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Abstract: Decarbonization of the maritime sector to achieve ambitious IMO targets requires the
combination of various technologies. Among alternative fuels, ammonia (NH3), a carbon-free
fuel, is a good candidate; however, its combustion produces NOx, unburnt NH3 and N2O—a
strong greenhouse gas (GHG). This work conducts a preliminary assessment of the emission control
challenges of NH3 application as fuel in the maritime sector. Commercial catalytic technologies
are applied in simulated NH3 engine exhaust to mitigate NH3 and NOx while monitoring N2O
production during the reduction processes. Small-scale experiments on a synthetic gas bench (SGB)
with a selective-catalytic reduction (SCR) catalyst and an ammonia oxidation catalyst (AOC) provide
reaction kinetics information, which are then integrated into physico-chemical models. The latter
are used for the examination of two scenarios concerning the relative engine-out concentrations of
NOx and NH3 in the exhaust gas: (a) shortage and (b) excess of NH3. The simulation results indicate
that NOx conversion can be optimized to meet the IMO limits with minimal NH3 slip in both cases.
Excess of NH3 promotes N2O formation, particularly at higher NH3 concentrations. Engine-out N2O
emissions are expected to increase the total N2O emissions; hence, both sources need to be considered
for their successful control.
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1. Introduction

Maritime transport, mainly powered by diesel engines, is responsible for almost 3% of
global greenhouse gas (GHG) emissions, which is expected to further increase until 2050 [1].
Apart from GHGs, the maritime sector accounts for 24% of nitrogen oxides (NOx), 24% of
sulfur oxides (SOx) and 9% of particulate matter (PM) emissions in the European Union
(EU) [2].

According to the initial IMO strategy, GHG emissions shall be reduced by at least
50% by 2050 and carbon intensity by 40% by 2030 compared to 2008, aiming at complete
decarbonization of maritime transport by 2100 [3]. The latest meetings of the IMO Marine
Environment Protection Committee (MEPC) recently adopted a revised strategy that aims at
net-zero GHG emissions by 2050 [4]. This is a notable acceleration in the emission reduction
efforts compared to the initial IMO strategy. In parallel, NOx emissions shall comply with
Tier III limits (3.4 g/kWh for vessel propelled by low-speed two-stroke engines) in Emission
Control Areas (ECAs) and Tier II (14.4 g/kWh for vessel propelled by low-speed two-stroke
engines) globally. Concerning SOx emissions, IMO has introduced the global sulfur cap,
which imposes an upper limit of 0.50% in the fuel sulfur content globally, dropping to
0.10% in Sulfur Emission Control Areas (SECAs) [5].

Moving towards this direction, several technologies and strategies have already been
implemented or are currently being developed, such as [6]:

• direct reduction in fuel consumption, e.g., operating strategies and route optimization
as well as slow steaming;
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• direct reduction in vessel resistance, e.g., air lubrication, optimized hull design and
coating, lightweight materials;

• alternative propulsion system and power sources, e.g., wind-assisted propulsion, fuel
cells, cold ironing;

• improvement of energy efficiency, e.g., propulsion system hybridization, waste
heat recovery;

• post-combustion gas treatment, e.g., CO2 capture

Another way to reduce carbon intensity of shipping is the application of alternative
fuels with low or zero carbon content, produced using sustainable sources and feedstock
and renewable energy (often referred as e-fuels or green fuels). Some alternative fuels
(e.g., biofuels) can be used directly on existing engines (drop-in fuels), while others (e.g.,
ammonia, hydrogen) require significant developments and modifications before becoming
the main energy source on board the vessel. Although the combination of various technol-
ogy packages and practices can reach significant reductions of GHG emissions, complete
decarbonization can be achieved only when using carbon-neutral fuels [6,7].

