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Abstract: Excessive carbon emissions will cause the greenhouse effect and global warming, which
is not conducive to environmental protection and sustainable development. In order to realize the
goal of “carbon peak and carbon neutrality” as soon as possible, this paper utilizes the methodology
provided by the IPCC to measure the carbon emissions and carbon intensity of China’s energy
consumption. The classification method of carbon emission and the kernel density function method
are used to explore the spatial and temporal evolution of regional carbon emissions. Based on the Log
Mean Divided Index (LMDI) method, the drivers of China’s energy carbon emissions are measured.
Based on the Tapio index function and the catch-up decoupling model, the decoupling status of
Chinese provinces and the development gap with the benchmark provinces are examined. The results
show that (1) China’s total energy carbon emissions show a “rising-declining-rising” trend from 2005
to 2021, and reach the first peak in 2013, totaling 1,484,984.406 million metric tons. China’s Hebei,
Shanxi, and Shandong provinces have the highest energy carbon emissions. (2) China’s energy carbon
emissions are influenced by multiple factors, and the contribution of each factor to energy carbon
emissions is in the following order: economic development effect > energy intensity effect > energy
structure effect > population size effect. (3) China’s catch-up provinces develop their economies at
the expense of the environment and energy consumption.

Keywords: sustainable development; carbon peak and carbon neutrality; carbon emissions; Log
Mean Divided Index (LMDI); catching-up decoupling; Tapio decoupling index

1. Introduction

With the rapid growth of the global population and the rapid increase in the consump-
tion of natural resources, the risks and pressures on the global life system are increasing,
which has led to a high incidence of ecological problems, including global warming due
to the massive emission of greenhouse gases [1]. Although global carbon emissions have
experienced a short-term decline due to the influence of the COVID-19 pandemic [2], the
urgency and importance of addressing the challenge of climate change have not changed.
According to the International Energy Agency (IEA), global energy-related carbon dioxide
(CO2) emissions will reach more than 36.88 billion metric tons in 2022, with China leading
the world with 10.2 billion metric tons of CO2 emissions [3]. China leads the world with
10.2 billion metric tons of carbon dioxide emissions. As a responsible power, China has
made an absolute commitment at the UN General Assembly to “strive to reach peak carbon
emissions by 2030 and achieve carbon neutrality by 2060” [4]. In its 14th Five-Year Plan,
China has incorporated the goal of “dual carbon” into the overall layout of ecological
civilization construction. Therefore, in recent years, China’s carbon emission reduction
efforts have been increasing, and the energy transition and energy revolution are being
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promoted in multiple dimensions. However, due to the vastness of China, there are differ-
ences in energy and carbon emissions in different regions, which poses a challenge to the
formulation and implementation of carbon emission reduction strategies. Therefore, it is
of great significance to study China’s energy carbon emissions at the provincial scale in
order to realize energy saving and emission reduction and formulate scientific emission
reduction policies in China.

In recent years, scholars have carried out various researches in the field of energy
consumption and its carbon emissions. At present, the research of scholars at home and
abroad on the issue of global carbon emissions mainly focuses on the measurement of
carbon emissions, the decomposition of influencing factors, and the relationship between
carbon emissions and economic growth.

For carbon emission measurement, most scholars use the baseline methodology
provided in the 2006 IPCC Guidelines for Greenhouse Gas Emission Inventories pub-
lished by the IPCC to estimate CO2 emissions. For example, Roberta Quadrelli and
Sierra Peterson (2007) [5] used the IPCC methodology to measure global carbon emissions
and examined the drivers of carbon emissions. Pan et al. (2021) [6] measured the carbon
emissions of 11 provinces and cities in eastern China, including Beijing, Tianjin, Hebei, and
Jiangsu, based on the IPCC methodology, and analyzed the future trend of carbon emissions
in the eastern region. Nonini, L. et al. (2022) [7] calculated carbon stocks in the Italian
Central Alps case study area according to the 2006 IPCC guidelines. Chen et al. (2023) [8]
used the IPCC carbon emission factor method to calculate land use carbon emissions and
quantitatively analyze and assess the temporal characteristics of carbon emissions. These
studies provide important references for further exploration of carbon emission control.

In the study of carbon emission-influencing factors, scholars have used Kaya’s con-
stant equation, the STIRPAT model, and the logarithmic mean Diels’ index method (LMDI)
index decomposition method. Japanese professor Yoichi Kaya (1989) [9] was the first to
propose Kaya’s constant equation, which revealed the effects of population, per capita GDP,
energy intensity, etc, on carbon emissions. Bo Jiang (2020) [10] used the STIRPAT model to
evaluate the degree of influence of major factors such as affluence, energy consumption
intensity, and industrial structure on carbon emissions in the three northeastern provinces.
JinHua Liu (2022) [11] based on the LIMID decomposition model to identity the influencing
factors of carbon emissions are decomposed into economic level, population size, energy
intensity, etc., and the potential and countermeasures for carbon emission reduction in
China are explored on the basis of scenario analysis. Jiang, Q. et al. (2023) [12] utilized the
energy and carbon emission data of the industrial sector in Fujian Province from 2005–2019
and applied the LMDI decomposition method to decompose the carbon emission drivers of
each industry. Miskinis, V. (2023) [13] used the Log Mean Divided Index (LMDI) methodol-
ogy to assess the impact of changes in the number of employees, labor productivity, energy
intensity, RES deployment, and emission intensity on GHG emission reductions in Esmetric
tonia, Latvia, and Lithuania, as well as in the EU-27.

In the study of the relationship between carbon emissions and economic growth, aca-
demics mainly use the decoupling model to study the relationship between the two [14]. Re-
fining the decoupling index system and constructing a decoupling index system that contains
eight cases such as strong decoupling and weak negative decoupling. Qi et al. (2015) [15]
used the Tapio decoupling model to examine the relationship between economic growth
and total carbon emissions, per capita carbon emissions, and carbon intensity in six cen-
tral provinces. Zhao et al. (2022) [16] used the Tapio decoupling model to analyze that
carbon emissions and economic growth in Northeast China are mainly weakly decoupled.
Wang et al. (2023) [17] used the Tapio decoupling model to explore the decoupling relation-
ship between China’s overall economy and China’s provinces’ economic development and
carbon emissions, respectively. Li, X.-Y. (2023) [18] explored the decoupled state of China’s
transportation industry from 2000 to 2020 with the Tapio model.

In summary, existing studies have produced rich results covering the analysis of
factors influencing national, regional, and provincial carbon emissions and the examination
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of overall decoupling effects. However, most of the literature on decoupling stays at
the static scale of decoupling, and few articles have examined the dynamic process of
carbon emission reduction catching up with decoupling. Compared with previous studies,
the important contributions of this paper are reflected in the following: first, calculating
the energy carbon emissions and carbon emissions intensity, and analyzing the spatial
distribution and regional differences of the two at the same time. The Gaussian kernel
density function is constructed so as to show the dynamic evolution law of energy carbon
emission more intuitively. Second, the log-mean Diels method is used to decompose the
driving factors of China’s energy carbon emissions. This method has a better robustness test
than other factor decomposition methods, eliminates computational residuals, and makes
the decomposition results more accurate. Third, it analyzes the dynamic history of catching
up and decoupling of China’s energy carbon emission reduction and measures the gap in
economic level and carbon emission level between catching up provinces and benchmark
provinces, so as to be more targeted in proposing emission reduction policies. Fourth, we
analyze the evolutionary characteristics and decoupling status of China’s carbon emissions,
aiming to provide quantitative support for China’s carbon emission reduction policies and
directional guidance for achieving the goals of carbon peaking and carbon neutrality.

