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Abstract

:

Excessive carbon emissions will cause the greenhouse effect and global warming, which is not conducive to environmental protection and sustainable development. In order to realize the goal of “carbon peak and carbon neutrality” as soon as possible, this paper utilizes the methodology provided by the IPCC to measure the carbon emissions and carbon intensity of China’s energy consumption. The classification method of carbon emission and the kernel density function method are used to explore the spatial and temporal evolution of regional carbon emissions. Based on the Log Mean Divided Index (LMDI) method, the drivers of China’s energy carbon emissions are measured. Based on the Tapio index function and the catch-up decoupling model, the decoupling status of Chinese provinces and the development gap with the benchmark provinces are examined. The results show that (1) China’s total energy carbon emissions show a “rising-declining-rising” trend from 2005 to 2021, and reach the first peak in 2013, totaling 1,484,984.406 million metric tons. China’s Hebei, Shanxi, and Shandong provinces have the highest energy carbon emissions. (2) China’s energy carbon emissions are influenced by multiple factors, and the contribution of each factor to energy carbon emissions is in the following order: economic development effect > energy intensity effect > energy structure effect > population size effect. (3) China’s catch-up provinces develop their economies at the expense of the environment and energy consumption.






Keywords:


sustainable development; carbon peak and carbon neutrality; carbon emissions; Log Mean Divided Index (LMDI); catching-up decoupling; Tapio decoupling index












1. Introduction


With the rapid growth of the global population and the rapid increase in the consumption of natural resources, the risks and pressures on the global life system are increasing, which has led to a high incidence of ecological problems, including global warming due to the massive emission of greenhouse gases [1]. Although global carbon emissions have experienced a short-term decline due to the influence of the COVID-19 pandemic [2], the urgency and importance of addressing the challenge of climate change have not changed. According to the International Energy Agency (IEA), global energy-related carbon dioxide (CO2) emissions will reach more than 36.88 billion metric tons in 2022, with China leading the world with 10.2 billion metric tons of CO2 emissions [3]. China leads the world with 10.2 billion metric tons of carbon dioxide emissions. As a responsible power, China has made an absolute commitment at the UN General Assembly to “strive to reach peak carbon emissions by 2030 and achieve carbon neutrality by 2060” [4]. In its 14th Five-Year Plan, China has incorporated the goal of “dual carbon” into the overall layout of ecological civilization construction. Therefore, in recent years, China’s carbon emission reduction efforts have been increasing, and the energy transition and energy revolution are being promoted in multiple dimensions. However, due to the vastness of China, there are differences in energy and carbon emissions in different regions, which poses a challenge to the formulation and implementation of carbon emission reduction strategies. Therefore, it is of great significance to study China’s energy carbon emissions at the provincial scale in order to realize energy saving and emission reduction and formulate scientific emission reduction policies in China.



In recent years, scholars have carried out various researches in the field of energy consumption and its carbon emissions. At present, the research of scholars at home and abroad on the issue of global carbon emissions mainly focuses on the measurement of carbon emissions, the decomposition of influencing factors, and the relationship between carbon emissions and economic growth.



For carbon emission measurement, most scholars use the baseline methodology provided in the 2006 IPCC Guidelines for Greenhouse Gas Emission Inventories published by the IPCC to estimate CO2 emissions. For example, Roberta Quadrelli and Sierra Peterson (2007) [5] used the IPCC methodology to measure global carbon emissions and examined the drivers of carbon emissions. Pan et al. (2021) [6] measured the carbon emissions of 11 provinces and cities in eastern China, including Beijing, Tianjin, Hebei, and Jiangsu, based on the IPCC methodology, and analyzed the future trend of carbon emissions in the eastern region. Nonini, L. et al. (2022) [7] calculated carbon stocks in the Italian Central Alps case study area according to the 2006 IPCC guidelines. Chen et al. (2023) [8] used the IPCC carbon emission factor method to calculate land use carbon emissions and quantitatively analyze and assess the temporal characteristics of carbon emissions. These studies provide important references for further exploration of carbon emission control.



In the study of carbon emission-influencing factors, scholars have used Kaya’s constant equation, the STIRPAT model, and the logarithmic mean Diels’ index method (LMDI) index decomposition method. Japanese professor Yoichi Kaya (1989) [9] was the first to propose Kaya’s constant equation, which revealed the effects of population, per capita GDP, energy intensity, etc, on carbon emissions. Bo Jiang (2020) [10] used the STIRPAT model to evaluate the degree of influence of major factors such as affluence, energy consumption intensity, and industrial structure on carbon emissions in the three northeastern provinces. JinHua Liu (2022) [11] based on the LIMID decomposition model to identity the influencing factors of carbon emissions are decomposed into economic level, population size, energy intensity, etc., and the potential and countermeasures for carbon emission reduction in China are explored on the basis of scenario analysis. Jiang, Q. et al. (2023) [12] utilized the energy and carbon emission data of the industrial sector in Fujian Province from 2005–2019 and applied the LMDI decomposition method to decompose the carbon emission drivers of each industry. Miskinis, V. (2023) [13] used the Log Mean Divided Index (LMDI) methodology to assess the impact of changes in the number of employees, labor productivity, energy intensity, RES deployment, and emission intensity on GHG emission reductions in Esmetric tonia, Latvia, and Lithuania, as well as in the EU-27.



In the study of the relationship between carbon emissions and economic growth, academics mainly use the decoupling model to study the relationship between the two [14]. Refining the decoupling index system and constructing a decoupling index system that contains eight cases such as strong decoupling and weak negative decoupling. Qi et al. (2015) [15] used the Tapio decoupling model to examine the relationship between economic growth and total carbon emissions, per capita carbon emissions, and carbon intensity in six central provinces. Zhao et al. (2022) [16] used the Tapio decoupling model to analyze that carbon emissions and economic growth in Northeast China are mainly weakly decoupled. Wang et al. (2023) [17] used the Tapio decoupling model to explore the decoupling relationship between China’s overall economy and China’s provinces’ economic development and carbon emissions, respectively. Li, X.-Y. (2023) [18] explored the decoupled state of China’s transportation industry from 2000 to 2020 with the Tapio model.



In summary, existing studies have produced rich results covering the analysis of factors influencing national, regional, and provincial carbon emissions and the examination of overall decoupling effects. However, most of the literature on decoupling stays at the static scale of decoupling, and few articles have examined the dynamic process of carbon emission reduction catching up with decoupling. Compared with previous studies, the important contributions of this paper are reflected in the following: first, calculating the energy carbon emissions and carbon emissions intensity, and analyzing the spatial distribution and regional differences of the two at the same time. The Gaussian kernel density function is constructed so as to show the dynamic evolution law of energy carbon emission more intuitively. Second, the log-mean Diels method is used to decompose the driving factors of China’s energy carbon emissions. This method has a better robustness test than other factor decomposition methods, eliminates computational residuals, and makes the decomposition results more accurate. Third, it analyzes the dynamic history of catching up and decoupling of China’s energy carbon emission reduction and measures the gap in economic level and carbon emission level between catching up provinces and benchmark provinces, so as to be more targeted in proposing emission reduction policies. Fourth, we analyze the evolutionary characteristics and decoupling status of China’s carbon emissions, aiming to provide quantitative support for China’s carbon emission reduction policies and directional guidance for achieving the goals of carbon peaking and carbon neutrality.




2. Materials and Methods


2.1. Carbon Emission Accounting Methods


In order to more objectively measure the carbon emission level of Chinese provinces, this paper uses energy carbon emission and energy carbon emission intensity together to evaluate the dynamic changes and regional differences of China’s energy carbon emission.