Among other alternative fuels with low or zero carbon content (LNG, LPG, methanol,
hydrogen, etc.), ammonia (NH3) is a promising solution to limit carbon (C) and sulfur
(S) emissions from the maritime sector due to several advantages, such as absence of C
and S atoms from its molecule, high energy density and relatively easy storage. However,
the poor combustion properties of NH3 (low flammability, high autoignition temperature,
low flame speed, etc.) create the need of a pilot fuel quantity, usually carbonaceous, for
initiating combustion [8–11]. Depending on the pilot fuel used, there may be carbon dioxide
(CO2), SOx and PM emissions, but these levels should be very low (or almost negligible)
compared to conventional fuels (particularly heavy fuel oil (HFO)).

Moreover, NH3 combustion produces three main emission species that have a signif-
icant impact on human health and climate: unburned NH3 that is highly toxic and can
cause several health issues when found in high concentrations; NOx, which is one of the
main air pollutants and nitrous oxide (N2O) [9], a GHG with global warming potential
(GWP) almost 300 times higher than that of CO2, over a 100-year period [12]. Consequently,
even small concentrations of N2O potentially decrease the benefit from CO2 reduction [13].
Nitrous oxide (N2O) is a potential byproduct of both NH3 in-cylinder combustion and
chemical reactions in the exhaust gas aftertreatment system. Unburned NH3 and NOx emis-
sions can be expected from an engine running on NH3 and can be reduced using catalytic
devices that are commercially available. In marine applications, a vanadium-based selective
catalytic reduction (V-SCR) system is commonly used to reduce NOx with NH3 or urea as
reducing agent [14,15]. Ammonia slip (i.e., unreacted NH3 downstream of the SCR system)
exceeding the need of the deNOx process can be minimized with an ammonia slip catalyst
(ASC). Although that reduction of NH3 can promote NOx and N2O formation [16], N2O
may also be formed in lower concentrations through the SCR reactions [17,18]. Catalytic
N2O reduction technologies are already available but are customized for other applications
such as chemical industries and stationary combustion [19,20]. As reduction of a specific
species can promote the formation of another, the design of the exhaust after-treatment
system (EATS) for an engine running on NH3 is expected to consist of multiple emission
control technologies.

Based on the above, it is clear that commercial technologies must be developed and
adopted to effectively reduce NH3 slip, NOx and N2O at the same time in the NH3 engine
exhaust. However, NH3 engines (particularly large two-stroke ones used in the maritime
sector) are not yet commercially available; therefore, the exact exhaust gas conditions in
terms of composition, temperature and flow rate needed for the design of an emission
control system are not precisely known. Even when the exhaust gas of the NH3 engine is
known from measurements, the design of emission control via trial and error is prohibitive
in view of the huge testing costs on a large two-stroke marine engine. It is therefore
imperative to develop accurate and predictive models of the aftertreatment system that will
be applicable in a wide range of conditions to ensure the coverage of all possible scenarios
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to be expected in a real NH3 engine exhaust. The development of such a model is actually
the main target of the present work.

The current study presents the development of simulation models of the aftertreatment
system of NH3 application as a fuel in the maritime sector. The primary aim is to determine
the viability of current catalytic technologies, identify emission control challenges and
ultimately guide the optimum design at an early phase. Exhaust aftertreatment models rely
on kinetic mechanisms and rate expressions that describe the intrinsic chemical properties
of the active materials. In this work, experiments are performed to derive the respective
kinetic information for two technologies of interest and introduce them in an integrated
physico-chemical model of the transient transport and reaction processes in monolithic
catalytic reactors. The model is then used to study two possible scenarios concerning the
proportion of NH3 and NOx emissions from NH3 combustion (engine-out conditions). The
first scenario assumes that engine-out NH3 is less than NOx (NH3/NOx < 1), so additional
NH3 has to be injected upstream of a V-SCR catalyst to achieve NOx levels below Tier III
limits. The second scenario examines the case of excess engine-out NH3 (NH3/NOx > 1)
where a dual layer ASC (SCR on top of an ammonia oxidation catalyst (AOC) layer) is
integrated to the aftertreatment system to handle the NH3 slip. Particular emphasis is given
to the formation of N2O through NOx and NH3 catalytic reduction.