2. Materials and Methods
2.1. Carbon Emission Accounting Methods

In order to more objectively measure the carbon emission level of Chinese provinces,
this paper uses energy carbon emission and energy carbon emission intensity together to
evaluate the dynamic changes and regional differences of China’s energy carbon emission.

2.1.1. Accounting for Energy Carbon Emissions

For accounting for energy carbon emissions, different data types and accounting
methods produce different results [19]. Based on the characteristics of China’s energy
consumption, this paper adopts the IPCC method to account for China’s fossil energy
consumption, including nine energy types: raw coal, coke, crude oil, gasoline, kerosene,
diesel fuel, fuel oil, natural gas, and liquefied petroleum gas. In addition to this, this
paper also accounts for China’s electricity consumption in terms of carbon emissions. The
calculation formula is as follows:

C = Qf + Qe (1)

where Qf is the carbon emissions from the nine fossil energy sources, and Qe is the carbon
dioxide emissions from electricity consumption [20].

According to the methodology provided by the IPCC for calculating carbon emis-
sions from fossil energy sources, carbon emissions are calculated by multiplying energy
consumption by a CO2 emission factor with the following formula:

Qf = ∑9
i=1 EiCi = ∑9

i=1 Ei(NCVi × EFi ×COFi ×
44
12

) (2)

where Ei is the consumption of the ith energy source, Ci is the combined CO2 emission
factor, and NCVi (average low level heat generation), EFi (carbon content), COFi (carbon
oxidation rate) and the molecular ratio of CO2 to C 44/12 are multiplied to obtain Ci [21].

The CO2 emissions from electricity for each year need to be calculated by multiplying
the electricity consumption by the carbon emission factor for electricity for that year, using
the formula:

Qe = Wλ (3)

where W is the electricity consumption, and λ is the provincial electricity carbon emission
factor for the year.
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2.1.2. Energy Carbon Intensity Accounting

Energy carbon intensity refers to the energy carbon emissions consumed per unit of
economic output, generally expressed as energy carbon emissions per unit of GDP, to reflect
the efficiency of regional energy utilization. The formula for calculating energy carbon
intensity is:

CI =
C

GDP
(4)

where CI is the energy carbon intensity; GDP is the gross national product.

2.2. Kernel Density Estimation

In order to more intuitively reveal the dynamic evolution characteristics of energy
carbon emissions in China, this paper applies non-parametric estimation of kernel density
estimation to study the overall spatial differences and dynamic evolution trends of China’s
inter-provincial energy carbon emissions in the period of 2005–2021, and to measure
the degree of agglomeration and dispersion through the height and width of the wave
crests [22]. The calculation formula is as follows:

f(x) =
1

30

30

∑
i=1

K
(

Xi − µ

h

)
(5)

where Xi is the energy carbon emissions of province i (i = 1, 2, . . ., 30); h is the bandwidth;
and K is the Gaussian kernel function.

2.3. Classification of Carbon Emissions

The average energy carbon emissions and the average energy carbon intensity of
all provinces in China are used as the standard. Those higher than the average energy
carbon emissions are considered high energy carbon emissions, while those lower than the
average energy carbon emissions are considered low energy carbon emissions. Accordingly,
China’s inter-provincial energy carbon emissions are categorized into four groups [23],
namely H-H (high energy carbon emissions—high energy carbon emissions intensity), L-H
(low energy carbon emissions—high energy carbon emissions intensity), H-L (high energy
carbon emissions—low energy carbon emissions intensity), and L-L (low energy carbon
emissions—low energy carbon emissions intensity).

2.4. Log Mean Divided Index (LMDI) Exponential Decomposition

Energy, economy, population, etc, are usually recognized as important factors affecting
carbon emissions. Quantifying the specific degree of influence and contribution of different
factors on energy carbon emissions is crucial to the scientific formulation of emission
reduction policies. Drawing on the methodology of Liu’s et al. [24] method, we establish
a log-mean Diels’ index equation to analyze the influence of energy structure, energy
intensity, economic development, and population size on China’s energy carbon emissions.
The specific equations are as follows:

C = ∑
i

∑
j

Cij = ∑
i

∑
j

Cij

Eij
×

Eij

Ei
× Ei

Gi
× G

P
× P = ∑

i
∑

j
CI× ES× EI×GP× P (6)

∆C = Ct −C0 = ∆CCI + ∆CES + ∆CEI + ∆CGP + ∆CP (7)

where Gij is the carbon emissions from fossil fuels in industry i,j; Eij is the energy consump-
tion of fossil fuels in industry j in industry i; Ei is the total energy consumption of industry i;
Gi is the GDP of industry i, G is the total GDP; P is the population at the end of the year; CI,
ES, GP, and CP are the carbon emission factor, energy structure, energy intensity, economic
growth, and population size, respectively; ∆C is the total effect; Ct and C0 are the target
year and base year carbon emissions, ∆CCI, ∆CES, ∆CEI, ∆CGP, and ∆CP are the effects of
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each influencing factor on carbon emissions, respectively. The formula for calculating the
effect of each influence factor is as follows:

∆Cx = ∑
i

∑
j

L
(

Ct
ij, C0

ij

)
ln
(

xt

x0

)
(8)

where: x is each of the above influencing factors; ∆Cx is the carbon emission effect of
influence factor x; L

(
Ct

ij, C0
ij

)
is the weight; Ct

ij and C0
ij are the carbon emissions from fossil

fuels in industry j in the target year and base year, respectively; xt and x0 are the values
of the influencing factors in the target year and base year, respectively. Among them, the
weighting formula is as follows:

L
(

Ct
ij, C0

ij

)
=


Ct

ij − C0
ij

lnCt
ij − lnC0

ij
, Ct

ij 6= C0
ij

Ct
ij or C0

ij, Ct
ij = C0

ij
0, Ct

ij = C0
ij = 0

 (9)

In order to facilitate the comparison, the relative contribution degree is used to describe
the degree of influence of each effect on carbon emissions, based on the research method of
Wang’s et al. [25] research method, the relative contribution degree is used to describe the
degree of influence of each effect on carbon emissions, with the following formula:

θ =
∆Cx

∑
x
|∆Cx| × 100%

(10)

θ is the relative contribution degree. θ > 0, the influence factor has a promoting effect
on carbon emissions, and the larger the value, the stronger the promoting effect; θ < 0, the
influencing factor has an inhibitory effect on carbon emissions, and the larger the absolute
value, the stronger the inhibitory effect.

2.5. Tapio’s Decoupling Index Model

The Tapio decoupling index model is a method of elasticity coefficient analysis con-
structed by Tapio in his study of the relationship between economic development in Europe,
transportation capacity, and the CO2. Different decoupling coefficients characterize dif-
ferent states of development, and the traditional decoupling index model is divided into
eight categories. The Tapio decoupling index is used to dynamically observe the decoupling
characteristics of variables, and more clearly reflects the relationship between each factor
in terms of economic development and environmental stress [26]. Therefore, this paper
chooses the Tapio model to construct the decoupling relationship between carbon emissions
and economic growth in China. The decoupling relationship is modeled as:

DI =
%∆TC
%∆GDP

=
∆TC/TC

∆GDP/GDP
=

(TCt+1 − TCt)/TCt

(GDPt+1 −GDPt)/GDPt
(11)

DI is the decoupling elasticity index; %∆GDP is the rate of change of gross regional
product; %∆TC is the rate of change of carbon emissions. TCt and TCt+1 are the energy
carbon emissions in period t and period t + 1, respectively. GDPt+1 and GDPt are the GDP
in period t and t + 1. The classification of the results of the decoupling index is shown in
Figure 1.
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2.6. Catch-Up Decoupling Model

The Tapio decoupling index model portrays a comparison between the speed of eco-
nomic development and the speed of energy and carbon emissions, which is a comparison
of its own speed and does not reflect the gap between economic development and carbon
emissions and other regions. Referring to Zhang et al. (2013) [27], the provinces with “good
economic development and low carbon intensity” are defined as benchmark provinces.
In order to describe the dynamic decoupling process of Chinese provinces catching up
with the benchmark provinces, this paper constructs the following catching-up decoupling
model based on the theoretical foundation of the Tapio decoupling coefficient model:

TZ
it =

−
[
(CEn

t − CEit)−
(
CEn

t−1 − CEi,t−1
)]

/
(
CEn

t−1 − CEi,t−1
)

−
[
(PGn

t − PGit)−
(

PGn
t−1 − PGi,t−1

)]
/
(

PGn
t−1 − PGi,t−1

) =
∆CE
∆PG

(12)

TZ
it represents the catch-up decoupling elasticity index for province i in year CEit

and PGit represent the carbon intensity and per capita GDP level of province i in year t,
respectively; CEn and PGn represent the carbon intensity and per capita GDP level of the
benchmark province, respectively. The classification criteria for catching up and decoupling
are shown in Table 1.

