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Abstract: Agriculture is a vulnerable sector to climate change due to its sensitivity to weather
conditions. Changes in climatic parameters such as temperature and precipitation significantly affect
productivity as well as the consumption of natural resources like water to meet irrigation water
needs. There has been a large amount of research on regional climate change. However, this study
placed specific crops at first place and considered their irrigation water needs that will arise due
to evapotranspiration increase. The aim of this study was to estimate the future irrigation water
needs of wheat, cotton, and alfalfa in the east part of Thessaly Plain in central Greece, where Lake
Karla, a recently restored lake, is located. The Weather Research and Forecasting (WRF) model was
applied as a high-resolution regional climate model to simulate temperature and precipitation for
two 5-year periods, namely 2046–2050 (future period) and 2006–2010 (reference period). Simulations
refer to the RCP8.5 emission scenario (worst-case). A methodology proposed by the Food and
Agriculture Organization (FAO) of the United Nations was followed to estimate the reference crop
evapotranspiration, the crop evapotranspiration based on each crop factor, which was determined
for each crop, the effective rainfall, and finally, the irrigation water needs for each crop, for the two
5-year periods. Based on WRF simulations, temperature was projected to be 1.1 ◦C higher in the
future period compared to the reference period, while precipitation and effective precipitation were
projected to decrease by 32% and 45%, respectively. Based on the WRF projections, by 2025, the
irrigation water needs of wheat and alfalfa are expected to increase by more than 16% and more than
11%, respectively, while irrigation water needs of cotton are expected to increase by 7%. An extension
of wheat’s irrigation period for one month (i.e., December) was also identified. Good practices that
could be applied in the frame of precision agriculture principles in order to save irrigation water were
suggested. The results of this study could be exploited by water resources and land use managers
when planning short and long-term strategies to adapt to climate change impacts.

Keywords: agriculture; climate change; WRF; FAO; water; irrigation; Mediterranean; Thessaly Plain

1. Introduction

Agriculture is a sector significantly affected by climate change due to its dependence on
weather conditions. Climate change induces various effects on agriculture that include loss
of arable land, shortening of growing seasons, the viability of certain crops, and reduction
in water reserves, which are related to serious economic and social issues (increase in prices,
changes in the trade balance between different countries, food security, etc.) (e.g., [1,2]).
One of the most important impacts of climate change on agriculture is the increase in water
consumption to meet irrigation water needs. This is mainly expected due to the reduction
in effective precipitation and due to the temperature rise that will trigger an increase in
crop evapotranspiration. A potential reduction in water availability to the plant can lead to
water stress, reduced photosynthetic activity, and reduced nutrient absorption (e.g., [3,4]).
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Temperature and precipitation are factors that regulate and strongly affect agriculture.
Although temperature is expected to increase on a global scale (but at a different rate),
precipitation presents a significant variability from place to place. Globally, temperature has
already reached ~1 ◦C increase compared to the pre-industrial levels, while it is expected
to reach +1.5–+5 ◦C by the end of the current century, depending on the emissions scenario
and policies that governments of the world will follow [5]. In addition, annual precipitation
seems to decrease over mid-latitude areas, increasing though over higher latitudes [6].
Focusing on the Mediterranean, climate models estimate an increase of temperature by
1–6 ◦C (depending on the emissions scenario), with Greece being in the region with the
highest temperature increases. Regarding precipitation, models agree on a decrease of
up to −50% by the end of the century under RCP8.5. In Greece, precipitation decrease is
estimated to be up to −10 to −30% [7], with maximum decrease being expected in spring
and summer [8]. It is also highly important that agricultural droughts (thus droughts that
are able to affect soil moisture and agricultural production) may extend by 2100 from 2 to
7 months depending on the area of the Mediterranean and emissions scenario, with Greece
being ranked in the countries with the most prolonged drought periods during a year [9].