2. Materials and Methods
2.1. Experimental

Two small-scale samples of commercial catalysts are used in the experimental part of
this study: (1) a V-SCR (commonly used in marine applications) with a diameter of 28 mm
and a length of 90 mm and (2) a platinum-based AOC with the same dimensions. Their
catalytic activity is evaluated with measurements on a synthetic gas bench (SGB), presented
in Figure 1. The flow and composition of the mixture is controlled by the programmable
mass flow controllers (MFCs). Moisture can be added to the mixture through an H2O
feed, which is heated beforehand to prevent condensation of the flue gas. The mixture
is then heated to the required temperature through a pre-heater system before passing
through the catalyst sample. The bypass line gives the flexibility to conduct operational
and calibration checks of the analyzers, as well as to determine the exhaust gas composition
without exposing the catalyst to the gas mixture. An FTIR gas analyzer (AVL Sesam i60 FT
SII Small) measures the concentrations of all species in the outlet gas.

In the present work, the SCR and AOC reaction mechanisms are studied by running
targeted experimental protocols. For the SCR, steady-state measurements are performed at
temperatures between 150 ◦C and 500 ◦C and at atmospheric pressure. In the case of AOC,
its activity is tested by a temperature ramp (light-off test) from 150 ◦C to 600 ◦C under
atmospheric pressure. The test conditions for the SCR and AOC testing are summarized in
Tables 1 and 2, respectively.
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Figure 1. Small-scale experimental setup of synthetic gas bench (SGB).

Table 1. SCR experimental conditions.

Phenomena Inlet Feed Gas Temperature
[◦C]

Space Velocity
[h−1]

NO oxidation 2000 ppm NO, 6% O2, 15% H2O,
15 ppm SO2, N2 balance

150
200
250
300
400
500

20,000

NH3 oxidation 1000 ppm NH3, 6% O2, 15% H2O,
15 ppm SO2, N2 balance

Standard SCR
2000 ppm NH3, NH3/NOx = 0.8, 1,
1.5, 6% O2, 15% H2O, 15 ppm SO2,

N2 balance

Fast SCR

2000 ppm NH3, 2000 ppm NOx
(NO2/NOx = 0.2), 6% O2,

15% H2O,
15 ppm SO2, N2 balance
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Table 2. AOC experimental conditions.

Phenomena Inlet Feed Gas Temperature [◦C] Space Velocity
[h−1]

NH3 oxidation
250 ppm NH3, 50 ppm NO,
6% O2, 15% H2O, 15 ppm

SO2, N2 balance
150→ 600 20,000

2.2. Modeling
2.2.1. Main Assumptions and Governing Equations

The kinetic mechanisms of the V-SCR and Pt-AOC are implemented into a model
of the ExothermiaSuite® simulation platform [21]. The monolith is simulated as a single
representative channel (1D simulation approach), assuming that the inlet flow distribution
is uniform and heat losses are negligible. Temperature and species concentrations are
computed by solving the quasi-steady state balance equations for heat (Equation (1)) and
mass (Equation (2)) transfer:

ρgCp,gvg
∂Tg

∂z
= −h×

(
SF

ε

)
×
(
Tg − Ts

)
(1)

∂
(

vgyg,j

)
∂z

= −kj ×
(

SF

ε

)
×
(

yg,j − ys,j

)
(2)

The wall surface temperature is calculated using the transient energy balance in the
solid phase (Equation (3)):

ρsCp,s
∂Ts

∂t
= λs,z

∂2Ts

∂z2 + S (3)

The surface concentrations are obtained by solving the concentration field inside the
washcoat layer (Equation (4)):

−Dw,j
∂2ys,j

∂w2 = ∑
k

nj,kRk (4)

The convective mass transfer from the gas to the washcoat surface is formulated as

∂
(

vgyg,j

)
∂z

= kj

(
SF

ε

)(
ys,j

∣∣∣
w=−wc

− yg,j

)
(5)

Supplementary equations regarding the model of the flow through catalyst are pro-
vided in Appendix A.