2.1.1. Accounting for Energy Carbon Emissions


For accounting for energy carbon emissions, different data types and accounting methods produce different results [19]. Based on the characteristics of China’s energy consumption, this paper adopts the IPCC method to account for China’s fossil energy consumption, including nine energy types: raw coal, coke, crude oil, gasoline, kerosene, diesel fuel, fuel oil, natural gas, and liquefied petroleum gas. In addition to this, this paper also accounts for China’s electricity consumption in terms of carbon emissions. The calculation formula is as follows:


  C =   Q   f   +   Q   e    



(1)




where Qf is the carbon emissions from the nine fossil energy sources, and Qe is the carbon dioxide emissions from electricity consumption [20].



According to the methodology provided by the IPCC for calculating carbon emissions from fossil energy sources, carbon emissions are calculated by multiplying energy consumption by a CO2 emission factor with the following formula:


    Q   f   =   ∑  i = 1   9      E   i       C   i   =   ∑  i = 1   9      E   i     (   N C V   i   ×   E F   i   ×   C O F   i   ×   44   12   )  



(2)




where Ei is the consumption of the ith energy source, Ci is the combined CO2 emission factor, and NCVi (average low level heat generation), EFi (carbon content), COFi (carbon oxidation rate) and the molecular ratio of CO2 to C 44/12 are multiplied to obtain Ci [21].



The CO2 emissions from electricity for each year need to be calculated by multiplying the electricity consumption by the carbon emission factor for electricity for that year, using the formula:


    Q   e   = W λ  



(3)




where   W   is the electricity consumption, and   λ   is the provincial electricity carbon emission factor for the year.




2.1.2. Energy Carbon Intensity Accounting


Energy carbon intensity refers to the energy carbon emissions consumed per unit of economic output, generally expressed as energy carbon emissions per unit of GDP, to reflect the efficiency of regional energy utilization. The formula for calculating energy carbon intensity is:


  C I =   C   G D P    



(4)




where CI is the energy carbon intensity; GDP is the gross national product.





2.2. Kernel Density Estimation


In order to more intuitively reveal the dynamic evolution characteristics of energy carbon emissions in China, this paper applies non-parametric estimation of kernel density estimation to study the overall spatial differences and dynamic evolution trends of China’s inter-provincial energy carbon emissions in the period of 2005–2021, and to measure the degree of agglomeration and dispersion through the height and width of the wave crests [22]. The calculation formula is as follows:


  f ( x ) =   1   30     ∑  i = 1   30    K (     X   i   − μ   h   )    



(5)




where Xi is the energy carbon emissions of province i (i = 1, 2, …, 30); h is the bandwidth; and K is the Gaussian kernel function.




2.3. Classification of Carbon Emissions


The average energy carbon emissions and the average energy carbon intensity of all provinces in China are used as the standard. Those higher than the average energy carbon emissions are considered high energy carbon emissions, while those lower than the average energy carbon emissions are considered low energy carbon emissions. Accordingly, China’s inter-provincial energy carbon emissions are categorized into four groups [23], namely H-H (high energy carbon emissions—high energy carbon emissions intensity), L-H (low energy carbon emissions—high energy carbon emissions intensity), H-L (high energy carbon emissions—low energy carbon emissions intensity), and L-L (low energy carbon emissions—low energy carbon emissions intensity).




2.4. Log Mean Divided Index (LMDI) Exponential Decomposition


Energy, economy, population, etc, are usually recognized as important factors affecting carbon emissions. Quantifying the specific degree of influence and contribution of different factors on energy carbon emissions is crucial to the scientific formulation of emission reduction policies. Drawing on the methodology of Liu’s et al. [24] method, we establish a log-mean Diels’ index equation to analyze the influence of energy structure, energy intensity, economic development, and population size on China’s energy carbon emissions. The specific equations are as follows:


  C =   ∑  i      ∑  j      C   i j   =   ∑  i      ∑  j        C   i j       E   i j     ×     E   i j       E   i     ×     E   i       G   i     ×   G   P   × P =   ∑  i      ∑  j    C I × E S × E I × G P × P              



(6)






  Δ C =   C   t   −   C   0   = Δ C C I + Δ C E S + Δ C E I + Δ C G P + Δ C P  



(7)




where Gij is the carbon emissions from fossil fuels in industry i,j; Eij is the energy consumption of fossil fuels in industry j in industry i; Ei is the total energy consumption of industry i; Gi is the GDP of industry i, G is the total GDP; P is the population at the end of the year; CI, ES, GP, and CP are the carbon emission factor, energy structure, energy intensity, economic growth, and population size, respectively; ΔC is the total effect; Ct and C0 are the target year and base year carbon emissions, ΔCCI, ΔCES, ΔCEI, ΔCGP, and ΔCP are the effects of each influencing factor on carbon emissions, respectively. The formula for calculating the effect of each influence factor is as follows:


  Δ   C   x   =   ∑  i      ∑  j    L (   C   i j   t   ,   C   i j   0   )     l n       x   t       x   0        



(8)




where: x is each of the above influencing factors; ∆Cx is the carbon emission effect of influence factor x;   L (   C   i j   t   ,   C   i j   0   )   is the weight;     C   i j   t     and     C   i j   0     are the carbon emissions from fossil fuels in industry j in the target year and base year, respectively; xt and x0 are the values of the influencing factors in the target year and base year, respectively. Among them, the weighting formula is as follows:


  L     C   i j   t   ,   C   i j   0     =               C   i j   t     −     C   i j   0     l n   C   i j   t     −   l n   C   i j   0     ,     C   i j   t   ≠   C   i j   0           C   i j   t     or     C   i j   0   ,           C   i j   t   =   C   i j   0                         0 ,                         C   i j   t   =   C   i j   0   = 0        



(9)







In order to facilitate the comparison, the relative contribution degree is used to describe the degree of influence of each effect on carbon emissions, based on the research method of Wang’s et al. [25] research method, the relative contribution degree is used to describe the degree of influence of each effect on carbon emissions, with the following formula:


  θ =   Δ   C   x       ∑  x      Δ   C   x       × 100%    



(10)







  θ   is the relative contribution degree.   θ   > 0, the influence factor has a promoting effect on carbon emissions, and the larger the value, the stronger the promoting effect;   θ   < 0, the influencing factor has an inhibitory effect on carbon emissions, and the larger the absolute value, the stronger the inhibitory effect.




2.5. Tapio’s Decoupling Index Model


The Tapio decoupling index model is a method of elasticity coefficient analysis constructed by Tapio in his study of the relationship between economic development in Europe, transportation capacity, and the CO2. Different decoupling coefficients characterize different states of development, and the traditional decoupling index model is divided into eight categories. The Tapio decoupling index is used to dynamically observe the decoupling characteristics of variables, and more clearly reflects the relationship between each factor in terms of economic development and environmental stress [26]. Therefore, this paper chooses the Tapio model to construct the decoupling relationship between carbon emissions and economic growth in China. The decoupling relationship is modeled as:


  D I =   % ∆ T C     %   ∆ G D P     =   ∆ T C / T C   ∆ G D P / G D P   =   (   T C   t + 1       −   T C   t   ) /   T C   t     (   G D P   t + 1   −   G D P   t   ) /   G D P   t      



(11)







DI is the decoupling elasticity index; %ΔGDP is the rate of change of gross regional product; %ΔTC is the rate of change of carbon emissions. TCt and TCt+1 are the energy carbon emissions in period t and period t + 1, respectively. GDPt+1 and GDPt are the GDP in period t and t + 1. The classification of the results of the decoupling index is shown in Figure 1.