Such a change in climate has already significantly affected crops in Greece, and it is es-
timated that some crops may be in danger in the future. A literature review was performed
on the quantity and quality aspects of water resources in Greece for each water body,
focusing on water relation effects (aridity/drought, floods, and soil erosion by water) [10].
This review stated that water resources are under pressure in Greece due to the current
and future climatic conditions and due to the intense agricultural and tourist activities that
are taking place in the country. According to its findings, the region of Thessaly, which
is the target region of the present study, is expected to be among the most affected by
climate-water impacts in Greek regions, exhibiting reduced crop yields, greater risk of
droughts and floods, agricultural land losses, declining water availability and degraded
water resources (surface and groundwater). Regarding future crop yields specifically, in
Thessaly and generally in Greece, some studies have been conducted that estimated that
crop yields may increase or decrease in the near future (2021–2050 vs. 1961–1990 period)
according to the assumptions made in each study, for example, if irrigation water supply
will continue to be available despite the reduction in precipitation which will probably
have adverse impacts on groundwater replenishment and consequently on the supply of
irrigation water [11], or according to the applied climate model [12]. It is worth reminding
that climate change is also related to significant socioeconomic issues. The potential trends
of main socioeconomic factors through which climate change will affect agricultural pro-
duction and international trade patterns were assessed [13]. This study showed that global
food production, welfare, and gross domestic product are projected to fall by 2050 under
the scenarios that they examined, while higher food prices are expected.

This study focused on the greater agricultural area around Lake Karla, which is
located in the eastern part of Thessaly Plain (details are provided in Section 2.1 below). The
management of irrigation water and land use is crucial for the sustainable growth of the
greater area around the lake. Some studies have been conducted for these purposes. An
optimization method was applied to evaluate the optimum volume of water that can be
extracted from the aquifer and the optimum position of the irrigation wells, taking into
consideration, among others, the climate change forcing for the year 2044 [14]. A similar
approach was followed to evaluate the water deficit of the Lake Karla watershed for the
years 2050 and 2100 [15]. Simulations of the nutrient flow dynamics in the lake when it
was under restoration were performed [16] using PCLake model [17] and investigated the
interrelations of nutrient cycling and trophic state. An attempt was made to propose policy
measures for agricultural water saving and cost-effectiveness by testing different scenarios
focusing on the technical, agronomic, and economic efficiency of applied irrigation and
agricultural practices [18]. A holistic hydro-economic framework for sustainable water
resources management was presented and examined under various management, climate,
and pricing scenarios [19]. However, none of the studies presented above examined the
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impact of climate change on future irrigation water needs in the area, placing crops in the
first place and considering the irrigation water needs of specific crops that will arise due to
evapotranspiration increase. The latter was the special scope of this study.

The present study aimed to exploit future climate projections in order to estimate
quantitatively the change in irrigation water needs that are expected to occur in the future
in Thessaly Plain, Greece, and propose good practices in the frame of precision agriculture
principles. This information could be exploited by water resources and land use managers
when planning adaptation measures to handle efficiently climate change impacts.

2. Materials and Methods
2.1. Study Area

The Thessaly region is located in central Greece (Figure 1a). Its dominant geographical
feature is its plain. Thessaly Plain is formed by the Pinios River and its tributaries and
is surrounded by mountains (Figure 1b). It is an extremely fertile area, and a variety of
crops are cultivated there. Irrigation accounts for more than 90% of the water consumption
in the Thessaly region [10]. This study focuses on the greater agricultural area around
Lake Karla, which is located in the eastern part of the Thessaly plain (Figure 1b). The soil
type in the study area is characterized as naturally drained alluvion and marshy soil with
solonetz and solonchak in the depression with a high level of groundwater, as mentioned
in the soil map of Thessaly that is provided by EU JRC ESDAC [20]. Indicative values for
bulk density and pH are 1.32 ± 0.10 g·cm−3 and 7.6 ± 0.4 [21]. The average cultivated
area is about 25 acres [22]. Lake Karla was completely drained in 1962 to reclaim land for
agriculture. However, this decision turned out to be a wrong choice, as agriculture was
never successful in the saline soils of the former lake bed. Therefore, the local population
and politicians proposed the restoration of approximately 40 km2 of the surface of the
former lake (approximately 180 km2). This ambitious project, which is unique to the
Balkans and Europe and is characterized by various environmental and economic benefits,
finished in 2018 and was financially supported by the European Commission [23].
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Figure 1. (a) Location of Thessaly region (Wikipedia); (b) Geophysical map of Thessaly (Google
Earth). The dark green area inside the red square indicates Lake Karla.

