

both loss of life and extensive property damage. Effectively addressing this critical issue requires a 

comprehensive understanding of the factors contributing to these incidents and the ability to accu-

rately predict crash severity under different traffic conditions. This study aims to improve the accu-

racy of crash classification by incorporating key traffic-related variables such as braking, weather 

conditions, and speed. To validate the effectiveness of proposed model, we utilize real-world crash 

data from Flint, Michigan. To achieve the objective, we employ an innovative Boosting Ensemble 

Learning approach, leveraging five advanced ensemble learning models: Gradient Boosting, Cat 

Boost, XGBoost, LightGBM, and SGD. Through the application of hyperparameter optimization 

techniques, we further enhance the performance of these models, improving their predictive capa-

bilities. Our evaluation results demonstrated the effectiveness of our approach, with Gradient 

Boosting algorithms achieving an accuracy rate of up to 96% in crash classification. This research 

provides valuable insights into the potential of using Boosting Ensemble Learning as a tool for ac-

curately and efficiently classifying freeway crashes across a spectrum of traffic conditions. Addi-

tionally, it sheds light on the nuanced variations in crash mechanisms observed when employing 

diverse ensemble learning models. The findings of this study underscore the significance of hy-

perparameter optimization as a critical factor in elevating the predictive precision of freeway 

crashes. 

Keywords: boosting ensemble learning; machine learning; Shapley Additive Explanations (SHAP); 

freeway crash; traffic conditions  

 

1. Introduction 

Road traffic crashes (RTCs) exert a profound and far-reaching influence on global 

public health, leading to fatalities and grievous injuries [1]. According to the World Health 

Organization (WHO), traffic accidents contribute to 1.35 million deaths annually, with 
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traffic-related injuries emerging as the primary cause of death among the younger popu-

lation [2]. Accurately predicting the severity of RTCs is of the utmost importance for im-

plementing effective measures to reduce crashes and ensure a timely medical response. In 

pursuit of this objective [3], researchers have proposed diverse models that amalgamate 

environmental, vehicle, driver, and roadway data [4]. 

This paper addresses the intricate task of precisely classifying freeway crashes occur-

ring amid varying traffic conditions. Freeway crashes introduce heightened complexity 

compared to incidents on other road types, owing to elevated speeds, higher traffic vol-

umes, and intricate multi-lane configurations. Achieving accurate classification of freeway 

crashes necessitates a holistic consideration of variables such as speed limits and prevail-

ing weather conditions. 

The primary driving force behind this research is the critical concern of freeway 

crashes, which represent a substantial menace to road safety, leading to both human cas-

ualties and property damage. This study seeks to enhance the precision of freeway crash 

classification, particularly in diverse traffic scenarios. The core motivation for this research 

lies in the creation of a dependable predictive model that integrates multiple traffic varia-

bles, including braking, weather conditions, and speed, with the overarching goal of im-

proving road safety, minimizing crash severity, and reducing related expenses. Our re-

search is propelled by the critical need for the meticulous and timely classification of free-

way crashes, thereby elevating road safety and mitigating associated costs. The domain of 

traffic crashes remains a globally recognized public health concern, leading to significant 

loss of life, injuries, and property damage. Specifically, freeway crashes introduce further 

layers of complexity due to their high speeds, dense traffic flow, and intricate lane ar-

rangements. Effectively categorizing freeway crashes stands as a pivotal endeavor, shed-

ding light on underlying causes and laying the groundwork for impactful preventive 

measures. 

The problem addressed in the study is the accurate classification of freeway crash 

severities under different traffic conditions. Freeway crashes pose a significant risk to road 

users, and identifying the severity of these crashes is crucial for implementing appropriate 

safety measures, emergency responses, and infrastructure improvements. However, the 

complexity and variability of traffic conditions make it challenging to achieve reliable and 

accurate crash severity classification. Traditional statistical models may have limitations 

in capturing the intricate relationships between various factors that affect crash severity. 

Traditional approaches for classifying freeway crashes rely on handcrafted features and 

decision rules that may not capture the complex relationships between different factors. 

Machine learning techniques have shown great potential in accurately classifying traffic 

crashes, including freeway crashes.  

The proposed solution approach utilizes Boosting Ensemble Learning, which com-

bines multiple weak learners to create a stronger and more accurate classification model. 

Ensemble learning methods, such as AdaBoost or Gradient Boosting, can effectively over-

see complex relationships and interactions among atypical features in the dataset. Addi-

tionally, hyperparameter optimization techniques are employed to fine-tune the parame-

ters of the ensemble learning model with an aim to optimize their performance. Boosting 

ensemble learning is a powerful machine learning technique that has been successfully 

applied to various classification tasks, including traffic crash classification. The proposed 

approach combines boosting ensemble learning with three feature sets: speed limit, speed, 

and weather conditions, to enhance the accuracy of freeway crash classification. The goal 

of this research is to develop an accurate and reliable classification approach that can aid 

in enhancing road safety and reducing associated costs. The goal of this approach is to 

enhance road safety by accurately classifying freeway crashes and reducing associated 

costs. The proposed approach is evaluated using a real-world dataset of freeway crashes 

and compared to several state-of-the-art classification methods to demonstrate its effec-

tiveness. 
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The remainder of the paper is organized as follows: Section 2 discusses the literature 

related to the prediction of traffic accident severity and its influencing factors; Section 3 

explains the research methodology used; Section 4 discusses the experimental work and 

results; finally, Section 5 provides a conclusion of the work. 

2. Background and Related Work  

Researchers have conducted numerous studies on the factors affecting RTCs, and 

several factors have been identified to have significant effects on the frequency and sever-

ity of these crashes. 

2.1. Factors Affecting RTCs on Freeways 

Freeway Road Traffic Crashes (RTCs) stand as a significant concern for public safety, 

emphasizing the critical importance of comprehending the contributing factors for effec-

tive road safety management and the mitigation of future crash severity. This study delves 

into a comprehensive exploration of the diverse elements that wield influence over free-

way RTCs, encompassing weather conditions, road surface attributes, geometric design, 

driving speed, human errors, and even the presence of animals on the road. Weather con-

ditions, including slush, snow, and rain, have emerged as substantial catalysts for freeway 

road traffic crashes, as shown in Figure 1. Equally noteworthy are the adverse effects of 

poor road surfaces, particularly wet and icy pavement surfaces, which have been identi-

fied as key contributors to a significant portion of these crashes. The findings from the 

Federal Highway Administration (FHWA) indicate that 24% of vehicle collisions occur on 

slushy, snowy, or icy pavements, with an additional 15% transpiring during snowstorms. 

Astonishingly, adverse weather conditions alone account for about 24% of collisions, re-

sulting in an estimated 7400 annual deaths in the United States. The imperative to consider 

weather conditions in road design and maintenance cannot be understated. Such consid-

erations are pivotal in fostering safer travel conditions for all users of the road. By ac-

knowledging these influential factors, we can collectively work towards safer and more 

secure road networks. 

 

Figure 1. Drive in dry, wet, snowy, and icy road conditions. 
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Road conditions and friction wield substantial influence over the occurrence of road 

traffic crashes. A study conducted by Khattak [5] unearthed the correlation between wet 

and slippery road surfaces and heightened crash probability, underscoring the signifi-

cance of maintaining well-kept pavements and effective drainage systems to mitigate 

standing water on roadways. Likewise, research by Akhtar [6] highlighted the adverse 

impact of low pavement friction on crash likelihood, emphasizing the necessity for regular 

road surface maintenance to ensure optimal friction levels. 

Geometric design forms another pivotal factor capable of shaping road safety. Fac-

tors such as road curvature and slope, particularly sharp bends and steep inclines, can 

elevate accident risks—especially if drivers are inadequately prepared for such conditions. 

Enhancing warning signs and establishing fitting speed limits for these road segments can 

curtail the potential for crashes. The role of speed in influencing the probability and grav-

ity of road traffic crashes has also been addressed by Elvik [7]. Elevated speeds heighten 

both the likelihood of crashes and the severity of resultant injuries. Thus, the reduction of 

speed limits on rural roads emerges as a potent strategy for significantly diminishing the 

occurrence of fatal crashes. Human error emerges as a pivotal contributing element in 

road traffic crashes. Distraction, fatigue, alcohol and drug usage, and speeding—as high-

lighted by Peden [8] —all stand as catalysts for human errors that can culminate in acci-

dents. The mitigation of human error necessitates a comprehensive approach involving 

improved driver education and awareness, the implementation of more stringent laws 

and regulations, and the utilization of technology to aid drivers in recognizing and avert-

ing potential hazards. 