The solution of the concentration field in the washcoat layer is of particular importance
for the case of technologies with multiple catalytic layers (1D + 1D model). In fact, this is
the case with ASCs that usually contain both a precious metal (PGM) layer, particularly
an AOC layer for the oxidation of NH3, as well as an SCR layer on top (Figure 2). This
combination comes with advantages concerning NH3 reduction and selectivity properties
of the ASC, as NOx formed in the oxidation layer diffuses through the SCR layer where it
can be reduced [14].

2.2.2. Reaction Mechanisms

In order to examine the potential of the existing catalytic devices to treat NH3 combus-
tion products, thoroughly calibrated and validated SCR and AOC models are necessary.
To describe the SCR reactivity over the vanadium-based catalyst, commonly used SCR
reactions are adopted [16,22], as listed in Table 3. The standard, fast and NO2 SCR reactions
are considered the principal reactions between NOx and NH3 (depending on the proportion
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of NO2/NOx). While NH3 is primarily oxidized to N2, oxidation reactions to NO and N2O
are also considered. The formation of N2O has also been attributed to the oxidation of NH3
and NO [23], as well as to the direct reaction between NH3 and NO2 [24,25].
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Figure 2. Dual-layer ASC schematic configuration.

Table 3. SCR reaction scheme.

Type Reaction

NH3 storage/release NH3 ↔ NH3 *

Standard SCR 4 NH3 * + 4 NO + O2 → 4 N2 + 6 H2O

Fast SCR 4 NH3 * + 2 NO + 2 NO2 → 4 N2 + 6 H2O

NO2 SCR NH3 * + 3/4 NO2 → 7/8 N2 + 3/2 H2O

N2O formation 2 NH3 * + 2 NO + O2 → N2 + N2O + 3 H2O
4 NH3 * + 4 NO2 → 2 N2 + 2 N2O + 6 H2O

NO oxidation NO + 1/2 O2 ↔ NO2

NH3 oxidation
4 NH3 * + 5 O2 → 4 NO + 5 H2O
2 NH3 * + 3/2 O2 → N2 + 3 H2O
4 NH3 * + 4 O2 → 2 N2O +6 H2O

* Stored NH3 on the catalyst sites.

Ammonia oxidation on the platinum-based AOC is approached with a simple kinetic
model that can give good representation of the overall reactions. The oxidation reactions
used are listed in Table 4. These include the oxidation of NH3 to N2 and NO, the simulta-
neous oxidation of NH3 and NO to N2O and the oxidation of NO to NO2 (including the
reverse reaction of NO2 decomposition) [26,27].

Table 4. AOC reaction scheme.

Type Reaction

NO oxidation NO + 1/2 O2 ↔ NO2

NH3 oxidation 4 NH3 + 5 O2 → 4 NO + 5 H2O
2 NH3 + 3/2 O2 → N2 + 3 H2O

NH3 and NO oxidation to N2O 2 NH3 + 2 NO + 3/2 O2 → 2 N2O + 3 H2O

2.3. Full-Scale Application of the Model
Assumptions and Inlet and Boundary Conditions

The target of this section is to demonstrate the use of modeling in the design phase of
the NH3 marine engine exhaust aftertreatment system. In the early design phase, many
parameters that influence the catalyst selection and optimization are not known, including
NOx, NH3 and N2O engine-out emission levels. Here, it is assumed that the engine will
use small amounts of pilot fuel [9,28,29]; therefore, CO2 emissions can be neglected, at
least at the preliminary design of the EATS. Although engine-out N2O produced by NH3
combustion is a topic of high concern [28,30], for the purposes of the present work it will
also be considered negligible; nevertheless, the N2O that is potentially produced in the
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EATS as an unwanted byproduct will be examined, and its greenhouse effect potential will
be evaluated.