2.6. Catch-Up Decoupling Model


The Tapio decoupling index model portrays a comparison between the speed of economic development and the speed of energy and carbon emissions, which is a comparison of its own speed and does not reflect the gap between economic development and carbon emissions and other regions. Referring to Zhang et al. (2013) [27], the provinces with “good economic development and low carbon intensity” are defined as benchmark provinces. In order to describe the dynamic decoupling process of Chinese provinces catching up with the benchmark provinces, this paper constructs the following catching-up decoupling model based on the theoretical foundation of the Tapio decoupling coefficient model:


    T   i t   Z   =   − [ (   C E   t   n   −   C E   i t   ) − (   C E   t − 1   n   −   C E   i , t − 1   ) ] / (   C E   t − 1   n   −   C E   i , t − 1   )   − [ (   P G   t   n   −   P G   i t   ) − (   P G   t − 1   n   −   P G   i , t − 1   ) ] / (   P G   t − 1   n   −   P G   i , t − 1   )   =   ∆ C E   ∆ P G    



(12)







    T   i t   Z     represents the catch-up decoupling elasticity index for province i in year CEit and PGit represent the carbon intensity and per capita GDP level of province i in year t, respectively; CEn and PGn represent the carbon intensity and per capita GDP level of the benchmark province, respectively. The classification criteria for catching up and decoupling are shown in Table 1.




2.7. Explanatory Variables Selection and Description


The energy consumption, population, and economic data for China and each province were obtained from the China Statistical Yearbook 2006–2022, the China Energy Statistical Yearbook, as well as statistical yearbooks and official websites of statistical bureaus of each province (Hong Kong, Macao, Taiwan, and Tibet were not included due to missing data). The population data is based on the resident population, and the GDP data is converted to 2005 constant prices to exclude the effect of inflation. The discounted standard coal coefficient adopts the value provided in the General Rules for Calculating Comprehensive Energy Consumption. The data on average low-level heat generation, carbon content per unit calorific value (default value) and carbon oxidation rate are from the Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (2011 Trial Version), and the average carbon dioxide emission factors for provincial power grids are from the Average Carbon Dioxide Emission Factors for China’s Regional Power Grids in 2011 and 2012. The interpretation and sources of the indicators are shown in Table 2.





3. Results


3.1. Characteristics of Spatial and Temporal Changes in Energy Carbon Emissions


Based on Equations (1)–(3), this paper accounts for the carbon emissions generated from the consumption of nine types of energy and electricity, namely, raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas, and liquefied petroleum gas, from 2005 to 2021. Due to the space limitation of the article, the specific accounting results of energy carbon emissions are put in Appendix A.



3.1.1. Time Evolution Characteristics


From 2005 to 2021, China’s total energy carbon emissions showed a “rising-declining-rising” trend, reaching its first peak in 2013, with a total of 1,484,984,406 metric tons, and showing a decreasing trend from 2013 to 2015. As shown in Figure 2. This is related to China’s implementation of the National 12th Five-Year Plan for Ecological Protection in 2013. Throughout 2015–2021, China’s energy carbon emissions show a fluctuating and increasing trend, with a total of 1394,239,874 metric tons in 2015, growing at an average annual rate of 3.51%, reaching a maximum value during the study period in 2020, and reaching a maximum value in 2020, with an average annual growth rate of 3.51%. In 2020, it reached the maximum value of 1,605,656.017 million metric tons in the study period. Subsequently, the energy carbon emissions show a slow decreasing trend, and the level of energy carbon emissions in 2021 is almost the same as that in 2019. This is because, in early 2020, China took stringent precautions to prevent the spread of a new crown outbreak. The short-term social shutdown had a huge impact on the domestic economy, while also curbing the growth of carbon emissions.




3.1.2. Characteristics of Spatial Evolution


Based on the energy carbon emission data of Chinese provinces in 2005, 2009, 2013, 2017, and 2021, with the help of ArcGIS 10.8, and combined with the natural breakpoint grading method, the energy carbon emissions of Chinese provinces were categorized into 5 levels (in metric tons): level 1 [0, 10,000], level 2 [10,000, 50,000], level 3 [50,000, 100,000], level 4 [100,000, 150,000], level 5 [150,000,   + ∞  ].



As shown in Figure 3, the spatial pattern of energy carbon emissions in China’s provinces has changed considerably from 2005 to 2021, with a decrease in low-value regions and an increase in high-value regions. Specifically, a total of three provinces were in the level 3 carbon emission range in 2005, namely Hebei Province, Shanxi Province, and Shandong Province, with high energy carbon emissions. The reason for this is that Shanxi Province is China’s energy base, particularly rich in coal resources, and its economic growth relies mainly on the large consumption of fossil energy, so energy carbon emissions are relatively high. Hebei Province and Shandong Province are important heavy industry bases in China, and the development of high heavy industry requires the consumption of large amounts of energy, which leads to energy carbon emissions at the forefront of the country. Qinghai Province, Ningxia Hui Autonomous Region, and Chongqing Municipality are in Level 1, with the lowest energy carbon emissions. This is mainly because they are in the western region of China, where the level of economic development is low and the level of energy consumption is relatively low. The rest of the provinces are in level 2 with [10,000, 50,000] million metric tons. In 2009, compared with 2005, five provinces, Inner Mongolia, Liaoning, Henan, Jiangsu, and Guangdong, evolved from carbon emission level 2 to level 3, Ningxia and Chongqing evolved from level 1 to level 2, and the energy carbon emission level of the rest of the provinces remained unchanged. This suggests that China’s energy carbon emissions is on an upward trend, with most provinces developing their economies at the expense of fossil energy consumption. The spatial pattern of China’s energy carbon emissions in 2013 is roughly the same as that of 2009, with the exception of Shandong province, where the energy mix has evolved from Tier 3 to Tier 4. Shandong province’s energy structure is dominated by high-carbon fossil energy with 88% of fossil energy, the highest in China, which has led to Shandong province becoming the top province in China in terms of energy carbon emissions. In 2017, energy carbon emissions in Xinjiang and Shaanxi increased more significantly, shifting from Tier 2 to Tier 3. This is because after the promulgation of the 13th Five-Year Plan for the Development of the Western Region, the economies of western provinces such as Xinjiang and Shaanxi have developed significantly, but technological advances have not been able to keep up with economic development, so their economic development has been achieved by consuming large amounts of fossil energy. In 2021, the evolution of carbon emissions in China’s northern provinces is more dramatic, with Inner Mongolia, Hebei, and Shanxi entering tier 4, Hebei and Shanxi enter level 4, and Shandong reaches level 5, the highest level within the study, i.e., annual energy carbon emissions greater than 150,000,000 metric tons. The rest of the provinces have no significant change in their energy carbon emission levels compared to 2017.




3.1.3. Analysis of the Dynamic Evolution of Disequilibrium


In order to further study the differences and dynamic evolution trends of energy carbon emissions in Chinese provinces, based on the previous analysis of the temporal and spatial characteristics of energy carbon emissions, using Equation (5), a three-dimensional Gaussian kernel density curve is constructed, as shown in Figure 4. With regard to the position of the kernel density function, from 2005 to 2013, the density distribution interval shows an overall rightward flat trend, indicating that China’s energy carbon emissions were continuously rising from 2005 to 2013, which is consistent with the evolutionary law of China’s energy carbon emissions in the time dimension; from 2013 to 2019, the interval shifts to the left, indicating that the intensity of carbon emissions has declined, and from 2019 to 2021, the interval has a tendency to move to the right. In terms of the kernel function’s kurtosis, a double-peak pattern is shown in 2010, with China’s inter-provincial energy carbon emissions concentrating in the range of 5 × 104 million metric tons as well as 10 × 104 million metric tons, with more obvious polarization. In terms of the distribution pattern, the right trailing tail shows an extension trend, indicating that the differences in China’s inter-provincial energy carbon emissions are gradually expanding.





3.2. Classification of Carbon Emissions


According to Equation (4), China’s energy carbon emission intensity was calculated. Linking with the previous energy carbon emissions, the carbon emissions were divided into four categories, which were H-H (high energy carbon emissions—high energy carbon intensity), L-H (low energy carbon emissions—high energy carbon intensity), H-L (high energy carbon emissions—low energy carbon intensity), and L-L (low energy carbon emissions—low energy carbon intensity).