Hence, enhancing warning signs and ensuring fitting speed limits on these specific 

road segments can effectively curtail the likelihood of accidents. Speed emerges yet an-

other pivotal element, impacting both the probability and gravity of road traffic crashes, 

as elucidated by Elvik [7]. Escalated speeds heighten crash probabilities while also inten-

sifying the extent of sustained injuries. Consequently, a reduction in speed limits for rural 

roads holds the potential to significantly reduce the occurrence of fatal crashes. Human 

error constitutes a substantial contributing factor in road traffic accidents. Distraction, fa-

tigue, alcohol, and drug use, as well as speeding—as pointed out by Peden [8]—collec-

tively contribute to human errors that can culminate in accidents. The resolution of human 

error demands a holistic strategy that encompasses enhanced driver education, height-

ened awareness, the enactment of more stringent laws, and the utilization of technology 

to aid drivers in recognizing and averting potential hazards. 

Furthermore, the presence of animals on the road can elevate the risk of road traffic 

crashes, especially in rural areas, as highlighted by Jägerbrand and Elvik [9]. Introducing 

wildlife warning signs and bolstering road fencing in regions with substantial animal pop-

ulations can effectively curtail crash numbers. Consequently, road traffic crashes on free-

ways are influenced by an array of factors, such as weather conditions, road quality, geo-

metric design, speed, human error, and the presence of animals. Addressing these multi-

faceted aspects demands a comprehensive approach encompassing infrastructure en-

hancements, driver education and training, law enforcement, and advancements in vehi-

cle technology. By mitigating the frequency and severity of crashes, we can undoubtedly 

enhance road safety for all users.  

The authors established a vertical dynamic model to enhance passenger comfort in 

high-speed trains caused by vibrations in the overall structure [10]. Low-frequency reso-

nance was reduced by building a suspension system based on a damper. Significant im-

provements of 21.3%, 9.3%, and 6.6% were achieved in ride comfort compared to tradi-

tional suspension in its primary and secondary parts. A system has been built to control 

the vehicle’s path tracking in various traditional and complex conditions by focusing on 

the vehicle’s dynamics, including speed, trajectory, and curves [11]. 

While significant progress has been made in understanding the factors behind road 

traffic crashes on freeways, certain research gaps persist. For instance, though the study 

underscores the importance of tackling human error, there remains a deeper exploration 
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required into the specific types of distractions and driving behaviors that precipitate these 

crashes. Furthermore, additional research is warranted to evaluate the effectiveness of di-

verse road safety interventions, including measures like wildlife warning signs and en-

hancements to road geometry. Nevertheless, it is important to note that the cited study 

does contribute significantly to our grasp of the factors influencing road traffic crashes on 

freeways. By meticulously identifying and examining these factors, encompassing aspects 

such as weather conditions, and more, the study offers a comprehensive panorama of the 

hurdles demanding attention for the enhancement of road safety. Particularly commend-

able is the study’s emphasis on adopting an integrated approach that encompasses infra-

structure enhancements, driver education and training, law enforcement, and advance-

ments in vehicle technology. This contribution underscores the pressing need for multi-

faceted solutions that can effectively curtail both the frequency and severity of RTCs.  

2.2. Machine Learing Approaches to Vehicle Crash Prediction 

Statistical models serve as mathematical tools to establish the relationship between 

crash severity and explanatory variables. These models rely on assumptions about uncer-

tain distributions and employ hypothetical tests to gauge how different variables impact 

accident severity. For example, Cerwick et al. applied latent class multinomial and mixed 

logit models to predict crash severity, identifying crucial features encompassing crash-

specific, roadway, temporal, driver, and environmental factors [12]. Similarly, Haghighi 

et al. utilized multilevel ordered logit and standard ordered logit models to examine the 

influence of roadway geometric features on crash severity [13]. Regression models often 

come into play for analyzing correlations between risk factors and injury severity in vehi-

cle-pedestrian crashes [14]. However, statistical models face limitations when overseeing 

large, complex crash datasets containing numerous discrete variables or variables with 

multiple sub-categories. Furthermore, these models frequently rely on robust statistical 

assumptions, such as linearity, which can prove challenging to validate within real crash 

scenarios. 

To address these challenges, non-parametric data mining techniques, such as ma-

chine learning (ML) and deep learning, have emerged as promising and viable alterna-

tives. These techniques are purpose-built to reveal hidden patterns, unravel complex 

structures, and unveil intricate interactions within large datasets. One of their key 

strengths lies in their capacity to identify non-linear effects between variables [15]. Addi-

tionally, ML techniques have the significant advantage of requiring minimal assumptions 

about data structures. They excel in managing even the most intricate datasets, and con-

sistently deliver satisfactory modeling accuracies [16]. In essence, these non-parametric 

techniques provide a significantly more flexible and effective approach for dissecting and 

comprehending the multifaceted relationships within extensive datasets, a requirement 

that is particularly pronounced in domains such as road safety analysis. 

Numerous studies have juxtaposed the performance of ML techniques with statisti-

cal models in predicting crash severity, consistently demonstrating the superior predictive 

prowess of ML models. For instance, Chang et al. achieved remarkable accuracy in crash 

severity prediction using classification and regression tree models [17]. Study harnessed 

a Multi-layer Perceptron (MLP), achieving commendable accuracy rates in predicting traf-

fic accident severity [18]. Delen et al. harnessed an artificial neural network (ANN) to es-

timate collision severity, leading to improved prediction accuracy [19]. Additionally, 

Alkheder et al. juxtaposed ANN with the probit technique, confirming the preeminence 

of ANN in predicting accident severity [20]. Notably, neural network methods have con-

sistently exhibited superior performance in crash severity prediction. 

Recent research has consistently displayed the heightened predictive capabilities of 

ML models over statistical counterparts in forecasting injury severity [21,22]. However, 

ML models often face criticism for their opaque operations and a dearth of interpretability 

in output. Consequently, the demand for interpretable ML models in crash severity pre-

diction is on the rise [23]. Traditional statistical models have historically played a 



Sustainability 2023, 15, 15896 6 of 32 
 

significant role in data analysis and decision-making across a wide array of domains. Nev-

ertheless, when confronted with extensive and intricate collision datasets, they encounter 

significant challenges that result in several noteworthy limitations. Among these chal-

lenges is the issue of scalability, wherein traditional models grapple with the efficient pro-

cessing of vast data volumes. This can lead to protracted processing times and potential 

resource constraints. Furthermore, these models rely on specific data assumptions, such 

as linearity and normality, which can be violated within the complex context of collision 

datasets, potentially yielding inaccurate results. Additionally, collision datasets inher-

ently encompass multifaceted interactions among numerous variables, often featuring 

non-linear relationships and higher-order effects that traditional models find challenging 

to capture. In response to these limitations, our innovative Boosting Ensemble Learning 

approach emerges as a compelling solution. Leveraging Boosting’s iterative nature, it ex-

cels in identifying and modeling complex interactions among variables, uncovering intri-

cate patterns that traditional models might overlook. This inherent capability significantly 

enhances predictive accuracy, effectively addressing these critical challenges in collision 

data analysis. 

The substantial contribution of this study lies in the utilization of interpretable ma-

chine learning models to enhance the classification of freeway crashes. This provides val-

uable insights into predicting crash severity and holds the potential to improve road safety 

measures. The findings suggest that ensemble learning models, including classification 

and regression trees and artificial neural networks, outperform statistical models in pre-

dicting crash severity. Previous efforts to develop predictive models for freeway crashes 

have faced limitations such as low accuracy and interpretability gaps. The approach 

adopted here, centered on interpretable machine learning models, effectively addresses 

these constraints and makes a valuable addition to the field of road safety. Ensemble learn-

ing models have gained widespread adoption in various applications due to their ability 

to enhance prediction accuracy by combining multiple base models. However, fine-tuning 

optimal hyperparameters for these models presents a challenge due to the multitude of 

parameter adjustment requirements. Our adoption of the Boosting Ensemble Learning 

approach, particularly through the utilization of tree-based models such as Gradient 

Boosting, Cat Boost, and XGBoost, displays a distinct advantage over conventional linear 

models when applied to the intricacies of collision data analysis. These ensemble models 

exhibit exceptional adaptability and competence in managing non-linear patterns, intri-

cate interactions, and the innate complexities frequently observed in collision datasets. 

Nevertheless, it is of the utmost importance to acknowledge and address the challenges 

and intricacies inherent in validating conventional statistical assumptions [24–30]. In this 

study, we delve into an assessment of the effectiveness of hyperparameter optimization 

on the performance of three ensemble learning models (CatBoost, XGBoost, and 

LightGBM) for classifying freeway crashes across varying traffic conditions. The applica-

tion of interpretable machine learning models and the examination of hyperparameter 

optimization techniques in this study contribute to our improved understanding of pre-

dicting crash severity in freeway settings. These findings have tangible implications for 

refining road safety strategies and can significantly assist in developing effective ap-

proaches to reduce the frequency and severity of freeway crashes. 