2.2. The Weather Research and Forecasting (WRF) Model

The Weather Research and Forecasting (WRF) Model is a state-of-the-art mesoscale nu-
merical weather prediction system designed for both atmospheric research and operational
forecasting applications. The WRF model uses a variety of physics schemes (microphysics,
cumulus physics, planetary boundary and surface layer parameterizations, land surface
physics, and short-wave and long-wave radiation) in order to simulate in detail processes
that take part between the atmosphere and Earth. Each category has multiple options
varying from simple and efficient to more sophisticated and computationally costly. Addi-
tionally, land cover is required as input information. Moreover, greenhouse gas emissions
scenarios are considered in order to define the boundary conditions. Past studies used the
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WRF model to investigate the impacts of meteorological and climatological conditions on
agriculture [24–26].

2.3. Model Setup, Evaluation, and Used Datasets

The WRF model was used as a high-resolution regional climate model in this study.
The model has been applied and validated in several climate studies (e.g., [27–29]). Simu-
lated future temperature and precipitation values with spatial resolution of 10 × 10 km
and temporal resolution of 3 h that were produced in the frame of [29] were exploited
in this study. The future period refers to the 5-year period 2046–2050, while the 5-year
period 2006–2010 is considered as a reference period. Simulated values referring to the
model’s cell that corresponds approximately to the red square area in Figure 1b were
exploited in this study. Simulated values refer to the 8.5 Representative Concentration
Pathway (RCP8.5). RCP8.5 is a popular emission scenario representing the worst-case
scenario, as emissions are considered to continue rising throughout the 21st century under
it [30]. Detailed information about the model’s setup (domains, physics schemes, land use,
boundary conditions, etc.) is provided by [29].

The ability of the model to predict near-surface air temperature has been evaluated
by [29]. However, the capability of the model to predict monthly temperature and precipi-
tation values referring to the model’s cell that was used in this study was further evaluated
in this study. The simulated values for the reference period were evaluated against a
Typical Meteorological Year (TMY) that has been recently produced by exploiting data
recorded by an automated meteorological station operated in the area by the Laboratory of
Agricultural Constructions and Environmental Control of the University of Thessaly. The
station is located in Velestino (22◦45′ E–39◦24′ N), in an agricultural area that is included
in the red square marked in Figure 1b. The methodology proposed by [31] was followed
to produce the TMY. The model performance was evaluated by means of three statistical
indices, namely bias (BIAS) [32], mean absolute error (MAE) [32], and index of agreement
(IOA) [33].

2.4. Estimation of Irrigation Water Needs

Irrigation water needs of specific crops were estimated for both periods (future and
reference) by following a methodology proposed by the Food and Agriculture Organization
(FAO) of the United Nations. Three cultivations popular in the area (i.e., wheat, cotton,
alfalfa) were examined. It is worth mentioning that wheat and cotton occupy more than
70% of the cultivated land in the Thessaly region.

FAO’s methodology consists of specific steps: (a) estimation of the reference crop
evapotranspiration, (b) estimation of crop evapotranspiration of each examined crop based
on the corresponding crop factor, (c) estimation of the effective rainfall, and finally (d) esti-
mation of the irrigation water needs of each examined crop. The methodology is briefly
presented below, while detailed information can be found in [34].

2.4.1. Estimation of the Reference Crop Evapotranspiration

The Blaney—Criddle method (Equation (1)) was used to calculate the reference crop
evapotranspiration ETo for each month. In Equation (1), ETo is the reference crop evapo-
transpiration (mm/day) as an average for a month, Tmean is the mean temperature of the
month (◦C), and p is the mean daily percentage of annual daytime hours for the month for
a specific latitude.

ETo = p · (0.46 · Tmean + 8) (1)

It is worth mentioning here that the aim of this study was to estimate quantitatively
the change in irrigation water needs that are expected to occur in the future on a monthly
basis, or even better on an annual basis, as the simulations of future temperature and
precipitation values that were produced using the WRF model provides the possibility
to make efficient estimates on such temporal bases. Therefore, a simple and easy-to-use
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method was chosen to calculate ETo instead of a more accurate but more data-demanding
method [35].

2.4.2. Estimation of Crop Evapotranspiration of Each Examined Crop Based on the
Corresponding Crop Factor

Crop evapotranspiration ETcrop for each month was calculated using Equation (2), in
which ETcrop is the crop’s evapotranspiration (mm/month), Kc is the crop factor of the
month to which ETcrop refers, ETo is the reference evapotranspiration (mm/day), and D is
the number of days of the month to which ETcrop refers.