Table 1. Criteria for categorizing catch-up decoupling.

Catch-Up Type Economic Growth
Gap

Carbon
Intensity Gap

Catch-Up
Decoupling

Elasticity Factor
Catch-Up Effect

Absolute catch-up
decoupling (A) ∆PG < 0 ∆CE > 0

∣∣∣TZ
it

∣∣∣ > 1
Emission reduction

catch-up is better than
economic catch-up

Absolute catch-up
decoupling (B) 0 <

∣∣∣TZ
it

∣∣∣ ≤ 1
Economic catch-up is
better than emission
reduction catch-up

Relative catch-up
decoupling (A) ∆PG < 0 ∆CE < 0 0 <

∣∣∣TZ
it

∣∣∣ ≤ 1 Economic catch-up is
better than emission
reduction catch-up

∣∣∣TZ
it

∣∣∣ > 1

Relative catch-up
decoupling (B) ∆PG > 0 ∆CE > 0 0 <

∣∣∣TZ
it

∣∣∣ ≤ 1 Emission reduction
catch-up is better than

economic catch-up
∣∣∣TZ

it

∣∣∣ > 1



Sustainability 2023, 15, 15843 7 of 23

Table 1. Cont.

Catch-Up Type Economic Growth
Gap

Carbon
Intensity Gap

Catch-Up
Decoupling

Elasticity Factor
Catch-Up Effect

Failure to catch up
with

decoupled (A) ∆PG > 0 ∆CE < 0
∣∣∣TZ

it

∣∣∣ > 1
Emission reduction

lags behind economic
growth

Failure to catch up
with decoupled (B) 0 <

∣∣∣TZ
it

∣∣∣ ≤ 1
Economic growth lags

behind emission
reductions

2.7. Explanatory Variables Selection and Description

The energy consumption, population, and economic data for China and each province
were obtained from the China Statistical Yearbook 2006–2022, the China Energy Statistical
Yearbook, as well as statistical yearbooks and official websites of statistical bureaus of each
province (Hong Kong, Macao, Taiwan, and Tibet were not included due to missing data).
The population data is based on the resident population, and the GDP data is converted
to 2005 constant prices to exclude the effect of inflation. The discounted standard coal
coefficient adopts the value provided in the General Rules for Calculating Comprehensive
Energy Consumption. The data on average low-level heat generation, carbon content per
unit calorific value (default value) and carbon oxidation rate are from the Guidelines for
the Preparation of Provincial Greenhouse Gas Inventories (2011 Trial Version), and the
average carbon dioxide emission factors for provincial power grids are from the Average
Carbon Dioxide Emission Factors for China’s Regional Power Grids in 2011 and 2012. The
interpretation and sources of the indicators are shown in Table 2.

Table 2. Description of data sources for indicators.

Norm Yearbook Data Involved

energy structure Energy consumption
energy intensity Energy consumption, GDP

economic development GDP
population size population

NCV Average low level heat generation
COF carbon oxidation rate
λ Provincial grid average CO2 emission factor

3. Results
3.1. Characteristics of Spatial and Temporal Changes in Energy Carbon Emissions

Based on Equations (1)–(3), this paper accounts for the carbon emissions generated
from the consumption of nine types of energy and electricity, namely, raw coal, coke, crude
oil, gasoline, kerosene, diesel oil, fuel oil, natural gas, and liquefied petroleum gas, from
2005 to 2021. Due to the space limitation of the article, the specific accounting results of
energy carbon emissions are put in Appendix A.

3.1.1. Time Evolution Characteristics

From 2005 to 2021, China’s total energy carbon emissions showed a “rising-declining-
rising” trend, reaching its first peak in 2013, with a total of 1,484,984,406 metric tons, and
showing a decreasing trend from 2013 to 2015. As shown in Figure 2. This is related
to China’s implementation of the National 12th Five-Year Plan for Ecological Protection
in 2013. Throughout 2015–2021, China’s energy carbon emissions show a fluctuating and
increasing trend, with a total of 1394,239,874 metric tons in 2015, growing at an average
annual rate of 3.51%, reaching a maximum value during the study period in 2020, and
reaching a maximum value in 2020, with an average annual growth rate of 3.51%. In 2020,
it reached the maximum value of 1,605,656.017 million metric tons in the study period.
Subsequently, the energy carbon emissions show a slow decreasing trend, and the level
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of energy carbon emissions in 2021 is almost the same as that in 2019. This is because, in
early 2020, China took stringent precautions to prevent the spread of a new crown outbreak.
The short-term social shutdown had a huge impact on the domestic economy, while also
curbing the growth of carbon emissions.
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3.1.2. Characteristics of Spatial Evolution

Based on the energy carbon emission data of Chinese provinces in 2005, 2009, 2013,
2017, and 2021, with the help of ArcGIS 10.8, and combined with the natural breakpoint
grading method, the energy carbon emissions of Chinese provinces were categorized into
5 levels (in metric tons): level 1 [0, 10,000], level 2 [10,000, 50,000], level 3 [50,000, 100,000],
level 4 [100,000, 150,000], level 5 [150,000, +∞].

As shown in Figure 3, the spatial pattern of energy carbon emissions in China’s
provinces has changed considerably from 2005 to 2021, with a decrease in low-value
regions and an increase in high-value regions. Specifically, a total of three provinces were
in the level 3 carbon emission range in 2005, namely Hebei Province, Shanxi Province, and
Shandong Province, with high energy carbon emissions. The reason for this is that Shanxi
Province is China’s energy base, particularly rich in coal resources, and its economic growth
relies mainly on the large consumption of fossil energy, so energy carbon emissions are
relatively high. Hebei Province and Shandong Province are important heavy industry bases
in China, and the development of high heavy industry requires the consumption of large
amounts of energy, which leads to energy carbon emissions at the forefront of the country.
Qinghai Province, Ningxia Hui Autonomous Region, and Chongqing Municipality are in
Level 1, with the lowest energy carbon emissions. This is mainly because they are in the
western region of China, where the level of economic development is low and the level of
energy consumption is relatively low. The rest of the provinces are in level 2 with [10,000,
50,000] million metric tons. In 2009, compared with 2005, five provinces, Inner Mongolia,
Liaoning, Henan, Jiangsu, and Guangdong, evolved from carbon emission level 2 to level 3,
Ningxia and Chongqing evolved from level 1 to level 2, and the energy carbon emission
level of the rest of the provinces remained unchanged. This suggests that China’s energy
carbon emissions is on an upward trend, with most provinces developing their economies
at the expense of fossil energy consumption. The spatial pattern of China’s energy carbon
emissions in 2013 is roughly the same as that of 2009, with the exception of Shandong
province, where the energy mix has evolved from Tier 3 to Tier 4. Shandong province’s
energy structure is dominated by high-carbon fossil energy with 88% of fossil energy, the
highest in China, which has led to Shandong province becoming the top province in China
in terms of energy carbon emissions. In 2017, energy carbon emissions in Xinjiang and
Shaanxi increased more significantly, shifting from Tier 2 to Tier 3. This is because after the