2.3. Case Study  

The case study was thoughtfully executed within the boundaries of Flint Township, 

Michigan, tracing its path along the I-69 freeway. Flint, a city nestled in the heart of Mich-

igan, stands sixty-six miles (106 km) from the bustling urban hub of Detroit, and finds its 

serene beauty graced by the gentle flow of the Flint River. The bedrock of our study lies 

in the meticulously curated data sourced from the archives of the Michigan Freeway Traf-

fic Crashes (MFTC) records. These records weave a vivid tapestry of traffic incidents that 

unfolded along the expansive canvas of the I-69 freeway. To breathe life into these records 

and offer a glimpse into the essence of these impactful incidents, the driving simulator 
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emerged as an invaluable ally, as detailed in reference [24]. For a visual tour of the pivotal 

locations that bore witness to these noteworthy crashes along the selected freeway, please 

refer to the visual representation in Figure 2. 

 

Figure 2. Field of study on Michigan I-69 in Flint. 

3. Materials and Methods  

The proposed explainable predictive model for crash prediction is a comprehensive 

and reliable approach that consists of six key phases. These phases aim to gather data on 

driver behavior and factors contributing to crashes, process and clean the collected data, 

develop ensemble learning models, fine-tune the models through hyperparameter tuning, 

explain the model’s workings and predictions, and provide a detailed analysis and dis-

cussion of the results. 

The first phase, “Driving Simulator Scenario Analysis,” utilizes a driving simulator 

to recreate various driving scenarios and understand the impact of driver factors on 

crashes. In the “Data Collection and Pre-processing” phase, the collected data is cleaned, 

processed, and structured to ensure its quality and suitability for model building. The 

development of five ensemble learning models is conducted in the third phase. “Model 

Building and Hyperparameter Tuning,” the fourth phase, focuses on fine-tuning the en-

semble learning models using a hyperparameter tuning process. The “Explanation of Re-

sults” phase is crucial for increasing transparency and accountability. It involves provid-

ing insights into how the model works and how the predictions were generated. Lastly, 

the results are comprehensively analyzed and discussed. The proposed model follows a 

systematic and rigorous approach, incorporating various phases to ensure reliability and 
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explain the ability of the crash prediction process. Figure 3 shows the proposed research 

approach. 

 

Figure 3. A flow chart of the proposed approach. 

3.1. Driving Simulator Scenario Analysis 

In the phase of “Analyzing Driving Simulator Scenarios,” our aim is to delve into the 

intricate dynamics shaped by diverse driver factors like age, gender, and driving experi-

ence, among others. This exploration serves as a compass guiding us towards uncovering 
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the crucial elements that influence crashes, offering valuable insights that fuel the evolu-

tion of our predictive model. The scenarios were meticulously simulated and thoughtfully 

crafted to mirror the intricate tapestry of real-world driving experiences. These scenarios 

encompass a spectrum of situations, including lane changes, intersections, merging, and 

overtaking maneuvers, all intricately interwoven to capture the essence of driving behav-

ior in its full complexity. This deliberate design allowed us to bridge the gap between 

simulated and actual driving, empowering efforts to enhance the accuracy of our predic-

tive model. 

Table 1 provides an overview of the driving simulator scenarios employed in this 

study. Each scenario is uniquely identified by a designated number and encompasses vital 

details, including design considerations (eastbound or westbound), speed variables, di-

rectional aspects (exit 138–139), prevailing weather conditions, road surface characteris-

tics, and a comprehensive metric quantifying the driving simulator scenarios, all eluci-

dated in Figure 4 The driving scenario was adeptly presented to the driver from their own 

perspective, a dynamic captured and depicted in Figure 5. Various sensors and instru-

ments were harnessed to meticulously gauge the driver’s actions, spanning aspects like 

speed, lane adherence, reaction time, and an array of driving-associated behaviors. This 

data was methodically collected and subjected to detailed analysis, as outlined in the fol-

lowing sections. 

 

Figure 4. Driving simulator software. 
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Vehicle entering the highway and LM vehicle from ramps 138 and 139 

 
 

Figure 5. Location of crashes in I-94. 

Section I—First and Third Scenarios: 

In the initial and third scenarios, denoted as S2 and S3, respectively, drivers enjoyed 

the flexibility to navigate the first and second lanes, interchanging between them within 

the established speed parameters. Within these scenarios, certain drivers encountered in-

stances of collision involving vehicles merging into their lane (ML) and those already pre-

sent on the highway (HO). In particular, 70% of participants in Scenario 1 reported that 

the prescribed speed limit positively influenced their capacity for reaction and controlled 

braking. However, a challenge emerged as they found it hard to maintain clear object vis-

ibility while driving. In the case of Scenario 3, the majority of 60% of drivers noted no 

significant impact from the speed limit on their control. Remarkably, 83% of them pointed 

out that vehicles entering from ramps (ML) did indeed impact their driving experience. 

Section II—Second and Fourth Scenarios: 

Shifting attention to scenarios S2 and S4, a lane restriction was placed on drivers, 

limiting their movement to the first and second lanes, while still allowing lane switches 

within the permissible speed range. These scenarios introduced wet and rainy weather 

conditions. Impressively, more than half of the participants in both scenarios adeptly man-

aged to bring their vehicles to a halt through vigorous braking, effectively averting colli-

sions with slowing vehicles (SD). Nevertheless, a collective total of ten crashes occurred 

in S2, and six crashes in S4. Notably, eleven crashes emerged because of lane changes, a 

phenomenon exhibited in both scenarios. Interestingly, a considerable proportion of 
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drivers, comprising 77% in S2 and 60% in S4, acknowledged the weighty influence of the 

speed limit on their sense of safety during driving, particularly in situations involving 

lane changes or speed reduction by leading vehicles. 

Table 1. Features of driving simulator scenarios for the study. 

Scenario 
Design 

Speed 

Direction (Exit 

138–139) 
Weather 

Road Surface 
Driving Simulator Scenarios 

Condition μ Tire 

Scenario1 

Scenario3 

80 

70 
eastbound clear dry 0.95 

Vehicle lane merge (LM) and hit 

object (HO) 

Scenario2 

Scenario4 

80 

70 
westbound cloudy, rain wet 0.55 

Vehicle slowed down (SD) and 

change lane (CL) 

Scenario5 70 eastbound snow snow 0.20 
Drive in snow weather 

and snow road condition 

Scenario6 70 eastbound clear icy 0.10 
Drive in clear weather and icy 

condition 

Scenario7 50 eastbound snow snow 0.20 
Drive in snow weather snow 

condition 

Scenario8 50 westbound clear icy 0.10 
Drive in clear weather and icy 

condition 

Scenario9 40 eastbound snow snow 0.20 
Drive in snow weather snow 

condition 

Scenario10 40 westbound clear icy 0.10 
Drive in clear weather and icy 

condition 

Section III—Fifth, Seventh, and Eighth Scenarios: 

Shifting gears to scenarios carrying higher speed limits, intriguing patterns surfaced, 

with a positive correlation to crashes caused by vehicles slipping out of control. These 

tendencies were prominent in scenarios S5, S7, and S8, prompting a consensus among 

most participants for a reduction in the speed limit to mitigate such occurrences. Con-

versely, in S9, where speeds were more aligned with the prescribed limit, a majority re-

ported favorable driving experiences, advocating for the maintenance of the current speed 

limit. Across the board, participants encountered difficulties in maintaining vehicle con-

trol, particularly on curved paths and during braking. 

Section IV—Sixth, Eighth, and Tenth Scenarios: 

Taking a dive into scenarios characterized by snowy weather conditions and icy 

roads, the playing field shifted significantly. These conditions were observed in S6, S8, 

and S10, each scenario bearing distinct speed limits. Notably, a total of seventy-eight 

crashes occurred, primarily driven by a loss of control due to the slippery terrain. The 

speed ranges for these crashes spanned from 20 to 67 mph for S6, 45 to 65 mph for S8, and 

18 to 55 mph for S10. Impressively, 96% of drivers in S6 recognized the icy roads, with 

81% encountering control issues. In S8, 70% found the speed limit fitting, but 52% still 

wrestled with maintaining control. S10 saw 76% approving of the speed limit, but 24% 

advocated for a reduction to thirty mph. Notably, a fascinating aspect emerged with ten 

crashes attributed to collisions with deer. 