Ammonia combustion is likely to produce high levels of unburnt NH3 [29,30], resulting
in concentrations comparable to the respective NOx emissions in terms of mole fraction. It
is well known that the molar ratio of NH3/NOx in the exhaust gas is very critical for the
operation of the SCR. Ratios below 1 would probably necessitate extra NH3 in the exhaust
gas stream, eventually via an additional NH3 injection system. On the other hand, if the
ratio is above 1, then the excess NH3 escaping the SCR reactions will have to be treated by
dedicated catalysis.

In this preliminary concept study, both cases described above will be studied. In
the first case, NH3 injection upstream of a V-SCR is required as shown in Figure 3a. In
the second case, a dual layer/dual function ASC is placed downstream from the SCR
(Figure 3b) to treat the unreacted NH3 of the deNOx process. The ASC is assumed to be a
combination of V-based (SCR) and precious-metal based catalytic layers (AOC) (as shown
indicatively in Figure 2) in order to attain a desired NH3 oxidation selectivity to N2.
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Figure 3. Model exhaust layouts for the two cases examined here: (a) shortage of NH3 and (b) excess
of NH3 in the exhaust gas.

Since NH3 engines are currently under development and their real exhaust gas con-
ditions and emission concentrations are still not known precisely, the current study is
based on real-world engine-out conditions of low-speed diesel engines used in marine
applications, assuming a high-pressure (pre-turbo) SCR system [31,32]. The simulated
catalyst inlet conditions are summarized in Table 5. Pre-turbo SCR configurations have
the advantage of higher pressures and temperatures that prevail right after the engine and
expand the active range of SCR operation, especially in low loads [33,34]. It is worth noting
that the physico-chemical model can be applied in the entire operating envelope and is
sensitive to the effect of pressure on reaction rates and species diffusivity.

Table 5. Exhaust gas conditions assumed in this study.

Engine Load % 100 75 50 25

Exhaust gas temperature ◦C 410 350 310 290

Exhaust gas pressure bar 4.0 3.1 2.1 1.4

SCR space velocity h−1 40,000 32,000 25,000 10,000

ASC space velocity h−1 140,000 115,000 85,000 40,000

NOx concentration ppm 1500–2000 1500–2000 1500–2000 1500–2000

3. Results
3.1. Reaction Model Calibration

The reaction kinetic parameters of the two catalysts are calibrated to fit the experi-
mentally determined NOx, NH3 and N2O concentrations. The results of the NO and NH3
oxidation tests for the V-SCR catalyst (see Table 1) are presented in Figure 4 with markers.
Oxidation of NO to NO2 is hardly detected even at high temperatures (Figure 4a). NH3
is mainly oxidized to N2 above 300 ◦C and is almost fully oxidized at 500 ◦C (Figure 4b),
while NO and N2O formation is observed only at very high temperatures (500 ◦C). The
same figures contain the results of the simulation model after fitting of the reaction kinetic
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rate parameters. The model achieves a good agreement with the test results in the whole
temperature range and is able to predict the reaction selectivity towards NO and N2O.
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The results of the SCR activity tests presented in Figure 5 show that the catalyst exceeds
80% NOx conversion above 300 ◦C. Obviously, the SCR process is highly dependent on the
amount of NH3 in the feed gas (Figure 5a). When the NH3/NOx ratio is greater than 1, NOx
is almost fully converted at high temperatures, although this leads to unreacted ammonia.
When the NH3/NOx ratio is less than 1, only partial NOx conversion is achieved as expected
from the reaction stoichiometry (Standard SCR reaction (Table 3)). Addition of NO2 in the
feed gas (Figure 5b) enhances NOx conversion rates, especially at low temperatures. Low
selectivity to N2O (below 20 ppm) is observed in all conditions with a significant increase
of up to 120 ppm at 500 ◦C.