The classification of China’s inter-provincial energy carbon emissions from 2005 to 2021 is shown in Table 3. During the study period, Hebei, Shanxi, Inner Mongolia, and Liaoning are all of type H-H, indicating that these provinces need to take into account the aspects of energy transition and technological innovation to accelerate energy transition and innovate their economic development methods. The carbon emission types of Jiangsu, Zhejiang, and Guangdong are relatively stable and have been of type H-L. The economic development of these provinces is at a leading level in China, and they are strong economic provinces, but the efficiency of energy use is not high, so these provinces should focus on developing and utilizing cleaner energy sources in the future, and reduce their dependence on fossil energy sources. Provinces in the L-H type, such as Jilin, Guizhou, Ningxia, Qinghai, etc., should improve the level of technological innovation, develop their economies, and increase the efficiency of resource utilization.




3.3. Analysis of the Driving Mechanism of China’s Energy Carbon Emissions


With the help of existing research results [28,29] and China’s actual situation, this paper studies the driving mechanism of energy carbon emission from four dimensions: economic development, energy intensity, energy structure, and population size. Using Equations (6)–(9), the driving mechanism of energy carbon emission in China is decomposed. The cumulative contribution values of economic development effect and population size effect to China’s energy carbon emissions are 1,409,807.68 million metric tons and 978,539.90 million metric tons, respectively, and both of them are positive factors promoting the increase of energy carbon emissions, and the economic development effect contributes more values. The cumulative contribution values of energy structure and energy intensity to China’s energy carbon emissions are −151,967.14 million metric tons and −704,101.50 million metric tons, respectively, which are negative factors inhibiting energy carbon emissions. Based on Equation (10), the contribution of each driver to China’s energy carbon emissions is calculated and plotted as a heat map based on the contribution of the four drivers, as shown in Figure 5.



From the results of Figure 4, the contribution rate of each factor to energy carbon emission is ranked as follows: economic development effect > energy intensity effect > energy structure effect > population size effect, and the cumulative contribution rates are 863.92%, −446.43%, −81.96%, and 58.23%, respectively.



Firstly, the economic development effect is the most important driver of China’s rising energy and carbon emissions.



From 2005 to 2021, the overall contribution of economic development effect to China’s energy carbon emissions was positive, and it was the most important driver of China’s energy carbon emissions, and the contribution of economic growth effect was 74.19% in 2011, reaching the maximum value. During the “12th Five-Year Plan” period (2011–2015), the driving role of economic growth factors gradually weakened, but it is still the most important factor contributing to the growth of carbon emissions. This is related to China’s economic development, after the release of the “12th Five-Year Plan”, China’s economy has changed from high-speed development to high-quality development [30], and energy carbon emissions have slowed down as a result.



Secondly, population size effect is one of the factors contributing to energy and carbon emissions.



The contribution rate of population scale effect is relatively stable during the study period, remaining at 1–6%. Due to the small change in the natural population growth rate and the popularization of the concept of environmental protection, it is less likely that the effect of population size on carbon emissions will increase in the future. This is consistent with the findings of Wang Quiet et al. (2023) [17].



Thirdly, energy intensity presents an inhibitory effect on carbon emissions.



During the study period, except for 2013, energy intensity presents an inhibitory effect on carbon emissions. The inhibitory effect of energy intensity on carbon emissions has gradually weakened in the past three years, indicating that China still needs to improve energy efficiency and realize green and low-carbon development of the economy.



Fourthly, Energy structure has a small impact on carbon emissions.



The contribution of energy structure to carbon emissions is both positive and negative, but overall, the factor is negatively inhibiting the growth of carbon emissions. However, from the point of view of the contribution rate, the factor’s role in controlling carbon emissions is relatively weak.




3.4. Decoupling of Carbon Emissions from Economic Development at the Inter-Provincial Level in China


3.4.1. Overall Decoupling of Carbon Emissions from Economic Development at the Inter-Provincial Level


Based on Equation (11), the decoupling index was calculated for each province in China from 2005 to 2021. According to the characteristics of the decoupling relationship, the period 2005–2021 is divided into five time periods for its stage analysis, and the specific results are shown in Table 4. In the time period of 2005–2008, there are 26 provinces with weak decoupling between energy carbon emissions and economic development in China, namely Beijing, Tianjin, Hebei, etc; Hainan Province shows negative decoupling with expansion, and Chongqing and Qinghai are connected with growth. During 2009–2012, the number of provinces with weak decoupling is reduced to 22, and the number of provinces with growth is 4, namely Inner Mongolia Aumetric tonomous Region, Shanxi, Hainan, Jiangsu, and 3 provinces in Guangxi, Ningxia, and Xinjiang show negative decoupling with expansion. Hainan, and Jiangsu, and three provinces showing expansion negative decoupling in Guangxi, Ningxia, and Xinjiang. In 2013–2016, the number of provinces showing decoupling gradually increased, with 12 provinces showing strong decoupling and 16 provinces showing weak decoupling. In this time domain, no provinces showed expansion-negative decoupling. In 2017–2019, China’s interprovincial mainly showed weak decoupling, strong decoupling, expansion-negative decoupling, and growth-connecting 4 bells decoupling. Compared with 2017–2019, the type of decoupling becomes single in 2020–2021, presenting only 2 patterns of weak decoupling and growth connection. The above provinces showing decoupling between energy carbon emissions and economic development development can be categorized into 2 types. The first category is economically developed with a relatively low share of value-added of the energy industry, such as Beijing and Tianjin. The second category is economically underdeveloped provinces such as Henan and Sichuan, which have achieved the dual purpose of economic growth and environmental protection by following a new industrialization path. Provinces showing growth connection, such as Shandong, Hunan, and Guizhou, remain in the crude economic development mode, resulting in synchronized growth of energy and carbon emissions and the economy. Provinces such as Ningxia and Xinjiang show negative decoupling of expansion, which is attributed to the fact that in recent years, provinces in western China have vigorously developed coal and other energy-intensive industries in order to develop their economies at the expense of the environment, which has led to a faster rate of energy and carbon emissions than the rate of economic growth.




3.4.2. Analysis of Decoupling Transfers


The transfer of energy carbon emissions and economic development from 2005 to 2021 is shown in Figure 6. In terms of overall decoupling types, there are 4, 3, 3, 4, and 2 decoupling types in the five time periods, respectively, presenting a trend of decreasing decoupling richness; in terms of inter-provincial decoupling transfers, most of the provinces’ decoupling status transfers are dominated by strong and weak decoupling transfers to each other, which suggests that most of China’s provinces present a relatively stable decoupling trend between energy and carbon emissions and economic development. Hainan, Chongqing, and Guizhou show the same trend of decoupling transfer, and the three provinces are richer in the type of decoupling. The two provinces of Ningxia and Xinjiang show exactly the same change trend, which is the change pattern of “weak decoupling-expansion-negative decoupling-weak decoupling-expansion-negative decoupling-weak decoupling”. This is due to the fact that Xinjiang and Ningxia are both located in Northwest China, with little difference in the level of development of economy, population, resources, and environment. Hua Ruixiang et al. (2023) [31] studied the decoupling effect of interprovincial carbon emissions and economic growth in China from 2015 to 2020, and found that although the annual decoupling status of each province shows a fluctuating trend of change, the overall view is dominated by the mutual transformation of strong decoupling and weak decoupling.




3.4.3. Catch-Up Decoupling Analysis


In order to conduct an in-depth study on the decoupling characteristics of China’s energy and carbon emissions, a catching-up decoupling index model is constructed to describe the dynamic process of catching up from each province to the benchmark provinces. Referring to Zhang et al.’s (2013) [27] approach, five provinces with leading carbon intensity and per capita GDP indicators are selected. Through calculation and comparison, it is found that the top 5 are Beijing, Shanghai, Guangdong, Zhejiang, and Jiangsu. By averaging the values of these nine provinces year by year, a model province with excellent economic performance and carbon emissions is constructed. Using Equation (12), the results of the catch-up decoupling index calculations are categorized for each province. Figure 7 shows the process of catching up and decoupling provinces from the model province from 2005 to 2021.