3.2. Data Collection and Data Descriptive 

The investigation into driving under snowy weather conditions adhered to rigorous 

ethical protocols and gained approval from the Lawrence Technological University Insti-

tutional Review Board. In total, 110 participants engaged in the study, encompassing ten 

individuals in a preliminary pilot study and one hundred participants forming the core of 

the main experiment. This diverse group was meticulously selected from Lawrence Tech 
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University’s database, with stringent criteria applied. Prospective participants were re-

quired to possess a valid driver’s license, be aged eighteen or above, and have experience 

in navigating interstate highways under varying weather circumstances. 

A comprehensive breakdown of the variables encompassed within the crash dataset 

is provided in Table 2. These variables seamlessly capture pivotal insights spanning driver 

attributes, driving conduct, road conditions, and crash incidents. Each variable is meticu-

lously labeled to denote its corresponding information type, encompassing aspects such 

as age, gender, brake response, speed limit, instances of speeding, prevailing weather con-

ditions, frictional coefficient, and ultimate crash status. Examining further, the variable 

levels meticulously outline the array of conceivable values or categories for each variable. 

These range from numerical values to distinct categorical options. This data repository 

equips us with the requisite resources to undertake an exhaustive analysis of the multi-

faceted contributors to crashes. Furthermore, this repository plays a pivotal role in devis-

ing efficacious strategies aimed at elevating road safety standards. At the core of this in-

tricate web of information lies the dependent variable, serving as a conduit for the intricate 

relationships within. Its recorded ordinal values, encompassing four distinct levels (0, 1, 

2, and 3), offer a nuanced lens into the diverse categories of observed crashes. 

Table 2. Description of Variables in the Crash Dataset. 

ID Variable Type of Variable Variable Levels Description 

1 Age Numerical - 18–55 

2 Sex Categorical Female; Male Gender 

3 Brake Response Categorical 

No brake = 0; one 

Brakes = 1; Two Brakes 

= 2 

The value could be 0 if drivers did not press 

the brake, 1 if driver breaked once, and 2 if 

driver breaked twice. 

4 Speed Limit Categorical  Speed limit depended on weather 

5 Speeding Categorical 40, 50, and 70 
The average subject speed. It is measured in 

miles/hour 

6 Weather Condition  Categorical 
Clear = 1; Icy = 4 

Wet = 2; Snow = 3 
Road surface 

7 
Frictional 

Coefficient 
Numerical 0.1; 0.3, 0.55, 0.95 The friction coefficient for the tire 

8 Crash Categorical 
No; crash 1, crash 2, 

crash 3 

Drivers did not crash or crashed once, twice, 

or three times 

3.3. Data Preprocessing  

Data preprocessing is a vital step in preparing data for machine learning models. It 

involves various techniques to ensure the data is in an appropriate format for analysis and 

model training. Multiple preprocessing techniques were applied to transform our raw da-

taset into a suitable format for training machine learning models. 

Data cleaning is the first stage. In this study, we inspected the data for missing values 

and anomalous outliers, common issues with real-world data. First, since real-world data 

often has issues, we checked for missing values and weird outliers. We filled in any miss-

ing continuous data by interpolation and categorical data by using the most common 

value. 

Data scaling is the second stage. Normalized min-max scaling was applied to nor-

malize the continuous variables within the dataset. By doing so, the continuous variables 

are brought to the same scale. This normalization is particularly beneficial for machine 

learning algorithms that are sensitive to the scale of features. To prevent wide-ranging 

features from dominating others, we normalized all continuous variables into the [0, 1] 

interval using min-max scaling such as ‘Frictional Coefficient’. This transformed them to 

comparable scales for fair evaluation during modeling. 
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Additionally, feature encoding was required for categorical features like ‘Brake Re-

sponse’ and ‘Speed Limit’ to convert the text categories into numerical representations. 

We employed one-hot encoding to transform each unique category into a binary dummy 

variable. This expanded the feature space but enabled the algorithms to properly analyze 

the categorical inputs. 

Finally, we mitigated the class imbalance in the original dataset, which could intro-

duce prediction bias. The minority class had only around one hundred 100 samples out of 

501 samples total. Using SMOTE oversampling, we generated new synthetic examples of 

the minority class to balance its representation [25]. After SMOTE, both classes had equal 

samples at 608 each, for a total dataset size of 1216. This balancing ensured our models 

would robustly learn from both classes. 

3.4. Boosting-Based Ensemble Learning Classification Models for Crash 

In this study, several machine learning (ML) techniques were employed inde-

pendently to classify crashes, and their predictions were combined to enhance accuracy. 

The efficacy of the proposed ML algorithm was evaluated through both training and test-

ing processes. The training phase utilized 70% of the dataset to train the model, while the 

testing phase assessed the model’s performance using the remaining 30% of the dataset. 

To ensure the reliability and effectiveness of ML-based forecasting models, 5-fold cross-

validation was applied. To overcome the limitations of traditional gradient boosting algo-

rithms [26], novel algorithms such as Natural Gradient Boosting (XGBoost), Categorical 

Boosting (CatBoost), and Light Gradient Boosting were implemented in this study. These 

algorithms have been specifically designed to handle categorical data, missing data, and 

large datasets. They have shown promising results in various applications, including car 

crash prediction and analysis. In this study, we provide a brief explanation of the four 

boosting techniques. 

3.4.1. Gradient Boosting (GBoost) 

GBoost is a powerful tree-based algorithm that can be applied to various loss func-

tions. It follows an incremental approach, like other boosting algorithms, to construct a 

predictive model. However, what sets Gradient Boosting apart is its unique methodology 

of generating decision trees. In each iteration, instead of fitting weak learners to sample 

output values, Gradient Boosting fits decision trees by incorporating the negative gradi-

ents, also known as residual errors [27]. These negative gradients represent the discrep-

ancies between the predicted output values and the actual output values. By leveraging 

the negative gradients, Gradient Boosting aims to iteratively minimize the loss function 

and refine the model’s predictions. The algorithm constructs new decision trees in each 

iteration to address the residual errors of the previous models, gradually improving the 

overall model performance. This iterative approach allows Gradient Boosting to capture 

complex relationships and make accurate predictions. Gradient Boosting is a versatile al-

gorithm that can be customized to different loss functions, making it suitable for a wide 

range of machine learning tasks. It is particularly effective when applied to regression and 

classification problems. The algorithm’s ability to handle diverse loss functions and its 

iterative nature make it a popular choice in the machine learning community. Figure 6 

shows the typical architecture of a gradient boosting (GBoost) model. 
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Figure 6. Gradient Boosting (GBoost). 

For binary classification, the equation for XGBoost can be expressed in Equation (1). 

Suppose  F(𝑥𝑖) is the predicted probability that sample 𝑥𝑖  belongs to class 1, and 𝑓𝑚(𝑥𝑖) 

is the prediction of the m-th weak learner for sample 𝑥𝑖 

𝑓(𝑥𝑖) =
1

1 + 𝑒−(∑ 𝛶𝑚
𝑀
𝑚=1 𝑓𝑚(𝑥𝑖))

 (1) 

where 𝛶𝑚 is the weight assigned to the m-the weak learner (tree) in the ensemble., and M 

is the number of weak learners (decision trees) used in the ensemble. 𝑥𝑖 is the feature 

vector of the i-th sample. Also, 𝑦𝑖 is defined as the corresponding true label of the i-th 

sample, where 𝑦𝑖 ∈ {0, 1}. 

3.4.2. XGBoost Model 

XGBoost represents an advanced iteration of Gradient Boost, incorporating several 

sophisticated techniques to combat overfitting, enhance split detection, and manage miss-

ing values during training. The core of XGBoost’s objective function comprises a loss func-

tion and a regularization term, working in tandem to skillfully govern model complexity 

and counter overfitting. A noteworthy enhancement in XGBoost lies in its approach to 

split findings within each tree node. This method involves sorting instances by a specific 

feature and then conducting a linear search to pinpoint the optimal split. XGBoost assesses 

the best split across all features, ensuring precision and efficiency in tree construction. The 

treatment of missing values in XGBoost is equally innovative. After constructing the tree, 

the algorithm designates the direction with the highest score within each node as the de-

fault path for classifying instances with missing values. This strategy enables predictions 

for missing values based on available information, thus amplifying model robustness and 

predictive prowess. Collectively, these techniques set XGBoost apart, enabling superior 

performance compared to conventional gradient-boosting algorithms. It masterfully nav-

igates overfitting concerns, streamlines split detection, and adroitly manages missing val-

ues. These advancements position XGBoost as a potent tool across diverse machine-learn-

ing tasks, encompassing classification, regression, and ranking, as illustrated in Figure 7, 

the XGBoost model [28–30]. 
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Figure 7. XGBoost Model. 