Sustainability 2023, 15, 15843 9 of 23

promulgation of the 13th Five-Year Plan for the Development of the Western Region, the
economies of western provinces such as Xinjiang and Shaanxi have developed significantly,
but technological advances have not been able to keep up with economic development,
so their economic development has been achieved by consuming large amounts of fossil
energy. In 2021, the evolution of carbon emissions in China’s northern provinces is more
dramatic, with Inner Mongolia, Hebei, and Shanxi entering tier 4, Hebei and Shanxi enter
level 4, and Shandong reaches level 5, the highest level within the study, i.e., annual energy
carbon emissions greater than 150,000,000 metric tons. The rest of the provinces have no
significant change in their energy carbon emission levels compared to 2017.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 26 
 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3. Spatial evolution of energy carbon emissions in China, (a) Energy Carbon Emissions by 
Province in China, 2005; (b) Energy Carbon Emissions by Province in China, 2009; (c) Energy Carbon 
Emissions by Province in China, 2013; (d) Energy Carbon Emissions by Province in China, 2017; (e) 
Energy Carbon Emissions by Province in China, 2021. 

3.1.3. Analysis of the Dynamic Evolution of Disequilibrium 

Figure 3. Spatial evolution of energy carbon emissions in China, (a) Energy Carbon Emissions by
Province in China, 2005; (b) Energy Carbon Emissions by Province in China, 2009; (c) Energy Carbon
Emissions by Province in China, 2013; (d) Energy Carbon Emissions by Province in China, 2017;
(e) Energy Carbon Emissions by Province in China, 2021.



Sustainability 2023, 15, 15843 10 of 23

3.1.3. Analysis of the Dynamic Evolution of Disequilibrium

In order to further study the differences and dynamic evolution trends of energy
carbon emissions in Chinese provinces, based on the previous analysis of the temporal and
spatial characteristics of energy carbon emissions, using Equation (5), a three-dimensional
Gaussian kernel density curve is constructed, as shown in Figure 4. With regard to the
position of the kernel density function, from 2005 to 2013, the density distribution interval
shows an overall rightward flat trend, indicating that China’s energy carbon emissions
were continuously rising from 2005 to 2013, which is consistent with the evolutionary
law of China’s energy carbon emissions in the time dimension; from 2013 to 2019, the
interval shifts to the left, indicating that the intensity of carbon emissions has declined, and
from 2019 to 2021, the interval has a tendency to move to the right. In terms of the kernel
function’s kurtosis, a double-peak pattern is shown in 2010, with China’s inter-provincial
energy carbon emissions concentrating in the range of 5× 104 million metric tons as well as
10 × 104 million metric tons, with more obvious polarization. In terms of the distribution
pattern, the right trailing tail shows an extension trend, indicating that the differences in
China’s inter-provincial energy carbon emissions are gradually expanding.
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3.2. Classification of Carbon Emissions

According to Equation (4), China’s energy carbon emission intensity was calculated.
Linking with the previous energy carbon emissions, the carbon emissions were divided
into four categories, which were H-H (high energy carbon emissions—high energy carbon
intensity), L-H (low energy carbon emissions—high energy carbon intensity), H-L (high
energy carbon emissions—low energy carbon intensity), and L-L (low energy carbon
emissions—low energy carbon intensity).

The classification of China’s inter-provincial energy carbon emissions from 2005 to 2021
is shown in Table 3. During the study period, Hebei, Shanxi, Inner Mongolia, and Liaoning
are all of type H-H, indicating that these provinces need to take into account the aspects of
energy transition and technological innovation to accelerate energy transition and innovate
their economic development methods. The carbon emission types of Jiangsu, Zhejiang, and
Guangdong are relatively stable and have been of type H-L. The economic development of
these provinces is at a leading level in China, and they are strong economic provinces, but
the efficiency of energy use is not high, so these provinces should focus on developing and
utilizing cleaner energy sources in the future, and reduce their dependence on fossil energy
sources. Provinces in the L-H type, such as Jilin, Guizhou, Ningxia, Qinghai, etc., should
improve the level of technological innovation, develop their economies, and increase the
efficiency of resource utilization.
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Table 3. Classification of energy carbon emissions.

Particular Year H-H H-L L-H L-L

2005

Hebei, Shanxi,
Inner Mongolia,

Liaoning,
Heilongjiang,

Shandong,
Henan

Jiangsu,
Zhejiang, Hubei,

Guangdong

Jilin, Guizhou,
Yunnan, Shaanxi,
Gansu, Qinghai,

Ningxia,
Xinjiang

Beijing, Tianjin,
Shanghai, Anhui,
Fujian, Jiangxi,

Hunan, Guangxi,
Hainan,

Chongqing,
Sichuan,

2013

Hebei, Shanxi,
Inner Mongolia,

Liaoning,
Shaanxi,
Xinjiang

Jiangsu,
Zhejiang,

Shandong,
Henan,

Guangdong

Jilin,
Heilongjiang,

Guizhou,
Yunnan, Gansu,

Qinghai,
Ningxia

Beijing, Tianjin,
Shanghai, Anhui,
Fujian, Jiangxi,
Hubei, Hunan,

Guangxi,
Hainan,

Chongqing,
Sichuan

2021

Hebei, Liaoning,
Shanxi, Shaanxi,
Xinjiang, Inner

Mongolia,
Shandong

Jiangsu,
Zhejiang,

Guangdong,
Henan

Jilin,
Heilongjiang,

Guizhou,
Hainan, Ningxia,
Gansu, Tianjin,

Qinghai

Beijing, Anhui,
Hunan,

Chongqing,
Fujian, Hubei,

Sichuan, Yunnan,
Shanghai,

Jiangxi, Guangxi

3.3. Analysis of the Driving Mechanism of China’s Energy Carbon Emissions

With the help of existing research results [28,29] and China’s actual situation, this
paper studies the driving mechanism of energy carbon emission from four dimensions:
economic development, energy intensity, energy structure, and population size. Using
Equations (6)–(9), the driving mechanism of energy carbon emission in China is decom-
posed. The cumulative contribution values of economic development effect and population
size effect to China’s energy carbon emissions are 1,409,807.68 million metric tons and
978,539.90 million metric tons, respectively, and both of them are positive factors pro-
moting the increase of energy carbon emissions, and the economic development effect
contributes more values. The cumulative contribution values of energy structure and
energy intensity to China’s energy carbon emissions are −151,967.14 million metric tons
and −704,101.50 million metric tons, respectively, which are negative factors inhibiting
energy carbon emissions. Based on Equation (10), the contribution of each driver to China’s
energy carbon emissions is calculated and plotted as a heat map based on the contribution
of the four drivers, as shown in Figure 5.
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From the results of Figure 4, the contribution rate of each factor to energy carbon emis-
sion is ranked as follows: economic development effect > energy intensity effect > energy
structure effect > population size effect, and the cumulative contribution rates are 863.92%,
−446.43%, −81.96%, and 58.23%, respectively.

Firstly, the economic development effect is the most important driver of China’s rising
energy and carbon emissions.