Between 2005 and 2008, most provinces in China were in relative catch-up decoupling B, i.e., the gap between these provinces and the benchmark provinces in terms of energy intensity and per capita GDP levels was gradually narrowing, and catching up in emissions reduction was faster than catching up in the economy. Between 2009 and 2012, the catch-up decoupling status evolved drastically. Three provinces are in absolute catch-up decoupling, 10 provinces are in relative catch-up decoupling A, two provinces are in relative catch-up decoupling B, and 15 provinces are in non-catch-up decoupling B. Three provinces, Heilongjiang, Jilin, and Liaoning, are in relative catch-up decoupling B with the benchmark provinces.   ∆ P G < 0  , which   ∆ C E > 0  , indicating that the economic gap between the three provinces and the benchmark province is getting wider and the carbon emission level is approaching the benchmark province. This result indicates that the three provinces of Heilongjiang, Jilin, and Liaoning were in recession. In 2017–2019, 12 provinces were in relative catching up decoupling B. This indicates that the economic gap and carbon emission gap between the catching up provinces and the benchmark provinces was decreasing, which was due to the fact that the catching up provinces were actively eliminating outdated production capacity, actively introducing advanced production technology, and developing new and high tech industries. In 2020–2021, there was an increase in the number of provinces not catching up and decoupling, i.e., the economic gap between catching-up provinces and benchmark provinces continues to narrow while the carbon intensity gap continues to widen. This result indicates that catching-up provinces are developing their economies at the expense of the environment and energy consumption.






4. Conclusions and Policy Recommendations


Conclusions


This paper takes the carbon emission from energy consumption as the research object, measures it with cutting-edge measurement methods, analyzes the heterogeneity of China’s energy carbon emission in time and space, and introduces the kernel density function, which makes a more intuitive and graphic presentation of the dynamic changes of carbon emission. Based on the log-mean Diels model, the driving factors of energy carbon emissions are comprehensively analyzed. Meanwhile, the decoupling relationship between China’s energy carbon emissions and economic development, and the catching-up decoupling are discussed comprehensively, and the main research conclusions are as follows.



Firstly, China’s total energy carbon emissions show a “rising-falling-rising” trend, with 2013 as the inflection point and a slight decline in 2021 due to the epidemic.



From the perspective of time dimension, China’s total energy carbon emissions from 2005 to 2021 show a trend of “rising-declining-rising”, reaching the first peak in 2013, with a total of 1,484,984,406 tons, and the maximum value of 1,605,656 tons in 2020. In 2020, it reaches the maximum value of 16,056,560,017 metric tons in the study period. Subsequently, energy carbon emissions show a slow downward trend. The level of energy carbon emissions in 2021 is almost the same as that in 2019. This is due to the fact that, at the beginning of 2020, China adopted stringent preventive and control measures in order to prevent the spread of the outbreak of Xinguancang epidemic. The short-term social shutdown had a huge impact on the domestic economy and also dampened the growth of carbon emissions.



Secondly, China’s energy emissions vary greatly by province, and energy carbon emissions from heavy industrial bases are relatively high.



From the spatial dimension, the energy carbon emissions of China’s eastern provinces are larger than those of the central and western regions. Shandong Province’s energy carbon emissions ranked first in the country. Shandong’s energy structure is dominated by high-carbon fossil energy, with 88% of fossil energy, and fossil energy consumption emits a large amount of carbon dioxide. The central and western regions, such as Qinghai, Ningxia, and Chongqing Municipality, have the lowest energy carbon emissions, and with low levels of economic development, the level of energy consumption is relatively low. Most other provinces have average annual energy carbon emissions within the range of [50,000, 150,000] million metric tons. Hebei Province, Shanxi Province, and Shandong Province have higher energy carbon emissions. The reason for this is that Shanxi Province is China’s energy base, it is particularly rich in coal resources, and its economic growth relies mainly on the large consumption of fossil energy, so energy carbon emissions are relatively high. Hebei Province and Shandong Province are important heavy industry bases in China, and the development of high heavy industry requires the consumption of a large amount of energy, which also leads to energy carbon emissions at the forefront of the country.



Thirdly, China’s inter-provincial differences in energy carbon emissions are gradually widening, with an extended trend in the right tail.



In terms of the position of the kernel density function, from 2005 to 2013, the density distribution interval shows an overall rightward shifting trend, indicating that China’s energy carbon emissions were continuously rising from 2005 to 2013, which is consistent with the evolution of China’s energy carbon emissions in the time dimension. From the kernel function’s kurtosis point of view, 2010 shows a double-peak pattern, China’s inter-provincial energy carbon emissions are concentrated in 10,000 metric tons as well as 10,000 metric tons, and polarization is more obvious.



Fourthly, the classification of carbon emissions shows an obvious polarization trend, with more than 65% of the provinces belonging to the H-H and L-L categories.



H-H type provinces with high energy carbon emissions and carbon intensity, need to comprehensively consider energy transformation and technological innovation, etc., accelerate energy transformation, and innovate the mode of economic development. H-L type provinces with high energy carbon emissions and low carbon intensity, have economic development at the leading level in China and belong to the economically strong provinces, but their efficiency of energy-use is not high, so these provinces should focus on developing and utilizing clean energy in the future to reduce their dependence on fossil energy. Provinces in the L-H type, such as Jilin, Guizhou, Ningxia, Qinghai, etc., should improve the level of technological innovation, develop the economy, and improve the efficiency of resource utilization.



Fifthly, Contribution of each factor to energy carbon emissions: economic development effect > energy intensity effect > energy structure effect > population size effect.



China’s energy carbon emissions are influenced by multiple factors, and the contribution rates of economic development effect, energy intensity effect, energy structure effect, and population scale effect are 863.92%, −446.43%, −81.96% and 58.23% respectively. The overall contribution of the economic development effect to China’s energy carbon emissions from 2005 to 2021 is positive, and it is the most important driving force causing for China’s energy carbon emissions to continue to climb. The contribution of the population size effect is relatively stable during the study period, and the energy structure has a weak controlling effect on carbon emissions. The inhibitory effect of energy intensity on carbon emissions is gradually weakening, indicating that China still needs to improve the efficiency of energy use and realize the green and low-carbon development of the economy. The contribution of energy structure to carbon emissions is both positive and negative, but overall, the factor is negatively inhibiting the growth of carbon emissions.



Finally, the overall trend of decreasing decoupling richness is shown, and most of the provinces’ decoupling status shifts to strong and weak decoupling to each other.



From the perspective of overall decoupling types, there are 4, 3, 3, 4, and 2 decoupling types in the five time periods, respectively, showing a trend of decreasing decoupling richness; from the perspective of inter-provincial decoupling transfer, most of the provinces’ decoupling status transfer is dominated by strong and weak decoupling transfer to each other, which indicates that most of China’s provinces show a relatively stable decoupling trend of energy and carbon emissions and economic development. From 2020–2022, the provinces that are not been catching up and decoupled will account for a larger share of the total, which means that the economic gap between catching-up provinces and the benchmark provinces with “excellent” economic and carbon emission levels will continue to narrow, while the gap in carbon intensity will continue to widen. This indicates that, in recent years, China’s catching-up provinces have developed their economies at the expense of the environment and energy consumption. The above provinces with decoupled energy and carbon emissions and economic development can be categorized into 2 groups. The first category is economically developed, with a relatively low value-added share of energy industries, such as Beijing and Tianjin. The second category is economically underdeveloped provinces such as Henan and Sichuan, which have achieved the dual purpose of economic growth and environmental protection by taking the road of new industrialization. Provinces showing growth connection, such as Shandong, Hunan, and Guizhou, remain in the crude economic development mode, resulting in synchronized growth of energy and carbon emissions and economy. Provinces such as Ningxia and Xinjiang show negative decoupling of expansion, which is attributed to the fact that in recent years, provinces in western China have vigorously developed coal and other energy-intensive industries in order to develop their economies at the expense of the environment, which has led to a faster rate of energy and carbon emissions than the rate of economic growth.