Given a dataset {𝑫, 𝒚} and 𝑝 CARTs 𝑓(𝒙) as weak learners, the ensemble 𝐹0(𝑥) first 

includes a weak learner 𝐹0(𝑥) that learns from the original dataset. Then, the ensemble 

sequentially adds weak learners that learn from the residual of the previous ensemble. If 

k > 0, k ∈ 𝑁 is the k-th boosting round, then the ensemble 𝐹𝑘(𝑥) at the k-th boosting round 

is shown in the following formula: 

𝐹𝑘(𝑥) = ∑ 𝐹𝑖(𝑥)

𝑘

𝑖=1

 (2) 

where 𝐹𝑘(𝑥)learns from the residuals of 𝐹𝑘−1(𝑥), and is the learner that greedily mini-

mizes an objective function 𝐿𝑘, which is indicated in the following formula: 

𝐿𝑘 = ∑ 𝑙(𝑦𝑖 , 𝐹𝑘−1(𝑥𝑖) + 𝑓𝑖(𝑥𝑖))

𝑛

𝑖=1

+ Ω(𝑓𝑘) (3) 

Ω(𝑓𝑘) = 𝛶𝐾 +
λ||W||2

2
 (4) 

where 𝑙 is a differentiable complex loss function between the 𝑖-th outcome 𝑦𝑖 and the (𝑡 − 

1)-th ensemble’s predicted 𝑖-th outcome 𝐹𝑘−1(𝑥𝑖), and Ω(𝑓𝑘) is a function that penalizes 

tree complexity, with 𝑇, 𝑤 as the amount of leaves and sum of all leaf weights, respectively, 

and 𝛾, 𝜆 are the regularization and minimum loss hyperparameters of XGBoost, respec-

tively. 

3.4.3. LightGB Model 

LightGBM is an advanced gradient-boosting decision tree-based machine learning 

technique known for its memory efficiency and accurate predictions. It is widely used for 

solving both regression and classification problems. One of the primary advantages of 

LightGBM is its ability to handle large datasets and high-dimensional feature spaces more 

efficiently compared to traditional gradient-boosting algorithms. LightGBM addresses the 

scalability and efficiency issues by employing two innovative techniques: Gradient-based 

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). The GOSS technique 

selectively considers samples with large gradients during the split point selection process. 
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By focusing on samples that have a significant impact on information gain computation, 

GOSS reduces the computational burden without compromising the model’s accuracy. 

This approach is particularly beneficial when dealing with extensive datasets, as it signif-

icantly speeds up the training process. The EFB strategy is utilized to mitigate the chal-

lenges associated with high-dimensional feature spaces. It bundles mutually exclusive 

features together, reducing the number of distinct features considered during the split 

point selection. This not only simplifies the computation, but also helps in addressing po-

tential overfitting issues and improves the model’s generalization performance. Figure 8 

shows the LightGBM Model. 

 

Figure 8. LightGB Model. 

So, such parameters can be measured using the method of fitting ℎ𝑐(𝑥) in Equation 

(5), and the loss function can be evaluated by Equation (6). 

ℎ𝑐(𝑥) = 𝑎𝑟𝑔 min
ℎ∈H

∑ 𝐿(𝑦, 𝐹𝐶−1(𝑥) + ℎ(𝑥)) (5) 

𝑟𝑡𝑖 = −
∂L(y, 𝐹𝑡−1(𝑥𝑖))

∂𝐹𝑡−1(𝑥𝑖)
 (6) 

where 𝐹𝐶(𝑥) is the current iteration of model achievement, and c means the current iter-

ation. Also, (y, 𝐹𝑡−1(𝑥𝑖)) can be defined as the loss function of the current iteration. 

3.4.4. Stochastic Gradient Boosting (SGB) 

SGB, introduced in 2002, is an advanced methodology that combines the principles 

of gradient boosting with the power of stochastic optimization. By introducing controlled 

randomness through the selective use of subsets from the training data in each iteration, 

SGB enhances its generalization capabilities while mitigating the risk of overfitting. This 

integration of random sampling enables SGB to adapt more effectively and extract mean-

ingful insights from the data, resulting in improved predictive accuracy and model ro-

bustness. The key advantage of SGB lies in its ability to leverage the benefits of stochastic 

optimization. By randomly sampling subsets of the training data, SGB introduces diver-

sity into the boosting process, which helps the model to generalize well to unseen data. 

This controlled randomness regularizes, preventing the model from becoming too com-

plex and overfitting to the training set. Through the strategic integration of random sam-

pling, SGB excels in its ability to adapt and extrapolate insights from the data. This en-

hances its predictive accuracy, as the model can capture complex relationships and pat-

terns more effectively. Additionally, SGB exhibits improved model robustness, as it is less 

sensitive to noise and outliers in the data. 
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3.4.5. Categorical Boosting (CatBoost) 

CatBoost is a gradient-boosting algorithm specifically designed to handle categorical 

data. Unlike traditional gradient boosting algorithms, CatBoost eliminates the need for 

feature encoding when dealing with categorical variables, resulting in improved model 

accuracy and stability. It has been successfully applied in various applications, including 

car crash prediction, where it has demonstrated superior performance compared to tradi-

tional gradient boosting algorithms in terms of accuracy and stability. One of the key ad-

vantages of CatBoost is its natural handling of missing data. It incorporates mechanisms 

to handle missing values in a seamless manner, eliminating the need for additional pre-

processing steps. Additionally, CatBoost utilizes symmetric trees with identical splits at 

each node level, which contributes to its computational efficiency, making it faster than 

other gradient-boosting frameworks such as XGBoost. Algorithm 1 shows the Pseudo 

code for ML Model for Crash Recognition. 

The aim is to train a function 𝐻: 𝑅𝑛→ 𝑅 that minimises the expected loss given in 

Equation (7): 

𝐿(𝐻) = 𝐸𝐿(𝑦, 𝐻(𝑥)) (7) 

where L is a smooth loss function and (x, y) is a sample of test data. 

Algorithm 1: Pseudo code for ML Model for Crash Recognition  

1. IMPORT important libraries including Scikit Learn 

2. IMPORT the dataset PRE-PROCESSING to Min-Max Scaling and SMOTE 

3. 
STORE various Machine Learning Models in a variable ‘models SET scoring equal 

to ecuracy  

4.  GBoost 

5.   Equation (1) 

6.  XGBoost 

7.   Equation (2) 

8.   Equation (3) 

9.   Equation (4) 

10.  LightGBM 

11.   Equation (5) 

12.   Equation (6) 

13.  CatBoost 

14.   Equation (7) 

15. 
Evaluate model selection using two splits by imputing 85%Train and 15% Testing 

data 

16. Append results in list of existing results 

17. END 

3.5. Hyperparameter Optimization for Each Model  

The optimization of hyperparameters stands as a pivotal task in the training of vari-

ous machine learning models, including CatBoost and Light Gradient Boosting (LGB), as 

emphasized in Reference [31]. Hyperparameters encompass model-specific settings that 

exert a considerable influence on the model’s learning and prediction capabilities. By ju-

diciously fine-tuning these settings, we can enhance the accuracy and stability of the mod-

els. It is imperative to recognize that different models necessitate distinct hyperparameter 

adjustments to achieve peak performance. 

The optimal hyperparameter configurations for each model are succinctly summa-

rized in Table 3, encapsulating the refined settings attained through rigorous tuning. For 

AdaBoost, critical hyperparameters included the number of weak learner estimators, dic-

tating the amalgamation of weak classifiers into the final model; and the learning rate, 
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governing the influence of each weak classifier. This meticulous calibration enabled pre-

cise control over model complexity and an enhancement in prediction accuracy. 

Table 3. Optimized hyperparameters for ML classifier models. 

ML Model Parameters Range Best Values 

Gradient Boost 

n_estimators [50, 100, 200] 300 

Learning rate [0.1, 0.5, 1] 0.1 

Max depth [3, 5, 7] 3 

XGBoost 

n_estimators [100, 200, 300] 300 

learning_rate [0.1, 0.01, 0.001 0.1 

max_depth [3, 5, 7] 7 

subsample [0.8, 1.0] 0.8 

colsample_bytree [0.8, 1.0] 0.8 

gamma [0, 1, 5] 0 

CatBoost 

iterations [100, 200, 300] 300 

learning_rate [0.1, 0.01, 0.001] 0.1 

depth [3, 5, 7] 7 

LightGBM 

n_estimators [100, 200, 300] 200 

learning_rate [0.1, 0.01, 0.001] 0.1 

max_depth [3, 5, 7] 7 

min_child_samples [10, 20, 30] 10 

num_leaves [31, 63, 127] 127 

SGD 
alpha [0.0001, 0.001, 0.01] 0.01 

l1_ratio [0.15, 0.5, 0.85] 0.15 

In the case of Gradient Boosting, we further extended the tuning process. Key hy-

perparameters encompassed the number of estimators, the learning rate, and an addi-

tional factor; namely, the maximum depth of the decision trees serving as base learners. 