The results of the calibrated simulation model presented in the above figures with
lines clearly show a good agreement with the respective measured data in the whole range
of temperature, NH3/NOx ratio and NO2/NOx ratio conditions.

Figure 6 shows the axial profiles of NOx, NH3 and N2O along the V-SCR catalyst as
well as the reaction rates governing N2O formation pathways. One can observe that N2O
attains stabilization approximately midway through the catalyst length, whereas NOx and
NH3 concentrations reach a state of equilibrium near the catalyst outlet. This is attributed
to the constrained availability of NH3 and NOx in the feed gas; hence, the reaction rates
that favor N2O formation are minimized midway through the catalyst.

The results of the Pt-based AOC tests are summarized in Figure 7. Here, the focus
is not only on the conversion rate of NH3 as a function of temperature, but also on the
unwanted NOx and N2O produced by the NH3 oxidation reactions. It is worth noting that
the calibrated model is capable of capturing these complex trends with respect to NOx
byproducts in the whole temperature range with good accuracy. This provides the basis for
using this physico-chemical model in the conditions expected in a real marine engine.
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The concentration of NH3 shows a steep decrease from 200 ◦C to 250 ◦C and is
fully oxidized around 300 ◦C. Above 200 ◦C, N2O selectivity increases significantly with
maximum concentration at 250 ◦C. Selectivity to NO and NO2 is favored at temperatures
above 250 ◦C, while N2O selectivity is simultaneously decreasing. It is important to
highlight the temperature range of N2O formation (in the aftertreatment system) between
200 ◦C and 400 ◦C, which is crucial for low-speed marine engines since their exhaust
gas temperature falls within this range (see Table 5). The trends can be interpreted by
referring to the reaction rates depicted in Figure 8, highlighting the competition between
the reactions. Between 200 ◦C and 400 ◦C, the simultaneous oxidation of NH3 and NO to
N2O is favored, while above 250 ◦C the oxidation of NH3 to NO becomes dominant; hence,
the availability of NH3 towards N2O is limited.

Figure 9 presents the axial distribution of NH3, NO and N2O along the AOC. At
notably low temperatures (i.e., 150 ◦C), oxidation reactions governing the AOC are not
activated; therefore, no alteration in emission levels is observed. Conversely, at elevated
temperatures (i.e., 350 ◦C and 500 ◦C), NH3 experiences complete oxidation in close prox-
imity to the catalyst inlet, precluding its availability for subsequent oxidation pathways
towards NO and N2O. Consequently, NO and N2O levels exhibit an early stabilization
along the catalyst length.
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3.2. Model Application in Marine Engine Exhaust

Based on the assumed marine engine exhaust gas conditions of Table 5 and the
weighting factors of the legislated E3 test cycle [35], it can be estimated that the NOx
conversion efficiency required to reduce large two-stroke engine-out emissions below the
Tier III limit of 3.4 gNOx/kWh is in the order of 90%.

In the case of lack of NH3 (engine-out NH3/NOx < 1), where only the SCR catalyst is
used (Figure 3a), the minimum deNOx requirement may be achieved provided that NH3 is
injected with a target ratio of NH3/NOx equal to 0.9.