From 2005 to 2021, the overall contribution of economic development effect to China’s
energy carbon emissions was positive, and it was the most important driver of China’s
energy carbon emissions, and the contribution of economic growth effect was 74.19%
in 2011, reaching the maximum value. During the “12th Five-Year Plan” period (2011–2015),
the driving role of economic growth factors gradually weakened, but it is still the most
important factor contributing to the growth of carbon emissions. This is related to China’s
economic development, after the release of the “12th Five-Year Plan”, China’s economy
has changed from high-speed development to high-quality development [30], and energy
carbon emissions have slowed down as a result.

Secondly, population size effect is one of the factors contributing to energy and car-
bon emissions.

The contribution rate of population scale effect is relatively stable during the study
period, remaining at 1–6%. Due to the small change in the natural population growth rate
and the popularization of the concept of environmental protection, it is less likely that the
effect of population size on carbon emissions will increase in the future. This is consistent
with the findings of Wang Quiet et al. (2023) [17].

Thirdly, energy intensity presents an inhibitory effect on carbon emissions.
During the study period, except for 2013, energy intensity presents an inhibitory effect

on carbon emissions. The inhibitory effect of energy intensity on carbon emissions has
gradually weakened in the past three years, indicating that China still needs to improve
energy efficiency and realize green and low-carbon development of the economy.

Fourthly, Energy structure has a small impact on carbon emissions.
The contribution of energy structure to carbon emissions is both positive and negative,

but overall, the factor is negatively inhibiting the growth of carbon emissions. However,
from the point of view of the contribution rate, the factor’s role in controlling carbon
emissions is relatively weak.

3.4. Decoupling of Carbon Emissions from Economic Development at the Inter-Provincial Level
in China
3.4.1. Overall Decoupling of Carbon Emissions from Economic Development at the
Inter-Provincial Level

Based on Equation (11), the decoupling index was calculated for each province in
China from 2005 to 2021. According to the characteristics of the decoupling relationship,
the period 2005–2021 is divided into five time periods for its stage analysis, and the specific
results are shown in Table 4. In the time period of 2005–2008, there are 26 provinces with
weak decoupling between energy carbon emissions and economic development in China,
namely Beijing, Tianjin, Hebei, etc; Hainan Province shows negative decoupling with
expansion, and Chongqing and Qinghai are connected with growth. During 2009–2012, the
number of provinces with weak decoupling is reduced to 22, and the number of provinces
with growth is 4, namely Inner Mongolia Aumetric tonomous Region, Shanxi, Hainan,
Jiangsu, and 3 provinces in Guangxi, Ningxia, and Xinjiang show negative decoupling
with expansion. Hainan, and Jiangsu, and three provinces showing expansion negative
decoupling in Guangxi, Ningxia, and Xinjiang. In 2013–2016, the number of provinces
showing decoupling gradually increased, with 12 provinces showing strong decoupling
and 16 provinces showing weak decoupling. In this time domain, no provinces showed
expansion-negative decoupling. In 2017–2019, China’s interprovincial mainly showed weak
decoupling, strong decoupling, expansion-negative decoupling, and growth-connecting
4 bells decoupling. Compared with 2017–2019, the type of decoupling becomes single in
2020–2021, presenting only 2 patterns of weak decoupling and growth connection. The
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above provinces showing decoupling between energy carbon emissions and economic
development development can be categorized into 2 types. The first category is economi-
cally developed with a relatively low share of value-added of the energy industry, such as
Beijing and Tianjin. The second category is economically underdeveloped provinces such
as Henan and Sichuan, which have achieved the dual purpose of economic growth and
environmental protection by following a new industrialization path. Provinces showing
growth connection, such as Shandong, Hunan, and Guizhou, remain in the crude economic
development mode, resulting in synchronized growth of energy and carbon emissions
and the economy. Provinces such as Ningxia and Xinjiang show negative decoupling of
expansion, which is attributed to the fact that in recent years, provinces in western China
have vigorously developed coal and other energy-intensive industries in order to develop
their economies at the expense of the environment, which has led to a faster rate of energy
and carbon emissions than the rate of economic growth.

Table 4. Decoupling of energy carbon emissions from economic development at the inter-provincial
level in China, 2005–2021.

2005–2008 2009–2012 2013–2016 2017–2019 2020–2021

Beijing weakly
decoupled out of touch out of touch weakly

decoupled
weakly

decoupled

Tianjin weakly
decoupled

weakly
decoupled out of touch weakly

decoupled
weakly

decoupled

Hebei weakly
decoupled

weakly
decoupled

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Shanxi weakly
decoupled

weakly
decoupled

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Inner
Mongolia

weakly
decoupled

Growing
Connections

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Liaoning weakly
decoupled

weakly
decoupled out of touch

Expansion
negative

decoupling

weakly
decoupled

Jilin weakly
decoupled

weakly
decoupled out of touch weakly

decoupled
weakly

decoupled

Heilongjiang weakly
decoupled

weakly
decoupled out of touch Growing

Connections
weakly

decoupled

Shanghai weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

Jiangsu weakly
decoupled

Growing
Connections

weakly
decoupled out of touch weakly

decoupled

Zhejiang weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

Anhui weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

Fujian weakly
decoupled

weakly
decoupled out of touch

Expansion
negative

decoupling

Growing
Connections

Jiangxi weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

Shandong weakly
decoupled

weakly
decoupled

Growing
Connections out of touch Growing

Connections

Henan weakly
decoupled

weakly
decoupled out of touch out of touch weakly

decoupled

Hubei weakly
decoupled

weakly
decoupled out of touch

Expansion
negative

decoupling

weakly
decoupled

Hunan weakly
decoupled

weakly
decoupled

weakly
decoupled

weakly
decoupled

Growing
Connections

Guangdong weakly
decoupled

weakly
decoupled

weakly
decoupled

Growing
Connections

weakly
decoupled

Guangxi weakly
decoupled

Expansion
negative

decoupling
out of touch Growing

Connections
weakly

decoupled

Hainan
Expansion
negative

decoupling

Growing
Connections

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Chongqing Growing
Connections

weakly
decoupled out of touch weakly

decoupled
Growing

Connections

Sichuan weakly
decoupled

weakly
decoupled out of touch weakly

decoupled
weakly

decoupled
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Table 4. Cont.

2005–2008 2009–2012 2013–2016 2017–2019 2020–2021

Guizhou out of touch weakly
decoupled

weakly
decoupled out of touch Growing

Connections

Yunnan weakly
decoupled

weakly
decoupled out of touch

Expansion
negative

decoupling

Growing
Connections

Shaanxi weakly
decoupled

Growing
Connections

weakly
decoupled

Growing
Connections

weakly
decoupled

Gansu weakly
decoupled

weakly
decoupled out of touch Growing

Connections
weakly

decoupled

Qinghai Growing
Connections

weakly
decoupled

weakly
decoupled out of touch Growing

Connections

Ningxia weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Xinjiang weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

Expansion
negative

decoupling

weakly
decoupled

3.4.2. Analysis of Decoupling Transfers

The transfer of energy carbon emissions and economic development from 2005 to 2021
is shown in Figure 6. In terms of overall decoupling types, there are 4, 3, 3, 4, and 2 decou-
pling types in the five time periods, respectively, presenting a trend of decreasing decoupling
richness; in terms of inter-provincial decoupling transfers, most of the provinces’ decou-
pling status transfers are dominated by strong and weak decoupling transfers to each other,
which suggests that most of China’s provinces present a relatively stable decoupling trend
between energy and carbon emissions and economic development. Hainan, Chongqing,
and Guizhou show the same trend of decoupling transfer, and the three provinces are richer
in the type of decoupling. The two provinces of Ningxia and Xinjiang show exactly the
same change trend, which is the change pattern of “weak decoupling-expansion-negative
decoupling-weak decoupling-expansion-negative decoupling-weak decoupling”. This is
due to the fact that Xinjiang and Ningxia are both located in Northwest China, with little
difference in the level of development of economy, population, resources, and environment.
Hua Ruixiang et al.(2023) [31] studied the decoupling effect of interprovincial carbon emis-
sions and economic growth in China from 2015 to 2020, and found that although the annual
decoupling status of each province shows a fluctuating trend of change, the overall view is
dominated by the mutual transformation of strong decoupling and weak decoupling.
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3.4.3. Catch-Up Decoupling Analysis