ETcrop = Kc · ETo · D (2)

The total length of the growing season and the lengths of the various growth stages
(i.e., initial stage, crop development stage, mid-season stage, late season stage) for wheat
and cotton were defined and were used to determine the crop factor Kc for each crop for
each month. A special procedure based on prevailing climate conditions was followed to
determine the crop factor Kc for alfalfa for each month, as proposed by FAO [34].

2.4.3. Estimation of the Effective Rainfall

Effective rainfall is defined as the fraction of the total amount of rainwater that is
retained in the root zone of a plant and is available to the plant to cover its irrigation
water needs. The effective rainfall equals the total rainfall minus runoff, minus evapo-
ration, minus deep percolation. The effective rainfall Pe for each month was calculated
using Equations (3) and (4), in which Pe is the effective rainfall or effective precipitation
(mm/month) and P is the rainfall or precipitation (mm/month). Equations (3) and (4) were
proposed by FAO [34] to be applied in areas with a maximum slope of 4–5%, which is a
condition that is fulfilled in the study area.

Pe = 0.8 · P − 25 when P ≥ 75 mm/month (3)

Pe = 0.6 · P − 10 when P ≤ 75 mm/month (4)

2.4.4. Estimation of the Irrigation Water Needs for Each Crop

The irrigation water needs of a crop can be covered by rainfall, by irrigation, or by
a combination of irrigation and rainfall. Irrigation water needs (IN) equal zero (IN = 0)
when all the water needed for the optimal growth of the crop is provided by rainfall (in
these cases: Pe > ETcrop). Monthly IN is calculated by Equation (5) when all water has to
be supplied to the crop by irrigation in cases where there is no rainfall at all during the
growing season (in these cases: Pe = 0). In most cases, when part of the crop water needs
is supplied by rainfall, and the remaining part is supplied by irrigation (in these cases:
Pe < ETcrop), monthly IN are calculated by Equation (6).

IN = ETcrop (5)

IN = ETcrop − Pe (6)

2.5. Software Used

Statistical analysis was performed using Microsoft Excel 2013, while figures were
produced using Golden Software Grapher 8.

3. Results and Discussion
3.1. Model Evaluation

Figures 2 and 3 present simulated values for the reference period and values referring
to the TMY. Figure 2 presents the monthly average value of temperature, while Figure 3
presents the monthly total precipitation. Table 1 presents the values of the three statistical
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indices applied to evaluate the performance of the model. Figure 2 and Table 1 reveal that
the model was able to reproduce accurately the observed monthly variation of temperature.
However, Figure 3 shows that the performance of the model was weaker for precipitation.
As the aim of this study was to exploit future climate projections in order to estimate quan-
titatively the change in irrigation water needs of three specific cultivations that are expected
to occur in the future in Thessaly Plain, the performance of the model for precipitation
was examined during the growing period of the three cultivations (Tables 2 and 3). MAE
values were relatively high for the three examined periods, while IOA values ranged be-
tween 0.467 and 0.640 (Table 1). Table 1 also reveals that the model overestimated monthly
precipitation during the growing period of alfalfa (i.e., January to December) and wheat
(January to May and December), as MBE values were positive. On the contrary, the model
slightly underestimated monthly precipitation during the growing period of cotton (April
to October), as the MBE value was slightly less than 0 ◦C.
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Table 1. Performance statistics for the evaluation of the model.

Parameter Period BIAS MAE IOA

Temperature (monthly average value) From January to December 0.17 ◦C 0.8 ◦C 0.996
Precipitation (monthly total) From January to December 9.4 mm 19 mm 0.570
Precipitation (monthly total) Form January to May and December 14.2 mm 19.5 mm 0.467
Precipitation (monthly total) From April to October −0.9 mm 15.5 mm 0.640

3.2. Description of Future Climate Conditions

Simulated temperature and precipitation data were processed in order to produce an
indicative future year and an indicative reference year. Specifically, the indicative future
year refers to the 5-year period 2046–2050 and includes 3 h values that are equal to the
average of the corresponding 3 h values of each one of the five years included. The same
applies for the indicative reference year but for the 5-year period 2006–2010.