In view of the above analysis, this paper puts forward the following policy recommendations to reduce China’s energy carbon emissions and reach the goal of “carbon peaking and carbon neutrality” at an early date:




	(1)

	
National level









From the previous analysis of the driving factors of China’s energy and carbon emissions, the key role is played by the effect of economic development. The main measure of economic development effect is GDP, so to achieve China’s 2030 carbon peak and 2060 carbon neutral goals with high quality, taking the sustainable development path is undoubtedly the best choice. Under the current industrial system, technological advances in certain key industrial sectors may reduce carbon emissions and lead to strong green GDP growth.



As China is “rich in coal, low in gas, and short of oil”, it has formed an energy structure dominated by coal, and the calorific value of coal is much higher than that of other energy sources, which leads to a large amount of energy and carbon emissions in China, and there is a large gap between the energy and carbon emission efficiencies of developed countries [32]. In view of this, China should deepen the reform of its energy structure, build a stable energy supply system dominated by new energy sources and supplemented by traditional fossil energy sources, and appropriately subsidize clean energy sources at the production and consumption ends. It should also deepen the reform of electric power enterprises, break through the grid bottleneck, and strive to fundamentally solve the bottleneck problem of new energy.



In addition, what affects China’s energy carbon emissions is energy intensity. The rate of decline in energy intensity will determine whether China can reach the peak of carbon dioxide emissions by 2030. Therefore, further releasing the energy saving potential and improving the energy utilization rate are the key factors to achieve this goal.



With regard to the population size effect, China, as a large population country, should control the impact of the population size effect on energy and carbon emissions, as China has already liberalized its “three-child” policy. Improve the quality of population, promote the flow of population to energy saving and emission reduction technology research, and accurately match the talent chain around the industrial chain [33]. Rationally plan the development of new urbanization, eliminate the high carbon emissions caused by traditional urbanization, and develop green and locally adapted industries.



China should introduce key technologies and improve efficiency as soon as possible, decarbonize key emission sources, and transition to a green service economy and a low-carbon lifestyle. In addition, China should establish an appropriate low-carbon sustainable development path as soon as possible. This will help mitigate the carbon lock-in effect.



	(2)

	
Provincial level







Most studies on carbon emissions may focus only on the national scale, ignoring the specific contribution of each province. However, some studies have found [34] that it is more effective to study climate change in developing countries using a bottom-up approach. In this sense, this study is able to reflect the “common but differentiated” responsibility for carbon peaking at the provincial level. Based on the calculation and spatial-temporal evolution of carbon emissions in each province of China, a decoupling model is used to explore the relationship between economic development and carbon emissions. The following recommendations are made at the provincial level:



For provinces such as Hebei, Shanxi and Shandong, whose carbon emissions are among the highest in the country, comprehensive consideration needs to be given to aspects such as energy transformation and technological innovation to accelerate energy transformation and innovate economic development. Provinces that are highly likely to peak before 2030, such as Jiangsu, Chongqing, and Shanghai, should prioritize controlling their population growth. For provinces such as Zhejiang and Guangdong, economic development is at a leading level in China and they are strong economic provinces. But the efficiency of energy use is not high. So, these provinces should focus on developing and utilizing clean energy in the future to reduce their dependence on fossil energy. And they should make more efforts to incentivize low-carbon lifestyles and consumption patterns and accelerate renewable energy planning and deployment.



Benchmarking provinces to promote synergistic regional development. There are differences in energy and carbon emissions and levels of economic development among China’s provinces. The reason for this is related to the development policies of the Chinese economy. As a result of China’s strategy of prioritizing the eastern part of the country, provinces in the central and western regions are lagging behind in terms of economic development. At the same time, western provinces such as Gansu, Xinjiang, and Ningxia still have a large amount of backward production capacity, and the demand for energy is still growing due to the needs of economic development. Provinces should recognize the gap with the benchmark provinces based on the decoupling status of local economic development and carbon emissions and the type of catching up decoupling, based on local resource endowment and development advantages. Try cross-provincial clean energy cooperation, similar to projects like Green Power.





5. Limitations and Prospects


As mentioned above, any study of carbon emissions inevitably contains limitations. (1) The calculation of carbon dioxide emissions is somewhat biased. Due to the limitation of data, the carbon dioxide emissions used in this paper are only limited to the carbon dioxide produced by eight common types of energy and electricity consumption. However, we know that in the process of socio-economic development, not only energy consumption produces carbon dioxide, for example, human respiration also produces carbon dioxide. (2) The factors affecting energy carbon emissions are limited. The factors affecting carbon dioxide emissions are large and complex, and this paper only selects four major factors, which lacks comprehensiveness. (3) The study of China’s energy carbon emissions in this paper still remains at the national and provincial scales and has not been further disaggregated to the city level due to the difficulty of collecting complete data at the prefecture level. Therefore, in terms of policy recommendations, it is impossible to make carbon emission reduction planning for specific cities. (4) Carbon peak reduction and carbon neutrality are common goals and tasks around the world. In this paper, comparisons with other countries have not yet been discussed.



In the future, we will make efforts in the following areas. (1) Refine the source of carbon dioxide and improve the calculation precision. (2) To make more comprehensive considerations on the factors affecting energy carbon emissions. (3) Utilize the latest international methods to calculate carbon emissions, such as using nighttime lighting data to perform calculations in order to obtain energy carbon emissions at the prefecture and municipal levels. (4) Introduce the carbon emissions of other countries in the international arena for comparison with China. Scientifically formulate policies to mitigate global warming. Promote the sustainable development of human beings.
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Table A1. The energy carbon emission calculations for all provinces in China from 2005 to 2021.
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Year

	
2005

	
2006

	
2007

	
2008

	
2009

	
2010

	
2011

	
2012

	
2013

	
2014

	
2015

	
2016

	
2017

	
2018

	
2019

	
2020

	
2021




	
Region

	