In order to conduct an in-depth study on the decoupling characteristics of China’s
energy and carbon emissions, a catching-up decoupling index model is constructed to
describe the dynamic process of catching up from each province to the benchmark provinces.
Referring to Zhang et al.’s (2013) [27] approach, five provinces with leading carbon intensity
and per capita GDP indicators are selected. Through calculation and comparison, it is
found that the top 5 are Beijing, Shanghai, Guangdong, Zhejiang, and Jiangsu. By averaging
the values of these nine provinces year by year, a model province with excellent economic
performance and carbon emissions is constructed. Using Equation (12), the results of
the catch-up decoupling index calculations are categorized for each province. Figure 7
shows the process of catching up and decoupling provinces from the model province from
2005 to 2021.
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Between 2005 and 2008, most provinces in China were in relative catch-up decoupling
B, i.e., the gap between these provinces and the benchmark provinces in terms of energy
intensity and per capita GDP levels was gradually narrowing, and catching up in emissions
reduction was faster than catching up in the economy. Between 2009 and 2012, the catch-up
decoupling status evolved drastically. Three provinces are in absolute catch-up decoupling,
10 provinces are in relative catch-up decoupling A, two provinces are in relative catch-
up decoupling B, and 15 provinces are in non-catch-up decoupling B. Three provinces,
Heilongjiang, Jilin, and Liaoning, are in relative catch-up decoupling B with the benchmark
provinces. ∆PG < 0, which ∆CE > 0, indicating that the economic gap between the three
provinces and the benchmark province is getting wider and the carbon emission level is
approaching the benchmark province. This result indicates that the three provinces of
Heilongjiang, Jilin, and Liaoning were in recession. In 2017–2019, 12 provinces were in
relative catching up decoupling B. This indicates that the economic gap and carbon emission
gap between the catching up provinces and the benchmark provinces was decreasing,
which was due to the fact that the catching up provinces were actively eliminating outdated
production capacity, actively introducing advanced production technology, and developing
new and high tech industries. In 2020–2021, there was an increase in the number of
provinces not catching up and decoupling, i.e., the economic gap between catching-up
provinces and benchmark provinces continues to narrow while the carbon intensity gap
continues to widen. This result indicates that catching-up provinces are developing their
economies at the expense of the environment and energy consumption.

4. Conclusions and Policy Recommendations
Conclusions

This paper takes the carbon emission from energy consumption as the research ob-
ject, measures it with cutting-edge measurement methods, analyzes the heterogeneity
of China’s energy carbon emission in time and space, and introduces the kernel density
function, which makes a more intuitive and graphic presentation of the dynamic changes
of carbon emission. Based on the log-mean Diels model, the driving factors of energy
carbon emissions are comprehensively analyzed. Meanwhile, the decoupling relationship
between China’s energy carbon emissions and economic development, and the catching-
up decoupling are discussed comprehensively, and the main research conclusions are
as follows.

Firstly, China’s total energy carbon emissions show a “rising-falling-rising” trend,
with 2013 as the inflection point and a slight decline in 2021 due to the epidemic.

From the perspective of time dimension, China’s total energy carbon emissions from
2005 to 2021 show a trend of “rising-declining-rising”, reaching the first peak in 2013, with
a total of 1,484,984,406 tons, and the maximum value of 1,605,656 tons in 2020. In 2020, it
reaches the maximum value of 16,056,560,017 metric tons in the study period. Subsequently,
energy carbon emissions show a slow downward trend. The level of energy carbon
emissions in 2021 is almost the same as that in 2019. This is due to the fact that, at
the beginning of 2020, China adopted stringent preventive and control measures in order
to prevent the spread of the outbreak of Xinguancang epidemic. The short-term social
shutdown had a huge impact on the domestic economy and also dampened the growth of
carbon emissions.

Secondly, China’s energy emissions vary greatly by province, and energy carbon
emissions from heavy industrial bases are relatively high.

From the spatial dimension, the energy carbon emissions of China’s eastern provinces
are larger than those of the central and western regions. Shandong Province’s energy
carbon emissions ranked first in the country. Shandong’s energy structure is dominated by
high-carbon fossil energy, with 88% of fossil energy, and fossil energy consumption emits a
large amount of carbon dioxide. The central and western regions, such as Qinghai, Ningxia,
and Chongqing Municipality, have the lowest energy carbon emissions, and with low
levels of economic development, the level of energy consumption is relatively low. Most
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other provinces have average annual energy carbon emissions within the range of [50,000,
150,000] million metric tons. Hebei Province, Shanxi Province, and Shandong Province
have higher energy carbon emissions. The reason for this is that Shanxi Province is China’s
energy base, it is particularly rich in coal resources, and its economic growth relies mainly
on the large consumption of fossil energy, so energy carbon emissions are relatively high.
Hebei Province and Shandong Province are important heavy industry bases in China, and
the development of high heavy industry requires the consumption of a large amount of
energy, which also leads to energy carbon emissions at the forefront of the country.

Thirdly, China’s inter-provincial differences in energy carbon emissions are gradually
widening, with an extended trend in the right tail.

In terms of the position of the kernel density function, from 2005 to 2013, the density
distribution interval shows an overall rightward shifting trend, indicating that China’s
energy carbon emissions were continuously rising from 2005 to 2013, which is consistent
with the evolution of China’s energy carbon emissions in the time dimension. From
the kernel function’s kurtosis point of view, 2010 shows a double-peak pattern, China’s
inter-provincial energy carbon emissions are concentrated in 10,000 metric tons as well as
10,000 metric tons, and polarization is more obvious.

Fourthly, the classification of carbon emissions shows an obvious polarization trend,
with more than 65% of the provinces belonging to the H-H and L-L categories.

H-H type provinces with high energy carbon emissions and carbon intensity, need
to comprehensively consider energy transformation and technological innovation, etc.,
accelerate energy transformation, and innovate the mode of economic development. H-L
type provinces with high energy carbon emissions and low carbon intensity, have economic
development at the leading level in China and belong to the economically strong provinces,
but their efficiency of energy-use is not high, so these provinces should focus on develop-
ing and utilizing clean energy in the future to reduce their dependence on fossil energy.
Provinces in the L-H type, such as Jilin, Guizhou, Ningxia, Qinghai, etc., should improve
the level of technological innovation, develop the economy, and improve the efficiency of
resource utilization.

Fifthly, Contribution of each factor to energy carbon emissions: economic development
effect > energy intensity effect > energy structure effect > population size effect.

China’s energy carbon emissions are influenced by multiple factors, and the contribu-
tion rates of economic development effect, energy intensity effect, energy structure effect,
and population scale effect are 863.92%, −446.43%, −81.96% and 58.23% respectively. The
overall contribution of the economic development effect to China’s energy carbon emissions
from 2005 to 2021 is positive, and it is the most important driving force causing for China’s
energy carbon emissions to continue to climb. The contribution of the population size effect
is relatively stable during the study period, and the energy structure has a weak controlling
effect on carbon emissions. The inhibitory effect of energy intensity on carbon emissions is
gradually weakening, indicating that China still needs to improve the efficiency of energy
use and realize the green and low-carbon development of the economy. The contribution
of energy structure to carbon emissions is both positive and negative, but overall, the factor
is negatively inhibiting the growth of carbon emissions.

Finally, the overall trend of decreasing decoupling richness is shown, and most of the
provinces’ decoupling status shifts to strong and weak decoupling to each other.