Applying the simulation model at the four loads of the E3 cycle, using the conditions
shown in Table 5, NH3 slip and N2O formation after the SCR are calculated, as presented
in Figure 10a. Almost all NH3 is predicted to be consumed during NOx reduction, leading
to limited NH3 slip of less than 5 ppm. Low levels of N2O (below 8 ppm) are expected to
be formed at all loads with increased selectivity at full load as N2O formation is favored
at elevated temperatures. Despite its low selectivity, N2O is a strong GHG with 100-year
GWP almost 300 times higher than CO2. Hence, even small concentrations of N2O can be
equivalent to significant CO2 emissions. In this case, the CO2-equivalent emissions over a
100-year period reach almost 25 g/kWh at 100% load, which are decreased at lower loads
(Figure 10b), resulting in an average value of 14.1 gCO2-eq/kWh (taking into account the
weighting factors of the E3 test cycle [28]).
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Figure 11 presents the average NH3, NOx, N2O and CO2-equivalent emissions for
different NH3/NOx ratios in the case of excess engine-out NH3 (NH3/NOx > 1). All con-
centrations are estimated taking into account the weighting factors of each load according
to the E3 test cycle [35]. According to the standard SCR reaction, NH3 and NO react on a
1:1 molar ratio. Thus, increased NH3/NOx values lead to elevated unreacted NH3 at the
SCR outlet. Unreacted NH3 of the deNOx process is then oxidized in the ASC (Figure 11a).
The activity of the ASC is decreased at higher NH3/NOx ratios, leading to increased NH3
emissions at the outlet. Despite the strong NH3 oxidation, the ASC is characterized by high
selectivity to NOx and N2O that becomes more important when unreacted NH3 in the SCR
is higher. NOx conversion is maximized in the SCR due to the abundant concentrations of
NH3, while the SCR layer of the ASC catalyst counterbalances the high selectivity of NH3
oxidation to NO, keeping NOx concentrations at acceptable levels, compliant with Tier III
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limits (<3.4 g/kWh) (Figure 11b). Concerning N2O, limited formation is observed during
SCR (minimally affected by NH3/NOx); however, the simultaneous oxidation of NH3 and
NO in the ASC results in important N2O formation, especially at higher NH3 engine-out
concentrations (Figure 11c). According to Figure 11d, N2O produced in the AOC layer cor-
responds to significant levels of CO2-equivalent emissions that reach almost 500 g/kWh at
high NH3 concentrations. These levels are comparable to other low-carbon solutions, such
as LNG combustion, where CO2-equivalent emissions for low-speed two-stroke engines
vary between 400 g/kWh (high-pressure dual-fuel mode) and 500 g/kWh (low-pressure
dual-fuel mode) [36].
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In addition, N2O emissions from NH3 in-cylinder combustion are expected to further
increase the total GHG emissions. Therefore, both sources need to be considered for
the successful control of N2O emissions, eventually via a targeted additional catalyst. A
different SCR layer composition could be beneficial for N2O abatement. For example,
iron-based catalysts might be a better option compared to the V-based catalyst considered
here as they have the ability of simultaneous reduction of NOx and N2O [18]. Another
possible solution is the direct reduction of N2O through thermal decomposition [17,18,37].

4. Summary and Conclusions

The testing and simulation results of the marine engine aftertreatment models high-
lighted the following:

• In the case where engine-out NH3 levels are lower than the ones required in the deNOx
process (i.e., NH3 injection upstream of the SCR), NOx conversion can be optimized
to comply with the strictest IMO limits with minimal levels of NH3 slip and N2O
formation.

• In the case where NH3/NOx is greater than 1, unreacted NH3 of the deNOx process
can be efficiently handled with an ASC, while NOx concentrations can be kept at
acceptable levels. Concerning N2O, NH3 oxidation in the ASC is highly selective to
N2O formation, which is enhanced at higher NH3 concentrations. In this case, the CO2-
equivalent emissions over a 100-year period are comparable to LNG marine engines.
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Considering these indications, it is preferable to tune NH3 combustion to ensure
that NH3/NOx is less than 1, so as to minimize unreacted ammonia in the aftertreatment
system and thus keep N2O formed there at low levels. Except from the part produced in
the catalytic aftertreatment devices, N2O levels in the exhaust gas are expected to further
increase when engine-out quantity from NH3 combustion is considered. Therefore, the
potential CO2 benefit of NH3 combustion may be counterbalanced, to a certain extent, due
to the strong GWP of N2O. Hence the use of NH3 as a fuel to decarbonize the maritime
sector will be beneficial only if these levels can be kept at low levels. Based on the above,
an appropriate control strategy and optimization of the exhaust aftertreatment system
of the NH3 engine are of high importance as NOx reduction should be accompanied by
limited NH3 slip and N2O formation. For this reason, the activities of this work are further
expanded with future steps including the following:

• Integration in the catalyst model of N2O chemistry and the relevant catalytic processes
in a dedicated deN2O catalyst.