	
Beijing

	
11,998.62

	
12,327.388

	
13,113.708

	
13,336.661

	
13,679.251

	
13,867.019

	
12,932.269

	
13,139.232

	
12,074.419

	
12,511.52

	
12,144.764

	
11,496.04

	
11,288.46

	
11,565.706

	
11,524.71

	
11,654.88

	
12,568.55




	
Tianjin

	
12,488.522

	
13,293.075

	
14,127.898

	
14,055.932

	
15,107.56

	
18,436.843

	
20,231.116

	
20,377.362

	
21,142.105

	
20,419.87

	
20,158.968

	
19,033.916

	
18,905.176

	
19,623.763

	
19,788.62

	
20,147.33

	
21,456.44




	
Hebei

	
57,412.516

	
61,942.581

	
67,607.595

	
70,642.242

	
75,350.813

	
81,068.028

	
91,675.929

	
92,966.828

	
93,243.415

	
88,685.007

	
92,733.758

	
92,865.965

	
92,193.492

	
94,559.178

	
94,913.14

	
10,4878.33

	
106,589.12




	
Shanxi

	
56,159.395

	
62,219.48

	
64,241.45

	
63,124.779

	
62,530.73

	
67,088.454

	
73,955.093

	
77,225.595

	
79,194.815

	
81,095.64

	
93,090.316

	
92,133.059

	
97,087.731

	
103,926.66

	
109,327.2

	
115,200.55

	
125,633.31




	
Inner Mongolia

	
31,179.32

	
36,618.267

	
42,270.083

	
50,463.686

	
54,940.466

	
60,551.772

	
75,579.624

	
78,531.547

	
76,723.589

	
78,612.072

	
77,969.182

	
78,887.758

	
83,004.003

	
95,196.635

	
105,600.2

	
115,268.14

	
123,456.22




	
Liaoning

	
49,813.984

	
53,546.913

	
57,952.996

	
59,414.946

	
61,512.03

	
67,401.813

	
71,990.851

	
74,604.894

	
71,921.114

	
72,027.084

	
69,545.834

	
70,442.413

	
72,570.98

	
77,177.94

	
84,066.75

	
94,066.755

	
96,541.36




	
Jilin

	
18,427.643

	
20,086.88

	
21,219.444

	
22,019.111

	
22,525.58

	
25,131.01

	
28,754.483

	
28,415.645

	
27,380.831

	
27,158.152

	
23,184.056

	
22,859.128

	
22,682.756

	
23,468.747

	
24,176.49

	
25,796.34

	
26,896.85




	
Heilongjiang

	
25,149.453

	
26,565.226

	
28,570.084

	
30,305.328

	
31,646.141

	
34,319.075

	
36,805.972

	
38,555.263

	
36,586.454

	
37,082.37

	
33,939.679

	
34,224.632

	
34,248.898

	
34,931.633

	
36,671.46

	
37,898.666

	
38,744.223




	
Shanghai

	
23,128.306

	
23,039.481

	
23,657.101

	
24,791.424

	
24,681.47

	
27,004.166

	
27,780.521

	
27,389.171

	
29,052.531

	
26,454.763

	
26,564.044

	
26,471.325

	
26,967.67

	
26,550.202

	
27,403.58

	
29,635.224

	
29,888.22




	
Jiangsu

	
47,340.372

	
51,815.725

	
55,854.135

	
57,632.443

	
60,246.025

	
67,259.233

	
77,527.449

	
79,158.29

	
81,395.446

	
80,822.449

	
83,706.697

	
87,125.359

	
86,307.475

	
85,537.563

	
87,372.58

	
88,746.32

	
92,746.32




	
Zhejiang

	
29,982.72

	
33,830.376

	
37,798.321

	
38,546.641

	
40,080.3

	
43,024.865

	
45,569.253

	
44,210.237

	
45,473.688

	
44,952.697

	
45,583.628

	
45,243.106

	
47,384.075

	
46,475.895

	
47,476.50

	
48,746.369

	
49,746.369




	
Anhui

	
19,693.454

	
21,189.638

	
23,602.034

	
26,945.052

	
29,653.55

	
31,428.394

	
34,147.836

	
35,238.853

	
38,271.91

	
39,541.489

	
39,619.898

	
39,553.309

	
40,938.104

	
42,504.565

	
42,779.28

	
43,779.285

	
44,779.285




	
Fujian

	
13,451.65

	
14,719.621

	
16,501.447

	
17,262.755

	
20,448.583

	
22,721.407

	
25,938.656

	
25,739.451

	
25,273.295

	
28,834.236

	
27,727.986

	
26,018.475

	
27,412.794

	
30,337.484

	
32,290.43

	
34,521.356

	
38,521.356




	
Jiangxi

	
11,730.639

	
12,799.931

	
13,982.176

	
14,209.29

	
14,875.145

	
17,300.321

	
23,669.643

	
19,208.941

	
20,697.428

	
21,081.452

	
21,969.719

	
22,259.928

	
22,729.037

	
23,758.601

	
24,266.73

	
26,456.369

	
29,456.369




	
Shandong

	
70,074.78

	
78,711.097

	
87,506.502

	
94,495.691

	
98,401.375

	
108,777.02

	
110,085.24

	
120,622.48

	
117,437.23

	
125,785.31

	
138,498.17

	
145,505.03

	
149,306.95

	
147,839.73

	
151,698.2

	
174,596.33

	
194,596.33




	
Henan

	
42,521.633

	
48,219.488

	
53,375.018

	
55,077.511

	
56,281.441

	
60,866.511

	
67,090.084

	
62,784.57

	
62,311.133

	
62,987.968

	
59,313.762

	
58,626.372

	
57,379.914

	
57,717.863

	
53,398.49

	
60,245.734

	
62,245.734




	
Hubei

	
23,951.237

	
26,514.086

	
29,337.711

	
29,358.838

	
31,527.241

	
36,156.131

	
41,145.958

	
41,171.968

	
35,834.787

	
36,282.25

	
34,444.153

	
34,258.002

	
35,062.216

	
36,458.122

	
38,710.66

	
39,443.35

	
42,443.35




	
Hunan

	
22,660.181

	
24,173.136

	
26,557.418

	
26,295.89

	
27,656.68

	
29,342.556

	
32,755.442

	
32,264.79

	
31,382.114

	
30,470.505

	
30,348.687

	
31,037.192

	
31,337.817

	
32,037.033

	
31,947.22

	
33,467.521

	
36,467.521




	
Guangdong

	
38,711.841

	
43,109.337

	
46,767.907

	
48,240.277

	
52,047.24

	
57,628.255

	
63,557.26

	
61,867.836

	
62,952.558

	
63,402.06

	
63,996.629

	
66,114.53

	
69,203.562

	
71,499.158

	
70,979.04

	
78,465

	
82,465




	
Guangxi

	
10,261.545

	
11,265.167

	
12,868.063

	
12,757.037

	
14,148.72

	
17,212.221

	
21,173.247

	
23,254.117

	
23,380.218

	
23,210.166

	
21,791.625

	
22,655.55

	
23,965.271

	
25,181.685

	
26,628.65

	
27,728.365

	
28,728.223




	
Hainan

	
1598.842

	
2428.628

	
4409.141

	
4671.755

	
4966.895

	
5423.367

	
6392.068

	
6662.906

	
6190.831

	
6849.103

	
7498.034

	
7278.204

	
7070.089

	
7482.044

	
7685.407

	
7885.239

	
8085.698




	
Chongqing

	
9068.654

	
9834.204

	
10,715.227

	
13,268.907

	
14,269.873

	
15,754.548

	
17,945.746

	
17,713.05

	
15,341.73

	
16,441.897

	
14,420.451

	
14,862.151

	
15,321.748

	
15,422.782

	
15,565.26

	
16,565.665

	
18,565.333




	
Sichuan

	
21,609.477

	
24,174.667

	
27,013.884

	
29,831.582

	
33,567.332

	
34,594.562

	
34,904.466

	
36,346.76

	
37,329.405

	
38,653.411

	
33,105.502

	
32,553.343

	
31,964.3

	
31,171.36

	
33,463.12

	
34,463.887

	
36,463.635




	
Guizhou

	
18,222.234

	
21,208.949

	
22,687.785

	
21,057.055

	
23,065.929

	
23,247.165

	
25,705.446

	
28,128.194

	
29,204.301

	
28,206.238

	
28,228.924

	
29,571.299

	
29,741.36

	
27,410.37

	
28,084.69

	
29,410.987

	
32,410.336




	
Yunnan

	
17,688.943

	
19,464.585

	
20,336.834

	
20,922.611

	
22,713.016

	
23,979.158

	
24,755.196

	
25,707.336

	
25,436.331

	
22,871.815

	
20,711.095

	
20,486.29

	
21,760.629

	
24,186.349

	
25,297.39

	
26,300.446

	
29,300.332




	
Shaanxi

	
17,646.677

	
21,437.586

	
23,661.633

	
26,659.738

	
28,966.349

	
34,307.235

	
37,930.583

	
43,553.726

	
46,265.637

	
48,745.6

	
48,264.732

	
49,160.574

	
50,667.473

	
49,574.909

	
53,839.69

	
57,555.338

	
60,555.225




	
Gansu

	
12,953.157

	
13,819.341

	
15,370.926

	
15,672.057

	
15,476.926

	
17,227.728

	
19,902.132

	
20,497.592

	
21,197.156

	
21,348.103

	
20,648.926

	
19,863.062

	
20,038.48

	
20,992.541

	
21,253.85

	
26,666.125

	
27,666.898




	
Qinghai

	
2344.101

	
2944.23

	
3266.284

	
4067.184

	
4142.595

	
4133.085

	
4885.542

	
5824.752

	
6414.459

	
5985.861

	
5525.828

	
6435.889

	
6167.295

	
6032.492

	
5963.033

	
6422.001

	
7422.456




	
Ningxia

	
7310.221

	
8008.046

	
9057.795

	
10,009.469

	
11,008.736

	
13,027.29

	
17,343.634

	
18,634.516

	
19,829.671

	
20,184.71

	
20,957.493

	
20,860.469

	
25,644.47

	
28,583.99

	
31,066.64

	
35,100.045

	
38,100.693




	
Xinjiang

	
15,402.079

	
17,550.824

	
19,107.481

	
21,153.436

	
24,690.738

	
27,656.497

	
32,715.645

	
37,794.645

	
43,279.765

	
48,110.51

	
49,709.02

	
51,870.247

	
55,171.86

	
57,433.832

	
61,079.01

	
63,000.123

	
65,055.361