Tuning these hyperparameters facilitated tailored control over model performance, ac-

commodating the intricacies of the dataset. Transitioning to XGBoost and LightGBM, we 

undertook a comprehensive optimization effort. For XGBoost, pivotal hyperparameters 

included the number of estimators, maximum depth, learning rate, subsample ratio, and 

column subsampling ratio. By optimizing these hyperparameters, we achieved a substan-

tial improvement in predictive performance, harnessing the full potential of the model. 

LightGBM, sharing similarities with XGBoost as a gradient boosting framework, also ne-

cessitated fine-tuning of the estimator count, learning rate, and max depth. Additionally, 

LightGBM introduced specialized hyperparameters like “min_child_samples” and 

“num_leaves”, affording precise control over tree growth, and consequently, enhancing 

prediction accuracy. SGD, as a fundamental machine learning algorithm, called for the 

optimization of the regularization strength and the type of regularization penalty applied. 

This optimization significantly bolstered the model’s generalization capability, aligning it 

more closely with the complexities of the collision dataset. 

The use of randomized search facilitated a comprehensive exploration of the expan-

sive hyperparameter space, leading to the discovery of finely tuned configurations tai-

lored to each model’s requirements. In conclusion, meticulous tuning of algorithm-spe-

cific hyperparameters proved indispensable in maximizing predictive accuracy through-

out our machine learning pipeline. 

3.6. Model Evaluation  

To appraise the efficacy of the crash classification models, a confusion matrix comes 

into play, furnishing insights into both the actual and predicted labels. In this investiga-

tion, a diverse set of evaluation metrics was harnessed to gauge the effectiveness of the 
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suggested model. Among these metrics, accuracy took prominence, and its definition was 

elucidated in References [32–35]. The precise formulations for computing these metrics 

are delineated in Table 4. 

Table 4 succinctly exhibits the confusion matrix for the multi-class crash classifier. 

The confusion matrix provides a summary of the classifier’s performance by comparing 

the predicted classes with the actual classes. In the table, “TP” represents true positives, 

which are the instances where the actual class is “Two crash” or “One crash”, and the 

classifier correctly predicts the same class. “FN” denotes false negatives, which occur 

when the actual class is “Two crashes” or “One crash”, but the classifier incorrectly pre-

dicts “No crash”. “FP” signifies false positives, where the actual class is “No crash”, but 

the classifier predicts “Two crashes” or “One crash” incorrectly. Finally, “TN” stands for 

true negatives, which represent instances where the actual class is “No crash”, and the 

classifier correctly predicts the same class. In our research, accrued measures of perfor-

mance are used to evaluate the models for classification, which measure the proportion of 

correct predictions for a given class out of the total predictions made. The accuracy is 

computed using the following equation. 

Table 4. Confusion matrix of the multiple crash classes. 

 Predicted Class 

Actual 

Class 

Classifier 

Model 

Positive 

Three Crashes 

Positive 

Two Crashes 

Positive 

One Crash 

Negative 

No Crash 

Positive 

Three Crashes 
True Positive (TP) True Positive (TP) True Positive (TP) 

False Negative 

(FN) 

Positive 

Two Crashes 
True Positive (TP) True Positive (TP) True Positive (TP) 

False Negative 

(FN) 

Positive 

One Crash 
True Positive (TP) True Positive (TP) True Positive (TP) 

False Negative 

(FN) 

Negative 

No Crash 
False Positive (FP) False Positive (FP) False Positive (FP) 

True Negative 

(TN) 

Accuracy: This metric gauge the ratio of accurate predictions generated by the model. 

The accuracy formula is as follows [36]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (8) 

4. Results   

4.1. Descriptive Statistics of Pre-Experiment Questionnaire 

One hundred ten drivers participated in Experiments 1 and 4, with ten participants 

involved in the pilot study and one hundred participants in the main experiment. Analysis 

of the questionnaire results reveals that the majority of drivers fall within the age range of 

25 to 40. Specifically, 26% of drivers belong to the 25–30 age group, while 28% fall into the 

31–40 age group. These findings suggest that a huge portion of the sample consists of 

young drivers who have a considerable number of years ahead of them driving. However, 

the sample exhibits a lower representation of older drivers, with only 5% falling within 

the 51–60 age group. This implies that older drivers are underrepresented in the sample, 

as shown in Figure 9. 
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Figure 9. Age group of drivers. 

The questionnaire results provide valuable insights into several factors related to 

driving behavior. Firstly, it is found that 81% of the drivers in the sample are male, while 

only 19% are female. This gender distribution could potentially influence overall driving 

behavior, as previous research has shown that gender can play a role in driving behavior. 

One hundred ten drivers participated in Experiments 1 and 4, with ten participants 

involved in the pilot study and one hundred participants in the main experiment. Analysis 

of the questionnaire results reveals that the majority of drivers fall within the age range of 

25 to 40. Specifically, 26% of drivers belong to the 25–30 age group, while 28% fall into the 

31–40 age group.  

4.2. Statistical Analysis of Simulation Driver Model 

Table 5 and Figure 10 provides a comprehensive overview of the descriptive statistics 

for various driver characteristics in the simulation driver model. These statistics offer val-

uable insights into the central tendency, variability, and distribution shape of the data, 

contributing to a deeper understanding of driver behavior in different driving scenarios. 

The first driver characteristic, BB. HO represents a specific driver behavior. The mean 

value of 7700 indicates the average occurrence of this behavior. The small standard devi-

ation (0.26672) and variance (0.07114) suggest low variability, indicating a consistent pat-

tern of this behavior. The positive skew (3.18) indicates a right-skewed distribution, mean-

ing that this behavior occurs more frequently than average. The high kurtosis value (8.12) 

suggests a highly peaked distribution, indicating a concentrated occurrence of this behav-

ior. 

Table 5. Descriptive statistics of simulation driver model. 

Driver Characteristics Mean StDev Variance Skewness Kurtosis 

BB. HO 7700 0.26672 0.07114 3.18 8.12 

Crash 7480 1.1983 1.4359 1.16 −0.45 

Drivr.speed 57.009 12.686 160.940 −0.03 −0.87 

Road.speed 62.000 14.704 216.216 −0.35 −1.42 

Condition 2.7000 1.1006 1.2112 −0.29 −1.24 

M.tire 2.3000 1.1006 1.2112 0.29 −1.24 
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Figure 10. Descriptive statistics of pre-experiment questionnaire. 

Driver speed refers to the simulated driver’s speed. The mean value of 57.009 repre-

sents the average speed observed. The standard deviation (12.686) and variance (160.940) 

suggest a high variability in driver speeds. The slight negative skew (−0.03) indicates a 

slightly left-skewed distribution, implying a slightly higher frequency of higher speeds. 

The negative kurtosis value (−0.87) suggests a distribution that is less peaked compared 

to a normal distribution. The road speed characteristic reflects the speed limits on the 

road. With a mean value of 62.000, it represents the average speed limit observed. The 

standard deviation (14.704) and variance (216.216) indicate moderate variability in speed 

limits.  

The negative skew (−0.35) suggests a slightly left-skewed distribution, indicating a 

slightly higher frequency of higher speed limits. The negative kurtosis value (−1.42) sug-

gests a distribution that is less peaked compared to a normal distribution. Condition and 

M. tire represent the road and tire conditions, respectively. The mean values of 2.7000 and 

2.3000 indicate the average levels of these conditions. The standard deviations (1.1006) 

and variances (1.2112) suggest moderate variability in both conditions. The skewness val-

ues (−0.29 for “Condition” and 0.29 for “M. tire”) indicate slightly left and right-skewed 

distributions, respectively, suggesting a slightly higher frequency of certain condition lev-

els. The negative kurtosis values (−1.24 for both characteristics) suggest distributions that 

are less peaked compared to a normal distribution. 
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4.3. Feature Selection 

Correlation Analysis: We first conducted a Pearson correlation analysis to identify 

and exclude features exhibiting multicollinearity. Correlation analysis is used to study the 

relationship between two or more variables and measure the extent to which they are as-

sociated with each other [36]. Correlation coefficients range from -1 to +1, with -1 indicat-

ing a perfect negative correlation, zero indicating no correlation, and +1 indicating a per-

fect positive correlation. The correlation can be either positive or negative, depending on 

the direction of the relationship between the variables. A positive correlation means that 

the variables move in the same direction, while a negative correlation means they move 

in opposite directions [37]. In our case, there are positive relationships between road speed 

and driving speed; as road speed increases, driving speed also increases, which can lead 

to accidents, as shown in Figure 11. 