From the perspective of overall decoupling types, there are 4, 3, 3, 4, and 2 decoupling
types in the five time periods, respectively, showing a trend of decreasing decoupling
richness; from the perspective of inter-provincial decoupling transfer, most of the provinces’
decoupling status transfer is dominated by strong and weak decoupling transfer to each
other, which indicates that most of China’s provinces show a relatively stable decoupling
trend of energy and carbon emissions and economic development. From 2020–2022, the
provinces that are not been catching up and decoupled will account for a larger share
of the total, which means that the economic gap between catching-up provinces and the
benchmark provinces with “excellent” economic and carbon emission levels will continue
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to narrow, while the gap in carbon intensity will continue to widen. This indicates that,
in recent years, China’s catching-up provinces have developed their economies at the
expense of the environment and energy consumption. The above provinces with decoupled
energy and carbon emissions and economic development can be categorized into 2 groups.
The first category is economically developed, with a relatively low value-added share
of energy industries, such as Beijing and Tianjin. The second category is economically
underdeveloped provinces such as Henan and Sichuan, which have achieved the dual
purpose of economic growth and environmental protection by taking the road of new
industrialization. Provinces showing growth connection, such as Shandong, Hunan, and
Guizhou, remain in the crude economic development mode, resulting in synchronized
growth of energy and carbon emissions and economy. Provinces such as Ningxia and
Xinjiang show negative decoupling of expansion, which is attributed to the fact that
in recent years, provinces in western China have vigorously developed coal and other
energy-intensive industries in order to develop their economies at the expense of the
environment, which has led to a faster rate of energy and carbon emissions than the rate of
economic growth.

In view of the above analysis, this paper puts forward the following policy recommen-
dations to reduce China’s energy carbon emissions and reach the goal of “carbon peaking
and carbon neutrality” at an early date:

(1) National level

From the previous analysis of the driving factors of China’s energy and carbon emis-
sions, the key role is played by the effect of economic development. The main measure
of economic development effect is GDP, so to achieve China’s 2030 carbon peak and
2060 carbon neutral goals with high quality, taking the sustainable development path is
undoubtedly the best choice. Under the current industrial system, technological advances
in certain key industrial sectors may reduce carbon emissions and lead to strong green
GDP growth.

As China is “rich in coal, low in gas, and short of oil”, it has formed an energy structure
dominated by coal, and the calorific value of coal is much higher than that of other energy
sources, which leads to a large amount of energy and carbon emissions in China, and
there is a large gap between the energy and carbon emission efficiencies of developed
countries [32]. In view of this, China should deepen the reform of its energy structure,
build a stable energy supply system dominated by new energy sources and supplemented
by traditional fossil energy sources, and appropriately subsidize clean energy sources
at the production and consumption ends. It should also deepen the reform of electric
power enterprises, break through the grid bottleneck, and strive to fundamentally solve
the bottleneck problem of new energy.

In addition, what affects China’s energy carbon emissions is energy intensity. The rate
of decline in energy intensity will determine whether China can reach the peak of carbon
dioxide emissions by 2030. Therefore, further releasing the energy saving potential and
improving the energy utilization rate are the key factors to achieve this goal.

With regard to the population size effect, China, as a large population country, should
control the impact of the population size effect on energy and carbon emissions, as China
has already liberalized its “three-child” policy. Improve the quality of population, promote
the flow of population to energy saving and emission reduction technology research,
and accurately match the talent chain around the industrial chain [33]. Rationally plan
the development of new urbanization, eliminate the high carbon emissions caused by
traditional urbanization, and develop green and locally adapted industries.

China should introduce key technologies and improve efficiency as soon as possible,
decarbonize key emission sources, and transition to a green service economy and a low-
carbon lifestyle. In addition, China should establish an appropriate low-carbon sustainable
development path as soon as possible. This will help mitigate the carbon lock-in effect.
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(2) Provincial level

Most studies on carbon emissions may focus only on the national scale, ignoring the
specific contribution of each province. However, some studies have found [34] that it is
more effective to study climate change in developing countries using a bottom-up approach.
In this sense, this study is able to reflect the “common but differentiated” responsibility
for carbon peaking at the provincial level. Based on the calculation and spatial-temporal
evolution of carbon emissions in each province of China, a decoupling model is used
to explore the relationship between economic development and carbon emissions. The
following recommendations are made at the provincial level:

For provinces such as Hebei, Shanxi and Shandong, whose carbon emissions are
among the highest in the country, comprehensive consideration needs to be given to
aspects such as energy transformation and technological innovation to accelerate energy
transformation and innovate economic development. Provinces that are highly likely to
peak before 2030, such as Jiangsu, Chongqing, and Shanghai, should prioritize controlling
their population growth. For provinces such as Zhejiang and Guangdong, economic
development is at a leading level in China and they are strong economic provinces. But the
efficiency of energy use is not high. So, these provinces should focus on developing and
utilizing clean energy in the future to reduce their dependence on fossil energy. And they
should make more efforts to incentivize low-carbon lifestyles and consumption patterns
and accelerate renewable energy planning and deployment.

Benchmarking provinces to promote synergistic regional development. There are
differences in energy and carbon emissions and levels of economic development among
China’s provinces. The reason for this is related to the development policies of the Chinese
economy. As a result of China’s strategy of prioritizing the eastern part of the country,
provinces in the central and western regions are lagging behind in terms of economic
development. At the same time, western provinces such as Gansu, Xinjiang, and Ningxia
still have a large amount of backward production capacity, and the demand for energy
is still growing due to the needs of economic development. Provinces should recognize
the gap with the benchmark provinces based on the decoupling status of local economic
development and carbon emissions and the type of catching up decoupling, based on
local resource endowment and development advantages. Try cross-provincial clean energy
cooperation, similar to projects like Green Power.

5. Limitations and Prospects

As mentioned above, any study of carbon emissions inevitably contains limitations.
(1) The calculation of carbon dioxide emissions is somewhat biased. Due to the limitation
of data, the carbon dioxide emissions used in this paper are only limited to the carbon
dioxide produced by eight common types of energy and electricity consumption. However,
we know that in the process of socio-economic development, not only energy consumption
produces carbon dioxide, for example, human respiration also produces carbon dioxide.
(2) The factors affecting energy carbon emissions are limited. The factors affecting carbon
dioxide emissions are large and complex, and this paper only selects four major factors,
which lacks comprehensiveness. (3) The study of China’s energy carbon emissions in
this paper still remains at the national and provincial scales and has not been further
disaggregated to the city level due to the difficulty of collecting complete data at the
prefecture level. Therefore, in terms of policy recommendations, it is impossible to make
carbon emission reduction planning for specific cities. (4) Carbon peak reduction and
carbon neutrality are common goals and tasks around the world. In this paper, comparisons
with other countries have not yet been discussed.

In the future, we will make efforts in the following areas. (1) Refine the source of
carbon dioxide and improve the calculation precision. (2) To make more comprehensive
considerations on the factors affecting energy carbon emissions. (3) Utilize the latest
international methods to calculate carbon emissions, such as using nighttime lighting data
to perform calculations in order to obtain energy carbon emissions at the prefecture and
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municipal levels. (4) Introduce the carbon emissions of other countries in the international
arena for comparison with China. Scientifically formulate policies to mitigate global
warming. Promote the sustainable development of human beings.
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Appendix A

Table A1. The energy carbon emission calculations for all provinces in China from 2005 to 2021.