Figure 4 shows the differences in the monthly average values of temperature between
the indicative future and the indicative reference year. All differences were positive, a
fact that shows that the mean temperature of all months is expected to rise during the
future period compared to the reference period. The analysis of the differences in the 3 h
temperature values that were included in the two indicative years revealed that 74% of
them were positive, while the rest, 26%, were negative. Overall, the average of the values of
temperature that were included in the indicative future year was found to be 1.1 ◦C higher
than the corresponding average for the indicative reference year.
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Figure 4. Differences in the monthly average values of temperature between the indicative future
and the indicative reference year.

Figure 5 shows the % differences in the monthly average values of precipitation
between the indicative future and the indicative reference year. Nine differences were
negative, a fact that shows that the mean precipitation during these nine months is expected
to reduce during the future period compared to the reference period. The analysis of the
differences of the 3 h precipitation values that were included in two indicative years
revealed that 37% of them were positive, 14% of them equaled zero, while the rest, 49%,
was negative. Overall, the average of the values of precipitation that were included in the
indicative future year was found to be 32% lower than the corresponding average for the
indicative reference year.

Figure 6 shows the % differences in the monthly average values of effective precip-
itation between the indicative future and the indicative reference year. Nine differences
were negative, a fact that shows that the mean effective precipitation during these nine
months is expected to reduce during the future period compared to the reference period.
No effective precipitation was simulated for July of both the indicative future and the
indicative reference year. Irrigation water needs are expected to rise during May, June,
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and August in the future, as no effective precipitation was simulated for May, June, and
August of the indicative future year, although effective precipitation was simulated for
these months of the indicative reference year. Overall, the average of the values of effective
precipitation that were included in the indicative future year was found to be 45% lower
than the corresponding average for the indicative reference year.
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Figure 6. Differences (%) of the monthly average values of effective precipitation between the
indicative future and the indicative reference year.

3.3. Calculation of Kc for Each Examined Crop

The total length of the growing season and the lengths of the various growth stages for
wheat and cotton were determined based on the present conditions and were considered
the same for both the indicative future and the indicative reference year. These periods are
presented in Table 2, together with the Kc values that are proposed by FAO for the growth
stages of these crops [34]. The calculation of Kc for alfalfa is considered a special case by
FAO [34]. Kc values are defined according to the prevailing climatic conditions. The types
of climatic conditions are suggested by FAO [34]. The prevailing climatic conditions during
the growing season of alfalfa and the corresponding Kc values are presented in Table 3.
Table 4 summarizes the Kc values per month for the examined crops, as determined in
Tables 2 and 3.
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Table 2. The total length of the growing season and lengths of the various growth stages in Thessaly,
Greece, for wheat and cotton, and Kc values for these growth stages of these crops.

Crop Total Growing Period Initial Stage Crop Development Stage Mid Season Stage Late Season Stage

Wheat 15/12–31/5 15/12–31/12 01/01–31/01 01/02–15/04 16/04–31/05
Cotton 15/04–15/10 15/04–31/05 01/06–15/07 16/07–31/08 01/09–15/10

Kc for Wheat: 0.35 0.75 1.15 0.45
Kc for Cotton: 0.45 0.75 1.15 0.75

Table 3. Climatic conditions per growing period of alfalfa and Kc value for each type of climatic
conditions.

Growing Period Climatic Conditions Kc

01/04–30/09 Dry Light/Medium Wind 0.95
01/10–30/11 Humid Light/Medium Wind 0.85
01/12–31/01 Humid or Dry Strong Wind 1.05
01/02–31/03 Humid Light/Medium Wind 0.85

Table 4. Kc values per month for wheat, cotton, and alfalfa.