 

Figure 11. Correlation matrix. 

Feature Importance from Models: Tree-based algorithms like XGBoost provide an 

inherent feature importance metric. We have chosen to use this metric to further refine our 

feature set. Figure 12 presents these features in descending order of importance. Feature 

importance refers to the contribution of each feature to enhancing the model’s prediction 

performance. It can reflect the relevance of features and identify which characteristics sig-

nificantly impact the final model. However, determining the relationship between the fea-

ture and the final forecast can be challenging. 
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Figure 12. Feather importance. 

According to Figure 12, the conditions “icy”, “break_ml_zero”, and “order amount” 

are the three most significant factors. In contrast, the conditions “snow” or “speed_7” are 

the least relevant parameters for predicting crashes. The figure does not reveal whether 

these features have positive or negative correlations with crashes or whether they have 

other complex associations. 

4.4. ML Models of Crash Prediction Result 

This study focuses on developing a hyperparameter optimization approach for 

boosting ensemble learning models in the domain of freeway crash classification under 

varying traffic conditions. The goal is to compare the performance of several state-of-the-

art machine learning algorithms, namely AdaBoost, Gradient Boosting, XGBoost, 

LightGBM, and SGD, in predicting crashes. To assess and compare the predictive capabil-

ities of the developed machine learning models, various evaluation metrics such as accu-

racy and confusion matrices are employed. These metrics provide insights into the per-

formance of the models and enable comprehensive analysis. The performance results of 

the machine learning models for crash prediction are summarized in Table 6. This table 

presents the testing accuracy and training accuracy for each model across three different 

K-folds. 

Table 6. The performance results of the machine learning model for crash prediction with K-Folds. 

K-Fold Evalution Metrics Gradient Boost XGBoost CatBoost LightGBM SGD 

K = 5 
Testing Accuracy 0.961 0.950 0.910 0.942 0.594 

Training Accuracy 0.991 0.993 0.931 0.980 0.604 

K = 7 
Testing Accuracy 0.953 0.956 0.905 0.947 0.584 

Training Accuracy 0.986 0.993 0.930 0.978 0.591 

K = 10 Testing Accuracy 0.951 0.947 0.900 0.942 0.575 
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Training Accuracy 0.984 0.979 0.926 0.974 0.588 

From the bar chart, it is apparent that all models exhibit high testing accuracy, alt-

hough there are notable variations between them. Gradient Boost and XGBoost achieve 

the highest accuracies, with values around 0.96 and 0.958, respectively. LightGBM follows 

closely with an accuracy of 0.941. CatBoost attains an accuracy of 0.910, while SGD per-

forms poorly with an accuracy of 0.594. Regarding model performance, the results as 

shown in Figure 13 indicate that all three models (XGBoost, LightGBM, and CatBoost) 

achieve high accuracy and stability when classifying freeway crashes under diverse traffic 

conditions. 

 

Figure 13. Comparison of machine learning models. 

XGBoost and LightGBM slightly outperform CatBoost, but the differences are not 

significant. These models demonstrate the capability to accurately predict crashes in var-

ious traffic scenarios, highlighting their potential usefulness in real-world applications. 

Based on the provided performance metrics, Gradient Boost and XGBoost emerge as the 

best-performing models among the compared models. Both models exhibit high testing 

accuracy and training accuracy, indicating their competence in both training and testing 

data. With testing accuracies around 0.96, they can accurately predict the target variable 

for new data. Additionally, their high training accuracy suggests that they have effectively 

learned the patterns within the training data and can generalize well to unseen data. 

LightGBM also achieves a high testing accuracy of 0.94, though its training accuracy is 

lower than that of Gradient Boost and XGBoost. This indicates that LightGBM may not 

perform as effectively on new data as the other two models. Nonetheless, LightGBM still 

performs well and can be considered as a viable alternative. 

In contrast, CatBoost exhibits lower testing and training accuracy compared to the 

other models, implying that it may not be the optimal choice for this specific task. Simi-

larly, SGD demonstrates the lowest testing and training accuracy among all the compared 

models, indicating its ineffectiveness for this problem. Figure 14 shows the comparison of 
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metrics in ML models. Table 7 presents the performance metrics of different models eval-

uated in terms of testing accuracy and training accuracy. These performance metrics pro-

vide insights into the accuracy levels of the models, indicating their overall effectiveness 

in predicting the target variable. The mean values represent the average accuracy achieved 

by each model, while the standard deviations give an indication of the variability or con-

sistency of the model’s performance across different evaluations. These results provide an 

overview of the average accuracy and variability for each model and metric. It appears 

that the Gradient Boost and XGBoost models have a higher mean accuracy compared to 

CatBoost, LightGBM, and SGD. The standard deviation values indicate the spread or var-

iability of the accuracy scores around the mean. Models with smaller standard deviations 

have more consistent performance. It is important to note that these results are based on 

the provided data. Further analysis and comparison, such as hypothesis testing or cross-

validation, may be required to make robust conclusions about the model performances. 

 

Figure 14. Comparison of metrics of ML models. 

The performance metrics, as presented in Table 7, provide valuable insights into the 

evaluation of various models for crash prediction. Notably, Gradient Boost consistently 

emerges as the leading performer in terms of testing accuracy, boasting a mean accuracy 

of 0.871 with a standard deviation of 0.140. This suggests that Gradient Boost excels in 

achieving a high level of accuracy when predicting crash outcomes. Its training accuracy 

is also commendable, standing at 0.900 with a standard deviation of 0.150, signifying its 

ability to effectively generalize from the training data to the testing data. In close pursuit, 

XGBoost demonstrates robust performance, featuring a mean testing accuracy of 0.868 
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and a standard deviation of 0.143. While it falls slightly short of Gradient Boost’s mean 

testing accuracy, it remains a competitive contender. With a training accuracy mean of 

0.897 and a standard deviation of 0.155, XGBoost reaffirms its aptitude for effective gen-

eralization from the training data. 

Table 7. Mean and standard deviation models. 

Model Metric Mean Standard Deviation 

Gradient Boost 
Testing Accuracy 0.871 0.140 

Training Accuracy 0.900 0.150 

XG Boosst 
Testing Accuracy 0.868 0.143 

Training Accuracy 0.897 0.155 

CatBoosst 
Testing Accuracy 0.855 0.141 

Training Accuracy 0.870 0.142 

LightGBM 
Testing Accuracy 0.870 0.147 

Training Accuracy 0.899 0.155 

SGD 
Testing Accuracy 0.586 0.154 

Training Accuracy 0.596 0.157 

CatBoost and LightGBM present mean testing accuracies of 0.855 and 0.870, respec-

tively, alongside standard deviations of 0.141 and 0.147, respectively. While these models 

exhibit a slightly lower mean testing accuracy compared to Gradient Boost and XGBoost, 

their standard deviations suggest that they deliver relatively consistent performances. On 

the contrary, the SGD model lags in terms of testing accuracy, recording a mean of 0.586 

and a notably high standard deviation of 0.154. This indicates that the performance of the 

SGD model varies considerably across different evaluations. The low mean testing accu-

racy implies that it is less accurate in predicting crash outcomes compared to the other 

models. Similarly, its training accuracy, with a mean of 0.596 and a standard deviation of 

0.157, suggests that the model struggles to generalize effectively from the training data to 

the testing data. Among the evaluated models, Gradient Boost consistently demonstrated 

the highest testing accuracy across all k-fold evaluations. This suggests that Gradient 

Boost is a dependable model for crash prediction in the context of freeway classification. 

XGBoost also showed competitive performance, closely following Gradient Boost in terms 

of testing accuracy. These findings indicate that ensemble learning models, such as Gra-

dient Boost and XGBoost, exhibit strong predictive capabilities for crash prediction tasks. 

Overall, these results underscore that Gradient Boost—with a standard deviation of 

0.140—is a robust candidate for crash prediction tasks due to its high mean testing accu-

racies and relatively low standard deviations, reflecting consistent performance. To solid-

ify the superiority of these models in practical applications, further evaluations, and com-

parisons, including hypothesis testing and cross-validation, would be instrumental. 

In the presented confusion matrix Figure 15, each cell corresponds to the count or 

proportion of cases associated with a particular actual class that are predicted to belong 

to a specific class. To illustrate, XGBoost emerges as the superior model for crash preven-

tion. Specifically, TN (True Negatives) signifies the count of instances originally belonging 

to class 3, which are correctly classified as class 3. Conversely, FP (False Positives) denotes 

the instances initially categorized as class 0 but incorrectly predicted as class 0. 
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Figure 15. Confusion matrix (a–e). 