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Figure 1. Division of decoupling states. I represents the division of weakly decoupling, growing connections, and expansion negative decoupling. II represents strong negative decoupling. III represents weak-decoupling, recession connection, recessionary decoupling. IV represents out of touch. 
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Figure 2. Evolutionary characteristics of China’s energy carbon emissions, 2005–2021. 
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Figure 3. Spatial evolution of energy carbon emissions in China, (a) Energy Carbon Emissions by Province in China, 2005; (b) Energy Carbon Emissions by Province in China, 2009; (c) Energy Carbon Emissions by Province in China, 2013; (d) Energy Carbon Emissions by Province in China, 2017; (e) Energy Carbon Emissions by Province in China, 2021. 
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Figure 4. Kernel density function for the dynamic evolution of energy carbon emissions. 
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Figure 5. Contribution of each driver to China’s energy carbon emissions. 
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Figure 6. Shift in decoupling of energy carbon emissions from economic development, 2005–2021. 
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Figure 7. Evolution of catch-up decoupling status, 2005–2021. 
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Table 1. Criteria for categorizing catch-up decoupling.
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Catch-Up Type

	
Economic Growth Gap

	
Carbon

Intensity Gap

	
Catch-Up

Decoupling

Elasticity Factor

	
Catch-Up Effect






	
Absolute catch-up decoupling (A)

	
   ∆ P G < 0   

	
   ∆ C E > 0   

	
       T   i t   Z     > 1   

	
Emission reduction catch-up is better than economic catch-up




	
Absolute catch-up decoupling (B)

	
   0 <     T   i t   Z     ≤ 1   

	
Economic catch-up is better than emission reduction catch-up




	
Relative catch-up decoupling (A)

	
   ∆ P G < 0   

	
   ∆ C E < 0   

	
   0 <     T   i t   Z     ≤ 1   

	
Economic catch-up is better than emission reduction catch-up




	
       T   i t   Z     > 1   




	
Relative catch-up decoupling (B)

	
   ∆ P G > 0   

	
   ∆ C E > 0   

	
   0 <     T   i t   Z     ≤ 1   

	
Emission reduction catch-up is better than economic catch-up




	
       T   i t   Z     > 1   




	
Failure to catch up with decoupled (A)

	
   ∆ P G > 0   

	
   ∆ C E < 0   

	
       T   i t   Z     > 1   

	
Emission reduction lags behind economic growth




	
Failure to catch up with decoupled (B)

	
   0 <     T   i t   Z     ≤ 1   

	
Economic growth lags behind emission reductions











 





Table 2. Description of data sources for indicators.
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	Norm
	Yearbook Data Involved





	energy structure
	Energy consumption



	energy intensity
	Energy consumption, GDP



	economic development
	GDP



	population size
	population



	NCV
	Average low level heat generation



	   COF   
	carbon oxidation rate



	   λ   
	Provincial grid average CO2 emission factor










 





Table 3. Classification of energy carbon emissions.
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	Particular Year
	H-H
	H-L
	L-H
	L-L





	2005
	Hebei, Shanxi, Inner Mongolia, Liaoning, Heilongjiang, Shandong, Henan
	Jiangsu, Zhejiang, Hubei, Guangdong
	Jilin, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang
	Beijing, Tianjin, Shanghai, Anhui, Fujian, Jiangxi, Hunan, Guangxi, Hainan, Chongqing, Sichuan,



	2013
	Hebei, Shanxi, Inner Mongolia, Liaoning, Shaanxi, Xinjiang
	Jiangsu, Zhejiang, Shandong, Henan, Guangdong
	Jilin, Heilongjiang, Guizhou, Yunnan, Gansu, Qinghai, Ningxia
	Beijing, Tianjin, Shanghai, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangxi, Hainan, Chongqing, Sichuan



	2021
	Hebei, Liaoning, Shanxi, Shaanxi, Xinjiang, Inner Mongolia, Shandong
	Jiangsu, Zhejiang, Guangdong, Henan
	Jilin, Heilongjiang, Guizhou, Hainan, Ningxia, Gansu, Tianjin, Qinghai
	Beijing, Anhui, Hunan, Chongqing, Fujian, Hubei, Sichuan, Yunnan, Shanghai, Jiangxi, Guangxi










 





Table 4. Decoupling of energy carbon emissions from economic development at the inter-provincial level in China, 2005–2021.
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	2005–2008
	2009–2012
	2013–2016
	2017–2019
	2020–2021





	Beijing
	weakly decoupled
	out of touch
	out of touch
	weakly decoupled
	weakly decoupled



	Tianjin
	weakly decoupled
	weakly decoupled
	out of touch
	weakly decoupled
	weakly decoupled



	Hebei
	weakly decoupled
	weakly decoupled
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled



	Shanxi
	weakly decoupled
	weakly decoupled
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled



	Inner Mongolia
	weakly decoupled
	Growing Connections
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled



	Liaoning
	weakly decoupled
	weakly decoupled
	out of touch
	Expansion negative decoupling
	weakly decoupled



	Jilin
	weakly decoupled
	weakly decoupled
	out of touch
	weakly decoupled
	weakly decoupled



	Heilongjiang
	weakly decoupled
	weakly decoupled
	out of touch
	Growing Connections
	weakly decoupled



	Shanghai
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled



	Jiangsu
	weakly decoupled
	Growing Connections
	weakly decoupled
	out of touch
	weakly decoupled



	Zhejiang
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled



	Anhui
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled



	Fujian
	weakly decoupled
	weakly decoupled
	out of touch
	Expansion negative decoupling
	Growing Connections



	Jiangxi
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled



	Shandong
	weakly decoupled
	weakly decoupled
	Growing Connections
	out of touch
	Growing Connections



	Henan
	weakly decoupled
	weakly decoupled
	out of touch
	out of touch
	weakly decoupled



	Hubei
	weakly decoupled
	weakly decoupled
	out of touch
	Expansion negative decoupling
	weakly decoupled



	Hunan
	weakly decoupled
	weakly decoupled
	weakly decoupled
	weakly decoupled
	Growing Connections



	Guangdong
	weakly decoupled
	weakly decoupled
	weakly decoupled
	Growing Connections
	weakly decoupled



	Guangxi
	weakly decoupled
	Expansion negative decoupling
	out of touch
	Growing Connections
	weakly decoupled



	Hainan
	Expansion negative decoupling
	Growing Connections
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled



	Chongqing
	Growing Connections
	weakly decoupled
	out of touch
	weakly decoupled
	Growing Connections



	Sichuan
	weakly decoupled
	weakly decoupled
	out of touch
	weakly decoupled
	weakly decoupled



	Guizhou
	out of touch
	weakly decoupled
	weakly decoupled
	out of touch
	Growing Connections



	Yunnan
	weakly decoupled
	weakly decoupled
	out of touch
	Expansion negative decoupling
	Growing Connections



	Shaanxi
	weakly decoupled
	Growing Connections
	weakly decoupled
	Growing Connections
	weakly decoupled



	Gansu
	weakly decoupled
	weakly decoupled
	out of touch
	Growing Connections
	weakly decoupled



	Qinghai
	Growing Connections
	weakly decoupled
	weakly decoupled
	out of touch
	Growing Connections



	Ningxia
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled



	Xinjiang
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled
	Expansion negative decoupling
	weakly decoupled
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