Region
Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Beijing 11,998.62 12,327.388 13,113.708 13,336.661 13,679.251 13,867.019 12,932.269 13,139.232 12,074.419 12,511.52 12,144.764 11,496.04 11,288.46 11,565.706 11,524.71 11,654.88 12,568.55

Tianjin 12,488.522 13,293.075 14,127.898 14,055.932 15,107.56 18,436.843 20,231.116 20,377.362 21,142.105 20,419.87 20,158.968 19,033.916 18,905.176 19,623.763 19,788.62 20,147.33 21,456.44

Hebei 57,412.516 61,942.581 67,607.595 70,642.242 75,350.813 81,068.028 91,675.929 92,966.828 93,243.415 88,685.007 92,733.758 92,865.965 92,193.492 94,559.178 94,913.14 10,4878.33 106,589.12

Shanxi 56,159.395 62,219.48 64,241.45 63,124.779 62,530.73 67,088.454 73,955.093 77,225.595 79,194.815 81,095.64 93,090.316 92,133.059 97,087.731 103,926.66 109,327.2 115,200.55 125,633.31

Inner Mongolia 31,179.32 36,618.267 42,270.083 50,463.686 54,940.466 60,551.772 75,579.624 78,531.547 76,723.589 78,612.072 77,969.182 78,887.758 83,004.003 95,196.635 105,600.2 115,268.14 123,456.22

Liaoning 49,813.984 53,546.913 57,952.996 59,414.946 61,512.03 67,401.813 71,990.851 74,604.894 71,921.114 72,027.084 69,545.834 70,442.413 72,570.98 77,177.94 84,066.75 94,066.755 96,541.36

Jilin 18,427.643 20,086.88 21,219.444 22,019.111 22,525.58 25,131.01 28,754.483 28,415.645 27,380.831 27,158.152 23,184.056 22,859.128 22,682.756 23,468.747 24,176.49 25,796.34 26,896.85

Heilongjiang 25,149.453 26,565.226 28,570.084 30,305.328 31,646.141 34,319.075 36,805.972 38,555.263 36,586.454 37,082.37 33,939.679 34,224.632 34,248.898 34,931.633 36,671.46 37,898.666 38,744.223

Shanghai 23,128.306 23,039.481 23,657.101 24,791.424 24,681.47 27,004.166 27,780.521 27,389.171 29,052.531 26,454.763 26,564.044 26,471.325 26,967.67 26,550.202 27,403.58 29,635.224 29,888.22

Jiangsu 47,340.372 51,815.725 55,854.135 57,632.443 60,246.025 67,259.233 77,527.449 79,158.29 81,395.446 80,822.449 83,706.697 87,125.359 86,307.475 85,537.563 87,372.58 88,746.32 92,746.32

Zhejiang 29,982.72 33,830.376 37,798.321 38,546.641 40,080.3 43,024.865 45,569.253 44,210.237 45,473.688 44,952.697 45,583.628 45,243.106 47,384.075 46,475.895 47,476.50 48,746.369 49,746.369

Anhui 19,693.454 21,189.638 23,602.034 26,945.052 29,653.55 31,428.394 34,147.836 35,238.853 38,271.91 39,541.489 39,619.898 39,553.309 40,938.104 42,504.565 42,779.28 43,779.285 44,779.285

Fujian 13,451.65 14,719.621 16,501.447 17,262.755 20,448.583 22,721.407 25,938.656 25,739.451 25,273.295 28,834.236 27,727.986 26,018.475 27,412.794 30,337.484 32,290.43 34,521.356 38,521.356

Jiangxi 11,730.639 12,799.931 13,982.176 14,209.29 14,875.145 17,300.321 23,669.643 19,208.941 20,697.428 21,081.452 21,969.719 22,259.928 22,729.037 23,758.601 24,266.73 26,456.369 29,456.369

Shandong 70,074.78 78,711.097 87,506.502 94,495.691 98,401.375 108,777.02 110,085.24 120,622.48 117,437.23 125,785.31 138,498.17 145,505.03 149,306.95 147,839.73 151,698.2 174,596.33 194,596.33

Henan 42,521.633 48,219.488 53,375.018 55,077.511 56,281.441 60,866.511 67,090.084 62,784.57 62,311.133 62,987.968 59,313.762 58,626.372 57,379.914 57,717.863 53,398.49 60,245.734 62,245.734

Hubei 23,951.237 26,514.086 29,337.711 29,358.838 31,527.241 36,156.131 41,145.958 41,171.968 35,834.787 36,282.25 34,444.153 34,258.002 35,062.216 36,458.122 38,710.66 39,443.35 42,443.35

Hunan 22,660.181 24,173.136 26,557.418 26,295.89 27,656.68 29,342.556 32,755.442 32,264.79 31,382.114 30,470.505 30,348.687 31,037.192 31,337.817 32,037.033 31,947.22 33,467.521 36,467.521

Guangdong 38,711.841 43,109.337 46,767.907 48,240.277 52,047.24 57,628.255 63,557.26 61,867.836 62,952.558 63,402.06 63,996.629 66,114.53 69,203.562 71,499.158 70,979.04 78,465 82,465

Guangxi 10,261.545 11,265.167 12,868.063 12,757.037 14,148.72 17,212.221 21,173.247 23,254.117 23,380.218 23,210.166 21,791.625 22,655.55 23,965.271 25,181.685 26,628.65 27,728.365 28,728.223

Hainan 1598.842 2428.628 4409.141 4671.755 4966.895 5423.367 6392.068 6662.906 6190.831 6849.103 7498.034 7278.204 7070.089 7482.044 7685.407 7885.239 8085.698

Chongqing 9068.654 9834.204 10,715.227 13,268.907 14,269.873 15,754.548 17,945.746 17,713.05 15,341.73 16,441.897 14,420.451 14,862.151 15,321.748 15,422.782 15,565.26 16,565.665 18,565.333

Sichuan 21,609.477 24,174.667 27,013.884 29,831.582 33,567.332 34,594.562 34,904.466 36,346.76 37,329.405 38,653.411 33,105.502 32,553.343 31,964.3 31,171.36 33,463.12 34,463.887 36,463.635

Guizhou 18,222.234 21,208.949 22,687.785 21,057.055 23,065.929 23,247.165 25,705.446 28,128.194 29,204.301 28,206.238 28,228.924 29,571.299 29,741.36 27,410.37 28,084.69 29,410.987 32,410.336

Yunnan 17,688.943 19,464.585 20,336.834 20,922.611 22,713.016 23,979.158 24,755.196 25,707.336 25,436.331 22,871.815 20,711.095 20,486.29 21,760.629 24,186.349 25,297.39 26,300.446 29,300.332

Shaanxi 17,646.677 21,437.586 23,661.633 26,659.738 28,966.349 34,307.235 37,930.583 43,553.726 46,265.637 48,745.6 48,264.732 49,160.574 50,667.473 49,574.909 53,839.69 57,555.338 60,555.225

Gansu 12,953.157 13,819.341 15,370.926 15,672.057 15,476.926 17,227.728 19,902.132 20,497.592 21,197.156 21,348.103 20,648.926 19,863.062 20,038.48 20,992.541 21,253.85 26,666.125 27,666.898

Qinghai 2344.101 2944.23 3266.284 4067.184 4142.595 4133.085 4885.542 5824.752 6414.459 5985.861 5525.828 6435.889 6167.295 6032.492 5963.033 6422.001 7422.456

Ningxia 7310.221 8008.046 9057.795 10,009.469 11,008.736 13,027.29 17,343.634 18,634.516 19,829.671 20,184.71 20,957.493 20,860.469 25,644.47 28,583.99 31,066.64 35,100.045 38,100.693

Xinjiang 15,402.079 17,550.824 19,107.481 21,153.436 24,690.738 27,656.497 32,715.645 37,794.645 43,279.765 48,110.51 49,709.02 51,870.247 55,171.86 57,433.832 61,079.01 63,000.123 65,055.361
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