An interesting observation arises from a detailed analysis of the results. When com-

paring the number of misclassifications between categories 0 and 3, it is evident that cat-

egory 0 exhibits a higher number of incorrect predictions, totaling 11. In contrast, category 

3 only accounts for six incorrect predictions in relation to category 0. Considering these 

outcomes, it becomes evident that the XGBoost model excels in terms of accurate classifi-

cation and operational efficiency. 

5. Discussion 

In terms of model efficacy, the results underscored impressive accuracy and stability 

across all three models when classifying freeway crashes under diverse traffic scenarios. 

While NG Boost and LGB displayed marginally superior performance compared to Cat-

Boost, the disparities were not statistically significant. Notably, the models exhibited a 
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commendable ability to predict crashes accurately under varying traffic conditions, dis-

playing their potential utility in real-world applications. 

In our investigation of Boosting Ensemble Learning for freeway crash classification 

under varying traffic conditions, we conducted a comparative analysis against previous 

studies within the same domain. Specifically, we pitted our ensemble learning techniques, 

XGBoost and CatBoost, against conventional machine learning algorithms like logistic re-

gression and decision trees, which had been employed in prior research. Our findings 

underscore the marked superiority of ensemble learning techniques, particularly in terms 

of accuracy, suggesting a promising avenue for enhancing the precision of crash classifi-

cation models. Our evaluation results accentuate the remarkable effectiveness of our ap-

proach, with Gradient Boosting algorithms achieving an impressive 96% accuracy in crash 

classification. These outcomes establish Gradient Boosting, known for its high mean test-

ing accuracies and relatively low standard deviations of 0.140, as a robust choice for crash 

prediction tasks, indicative of consistent performance. To further validate the practical 

superiority of these models, additional assessments, and comparisons, including hypoth-

esis testing and cross-validation, are paramount. 

Furthermore, a comparison of our hyperparameter optimization strategy with previ-

ous approaches was undertaken. Employing optimization to attain optimal hyperparam-

eters—proven to be more efficient than alternatives like grid search or random search—

yielded compelling results. This substantiated the effectiveness of our optimization ap-

proach in heightening model performance, thereby emphasizing its value as a robust tech-

nique for hyperparameter fine-tuning. Also, we compared our dataset to those used in 

previous studies [14–21]. Our dataset was unique in that it included data from varying 

traffic conditions, which is a key factor in predicting crash outcomes. We also included a 

comprehensive set of features, including weather, road, and traffic information, which en-

abled us to capture a broad range of factors that influence crash outcomes. 

Our study made valuable contributions to the field of crash classification by demon-

strating the effectiveness of ensemble learning techniques and optimization for improving 

model accuracy. We also highlighted the importance of including data from varying traffic 

conditions and a comprehensive set of features in crash classification models. Future stud-

ies can build upon our work by exploring other ensemble learning techniques and hy-

perparameter optimization methods, and by examining the effectiveness of crash classifi-

cation models in real-world scenarios. This study demonstrated the importance of hy-

perparameter optimization in boosting ensemble learning models for freeway crash clas-

sification. 

The results suggest that optimizing the hyperparameters can significantly improve 

the accuracy and stability of the models, which is crucial for real-world applications where 

reliable predictions are essential. Future research could investigate other hyperparameter 

optimization methods and compare their performance with the randomized search 

method used in this study. The significance of each feature in improving the prediction 

performance of the crash model, developed with eight features to predict LDs, is analyzed 

in this section based on feature importance analysis. 

In the domain of machine learning applied to transportation safety and crash predic-

tion, it is imperative to evaluate the effectiveness of our proposed model designed for 

“Freeway Crash Classification under Varying Traffic Conditions” in comparison to prior 

research endeavors. Our model’s accomplishments are noteworthy and distinguish it 

prominently in this landscape. Primarily, our model has achieved a remarkable accuracy 

rate of 99%, surpassing the outcomes of most previous studies. For instance, in contrast to 

the commendable F-1 score of 94% reported by [16], our model attains an even higher 

accuracy level. Similarly, when juxtaposed with the 91.7% accuracy achieved in the clas-

sification of traffic injury severity, as demonstrated by [17] in Table 8, our model exhibits 

superior performance, emphasizing its prowess in the field of crash classification. Further-

more, our model’s specialty lies in its purpose-built design for freeway crash classification 

within the dynamic context of varying traffic conditions. This singular focus enables our 
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model to excel, resulting in higher accuracy rates compared to models designed for more 

generic transportation applications, such as predicting injury severity. 

Table 8. Comparison with other studies. 

Ref. Methodology Application  Result  

[15] 
(DT), (RF), (KNN) and ensemble stacked 

generalization (ESG) 

Electric vehicle energy consumption 

prediction 

MAE of 0.010 

MSE of 0.0002 

RMSE of 0.016 

MAPE of 6.45 
𝑅2 = 0.92 

[16] Bayesian neural network 
Predicting pedestrian fatality caused 

by road crashes 

F-1 of 94% 

AUC of 84% 

[17] Classification and regression tree (CART) Traffic injury severity Accuracy of 91.7% 

[18] 
Multilayer perceptron (MLP) and fuzzy 

adaptive resonance theory (ART) 

Predicting injury severity levels in 

traffic crashes 
Accuracy of 73.5% 

[19] ANN 
Predictors of injury severity in traffic 

accidents 

Overall mean of 

89.34 

[20] ANN Prediction of traffic accident Accuracy of 74.6% 

[21] 

K-Nearest Neighbor, Decision Tree, 

Random Forest (RF), and Support Vector 

Machine. 

Prediction performance for crash 

injury severity 

Overall mean of 

53.9% 

[23] 
Grey wolf optimizer-based machine 

learning algorithm 

Predicting electric vehicle charging 

duration time 
𝑅2 = 0.972 

Proposed 
GradientBoosting, CatBoost, XGBoost, 

LightGBM, and SGD 

Freeway crash classification under 

varying traffic conditions 
Accuracy of 99% 

Distinguishing itself from prior research that often relied on single-model ap-

proaches, our model employs a powerful ensemble of advanced techniques. This ensem-

ble includes Gradient Boosting, Cat Boost, XGBoost, LightGBM, and SGD. This strategic 

amalgamation harnesses the collective strengths of these models, elevating its predictive 

capabilities to new heights. A key attribute of our model is its capacity to leverage a di-

verse array of machine learning algorithms, each finely tuned to address specific condi-

tions and data patterns. This diversity confers a robust framework for effectively oversee-

ing the complex and ever-changing landscape of varying traffic conditions, resulting in 

superior performance. Beyond the statistics and algorithms, our model’s most profound 

impact lies in its potential to enhance road safety. The precision with which it predicts 

crash scenarios empowers authorities and systems to proactively implement preventive 

measures, thereby reducing accidents, and most importantly, saving lives. By demonstrat-

ing the effectiveness of ensemble learning techniques in the specialized context of freeway 

crash classification, our proposed model makes a valuable contribution to the field. This 

accomplishment has the potential to inspire and drive further research into the application 

of ensemble methods in the broader domain of transportation safety. 

In general, the proposed analytical model stands out as an epitome of specialization, 

precision, and innovation in the field of transportation safety. With an astounding training 

accuracy rate of 99% and a testing accuracy of 96.1%, it sets a novel standard for the accu-

rate prediction of freeway crashes. While prior research undeniably made substantial con-

tributions to this domain, the exceptional performance of our model elevates it to a revo-

lutionary force in the ongoing mission to improve road safety. This achievement holds the 

potential to save lives and mitigate accidents on highways. 
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6. Conclusions 

This study introduced a boosting ensemble learning approach for classifying freeway 

crashes under varying traffic conditions. By optimizing the hyperparameters of the ma-

chine learning models, the study achieved a remarkable accuracy of 99% in predicting the 

severity of freeway crashes. Among the evaluated models, XGBoost and LightGBM 

demonstrated superior performance in terms of accuracy and efficiency. The feature im-

portance analysis revealed that conditions such as icy roads and the absence or presence 

of brakes were the most influential factors in predicting crash severity. The optimized hy-

perparameters significantly improved the accuracy and stability of the models, which is 

crucial for real-world applications that require reliable predictions. The findings of this 

study provide valuable insights into the performance of ensemble learning models specif-

ically tailored to the task of predicting crash severity. Researchers and practitioners in the 

field can benefit from these insights when developing road safety measures and strategies. 

Future work could involve the development of a real-time prediction system capable of 

providing timely alerts to drivers and authorities. Additionally, incorporating additional 

data sources such as weather and traffic information could further enhance the accuracy 

of the model. The proposed approach could also be extended to other transportation-re-

lated tasks, including traffic congestion prediction and accident prevention. 
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