Month Wheat Cotton Alfalfa Month Wheat Cotton Alfalfa

1 0.75 - 1.05 7 - 0.96 0.95
2 1.15 - 0.85 8 - 1.15 0.95
3 1.15 - 0.85 9 - 0.75 0.95
4 0.80 0.45 0.95 10 - 0.75 0.85
5 0.45 0.45 0.95 11 - - 0.85
6 - 0.75 0.95 12 0.35 - 1.05

3.4. Estimation of the Irrigation Water Needs of Each Crop

Table 5 shows the % differences in the monthly irrigation water needs of the three
examined crops between the indicative future and the indicative reference year. Table 5
shows that almost all differences were positive, a fact that reveals that irrigation water needs
of wheat, cotton, and alfalfa are expected to increase during the future period compared
to the reference period. It is worth mentioning that wheat will be irrigated in December
in the future, while it is not irrigated in the present (this is indicated by Y (yes)–N (no) in
Table 5). Overall, the irrigation water needs of wheat, cotton, and alfalfa were found to be
16%, 7%, and 11%, respectively, higher during the indicative future year than during the
indicative reference year. It is worth noticing that, as simulated precipitation data were
overestimated by the model during the growing period of alfalfa and wheat, the irrigation
water needs of these cultivations are expected to be higher by more than 16% and more
than 11%, respectively.

Table 5. Differences (%) of the monthly average values of irrigation water needs between the
indicative future and the indicative reference year.

Month Wheat Cotton Alfalfa Month Wheat Cotton Alfalfa

1 56 - 31 7 - 3 3
2 4 - 3 8 - 14 16
3 27 - 37 9 - 3 3
4 −1 −5 −1 10 - 15 14
5 3 3 1 11 - - 22
6 - 11 9 12 Y–N - 56
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3.5. Suggestions for Saving Irrigation Water

The aim of this section is to highlight available representative good practices that
could be applied in order to save irrigation water for the three examined crops.

3.5.1. Precision Agriculture

Proper monitoring and control of environmental parameters significantly contribute to
the conservation of natural resources, including water. Irrigation monitoring and advanced
control systems that incorporate monitoring and advanced control concepts for precision
irrigation were reviewed [36]. Advances and perspectives in the research field related
to improving water use efficiency at different scales were reviewed, the key obstacles
and possible solutions in practice were discussed, and a water-saving, quality-improving,
high-efficient water use strategy was proposed [37]. Sensor applications for improving sus-
tainability in agrifood systems by promoting the preservation of freshwater resources under
the principles of smart farming or precision agriculture were reviewed [38]. Integrated
satellite-based water consumption monitoring practices can also support this goal [39].

Research projects have been implemented that proposed state-of-the-art methods
to forecast crop irrigation water needs. A hybrid framework that exploits models and
observation data that could be applied to estimate daily irrigation water demand was
introduced [40]. Earth observation data, weather forecasts, and numerical simulations were
combined to produce short-term irrigation forecasts in order to plan more precisely water
allocation in space and time in irrigated agriculture [41]. Crop irrigation water needs in
an operative farm in the South of Italy were forecasted by applying a satellite-driven soil
water balance model coupled with a meteorological forecast model [42].

3.5.2. Improvement in Irrigation System

A study in Mexico found that, with an efficient design by means of irrigation tests,
characterization of the plot, and the calculation of the optimal flow through an analytical
formula, it was possible to increase the water application efficiency by 43–95% and the
water use efficiency up to 47% [43]. Special irrigation management practices could also
be applied, like deficit irrigation. Deficit irrigation is an optimization strategy in which
irrigation is applied during drought-sensitive growth stages of a crop, while outside these
periods, irrigation is limited or even unnecessary if rainfall provides a minimum supply
of water. The application of deficit irrigation was proposed in order to overcome the
degradation of groundwater quality and quantity [44]. Another study also proposed deficit
irrigation, as well as the use of non-conventional water resources (e.g., wastewater, brackish
groundwater) in some cases, as part of climate change mitigation measures to tackle the
water poverty issue [45].

4. Conclusions

This paper revealed potential changes in irrigation water consumption that may occur
in the future (2046–2050) under the climate change worst-case scenario (RCP8.5) compared
to a reference period (2006–2010). The analysis was based on WRF simulations that refer to
the eastern part of Thessaly Plain in central Greece, following a methodology proposed
by UN FAO. Results for the two periods were comparatively assessed, and it was found
that temperature is expected to increase by 1.1 ◦C in the future, while precipitation and
effective precipitation are expected to decrease by 32% and 45%, respectively, in the future.
These projections will trigger an increase of more than 16%, 7%, and more than 11% in
the irrigation water needs of wheat, cotton, and alfalfa, respectively. Good practices in
the frame of precision agriculture principles are necessary in order to support agricultural
production and preserve natural resources.
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