• Experimental small-scale investigation of the performance of new catalyst technologies,
followed by calibration and validation of the model using the test data.

• Application of the new catalyst models in the exhaust gas stream of NH3 engines.
• Development and optimization of the complete exhaust aftertreatment system and

controls for NH3 marine engine applications.
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Nomenclature

A. Latin Letters
c Concentration mol/m3

Cp Specific heat capacity J/(kg·K)
dh Hydraulic diameter of a channel m
dpore Mean pore size m
DKnud Knudsen diffusivity m2/s
Dmol Molecular diffusivity m2/s
Dw Effective diffusivity m2/s
h Heat transfer coefficient W/(m2·K)
kj Mass transfer coefficient m/s
M Molecular weight kg/mol
n Stoichiometric coefficient -
R Universal gas constant J/(mol·K)
Rk Reaction rate mol/(m3·s)
S Source term W/m3
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SF Monolith specific surface area m2/m3

T Temperature K
t Time s
v Velocity m/s
w Dimension perpendicular to wall surface -
wc Washcoat layer thickness m
yj Molar fraction -
z Axial coordinate along monolith m
B. Greek Letters
∆H Reaction heat J/mol
ε Macroscopic void fraction -
εpore Porosity of the washcoat -
λ Thermal conductivity W/m·K
ρ Density kg/m3

C. Subscripts and Superscripts
g Exhaust gas
j Species index
k Reaction index
s Solid

Appendix A

This section presents supplementary equations regarding the model of the flow through the
catalyst (Section 2.2.1).

A.1. 1D Model (Channel Approach)

The heat and mass transfer coefficients are calculated according to the following definitions:

h =
Nu×

dh
(A1)

kj =
Sh×Dmol,j

dh
(A2)

The dimensionless Nusselt (Nu) and Sherwood (Sh) numbers can be calculated for the well-
known correlations of laminar flow accounting for entrance effects as below:

Nu = 2.976
(

1 + 0.095× Re× Pr× dh
z

)0.45
(A3)

Sh = 2.976
(

1 + 0.095× Re× Sc× dh
z

)0.45
(A4)

The S term contained in the transient energy balance of the solid phase includes the con-
vective heat transfer Hconv due to the gas flow in the channels and the heat release Hreact by
chemical reactions:

S = Hconv + Hreact (A5)

Hconv = h
(

SF
1− ε

)(
Tg − Ts

)
(A6)

Hreact =
1

1− ε∑nk

k=1 ∆HkRk (A7)

A.2. 1D+1D Model

The boundary conditions for the washcoat layer are:

Dw,j
∂ys,j

∂w

∣∣∣∣∣
w=−wc

= kj

(
yg,j − ys,j

∣∣∣
w=−wc

)
(A8)
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∂ys,j

∂w

∣∣∣∣∣
w=0

= 0 (A9)

where w = 0 corresponds to the wall boundary and w = −wc to the external surface of the washcoat.
The mean transport pore model used the expression

1
Dw,j

=
τ

εpore

(
1

Dmol,j
+

1
Dknud,j

)
(A10)

with the Knudsen diffusivity:

Dknud,j =
dpore

3

√
8RT
πMj

(A11)

The porosity εpore and the mean pore size dpore can be extracted from the microstructural
properties of the washcoat, while tortuosity τ is an empirical parameter.
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