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Abstract: In this study, hydrological modeling at the watershed level is used to assess the impacts
of climate and land use changes on the catchment area of the Khanpur Dam, which is an important
water source for Rawalpindi and Islamabad. The hydrological impact of past and anticipated
precipitation in the Khanpur Dam watershed was forecast by using a HEC-HMS model. After
calibration, the framework was employed to analyze the effects of changes in land cover and climate
on the hydrological regime. The model used information from three climatic gauge stations (Murree,
Islamabad Zero Point, and Khanpur Dam) to split the Khanpur Dam catchment area into five sub-
basins that encompass the entire watershed region, each with distinctive characteristics. The model
was evaluated and checked for 2016–2018 and 2019–2020, and it produced an excellent match with
the actual and anticipated flows. After statistical downscaling with the CMhyd model, the most
effective performing GCM (MPI-ESM1-2-HR) among the four GCMs was chosen and used to forecast
projections of temperature and precipitation within two shared socioeconomic pathways (SSP2 and
SSP5). The predictions and anticipated changes in land cover were incorporated into the calibrated
HEC-HMS model to evaluate the potential impact of climate change and land cover change at the
Khanpur Dam. The starting point era (1990–2015) and the projected period (2016–2100), which
encompassed the basis in the present century, were analyzed annually. The results indicated a spike
in precipitation for the two SSPs, which was predicted to boost inflows all year. Until the end of the
twenty-first century, SSP2 predicted a 21 percent rise in precipitation in the Khanpur Dam catchment
area, while SSP5 predicted a 28% rise in precipitation. Increased flows were found to be projected in
the future. It was found that the calibrated model could also be used effectively for upcoming studies
on hydrological effects on inflows of the Khanpur Dam basin.

Keywords: land cover alteration; Khanpur Dam; climate change; GCMs; statistical downscaling; CA
Markov; HEC-HMS
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1. Introduction

It is essential to ensure that everyone survives as well as social and economic growth
under the scarcity of water reserves. Rising population and development initiatives have
put stress on the world’s water supplies [1]. Globally, water extraction has grown six times
during the last century, which has been twice the rate of population growth. Five hundred
million people may soon be affected by a physical water crisis that affects a quarter of all
the people on Earth [2]. Estimates indicate that more than 65 percent of the waterways
and pond habitats are under severe threat [3]. Globally, Pakistan ranks 36th among the
countries with the least water shortage. The current steady water source in Pakistan is
191 MAF, yet by 2025, demand is expected to increase to 274 MAF [4]. Surface water runoff
delivers the bulk of water required for use in homes and farms.

Still, there are significant changes in global surface water runoff [5]. Surface water
runoff fluctuations are believed to be mostly impacted by human activities and changing
environments [4–8]. The deteriorating state of Pakistan’s water table indicates the dire
future of the country’s agricultural and residential sectors as well as its manufacturing
sector. As a worldwide threat, drought may lead to a number of negative outcomes,
such as worsening soil state, forest fires, lower crop productions, as well as poor water
and air quality. Due to global warming, the length, size, and dispersion of droughts
have each risen over the past few decades, which has worsened their negative impacts.
Anthropogenic activities, often known as human-caused environmental disturbances,
include consumption of freshwater for agriculture and manufacturing, as well as the
development, deforestation, and modifications regarding land cover [9–13]. Understanding
how and if changes in the environment and human activities combine to modify streamflow
is challenging, particularly in local regions. Therefore, for more efficient water utilization,
it is crucial to comprehend local and regional effects of these changes. Researchers have
developed a number of methodologies for understanding responses of runoff to changes in
environment and land usage. The approaches include hydrological simulations, statistical
methods, and matched basin methods. All of the methods include pros and cons. For
example, in hydrological modeling, dispersed, semi-distributed, and lumped models
are frequently utilized; however, due to the necessity for numerous entries during the
calibration and validation procedures, such models cannot be utilized for circumstances
when there is limited information. It is difficult to evaluate the consequences of changes
in land cover explicitly, while statistics only offer a variety of geographical explanations.
In contrast, by employing matched basin approaches, it is difficult to separate two basins
that exhibit similar features [14]. Additionally, there are only a few options for quarterly
water equilibrium that are simple to calibrate and validate. These models also have a
logical foundation and need less information [15]. The ABCD hydrological approach has
been recognized to be an effective model for identifying monthly temporal streamflow
values. The ABCD hydrological method outperforms other hydrological models due to its
simpler structure [16]. An ABCD model requires less effort to obtain values [17]. It is often
employed in studies to look at the local equilibrium of water because of its simple structure.
This arrangement is easier to operate and it offers an easy-to-understand design [18].
Reservoir workers, nevertheless, use reservoir operating regulations as a general framework
for guidelines when determining the volume and timing of water discharge. Simply, to
correctly determine the retention capacity for a certain time of year, the person in charge
has to discharge water when required. These guidelines, which may assume the shape of
a curve or group of spirals, are often based upon careful examination of more important
hydrological criteria and circumstances in descending order. The effectiveness of operating
regulations can be significantly impacted by a large modification in the amount or manner
of ingestion. The implications of changes in climate can be, at least, substantially mitigated
by adaptation, i.e., by continuously adopting steps to lessen the vulnerability to climate
change. These are some of the limitations to its effectiveness in environmental degradation,
which is occurring more quickly and over bigger scales.
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Reducing the likelihood of catastrophes requires developing workable adaptation
techniques and addressing the severity of climate change. Every industry has adaptation
options, but their abilities to lower risks related to environmental change differ among
industries and regions. Scholars have conducted many investigations on the management
of water resources to more fully comprehend and to effectively regulate the potential
impacts of environmental change and land use change on the hydrological regimes of
various watersheds [8,19–26]. However, these analyses have not revealed how changes
in inflows may impact the operational approaches used to manage various reservoirs.
Variations in streamflow can have a direct influence on water availability, affecting a variety
of industries and sectors, including agriculture, industry, and household water supply.

For simulations of rainfall and discharge, semi-distributed hydrodynamic theoretical
framework HEC-HMS models are widely employed [27–29]. A HEC-HMS model employs
conventional methods to model runoff in both immediate and future circumstances [30,31].
According to other research, HEC-HMS models can simulate streamflow utilizing readily
accessible facts and various catchment types [32–35]. To investigate whether changes
in the environment and land use can affect the runoff trend, a number of researchers
have also used HEC-HMS models for predicting runoff and precipitation. The results
obtained utilizing HEC-HMS models worldwide have been appropriate for attribution
purposes [36,37]. Therefore, an attribution analysis was performed in the current study
utilizing a HEC-HMS model. Researchers and administrators of water resources utilize
various techniques and frameworks for the provenance of assessments. Nevertheless, there
is bound to be certain unknowns and disparities because each approach and perspective
yields results that vary [38,39].

In the current study, the consequences of anthropogenic activities and warming tem-
peratures are considered separately, since watersheds are especially susceptible to the
impacts of environmental transitions and human activities in moist surroundings [40].
Therefore, the Khanpur Dam catchment area, an oppressive Margalla Foothills basin, is
the focus of the current study. This basin’s water supply is primarily utilized to provide
drinking water to adjacent municipalities, including Islamabad’s metropolis. The land
usage in this basin has seen significant change during the previous years. The primary
goals of this investigation are as follows: (a) To compare various statistical downscaling
strategies and to downscale future temperature and precipitation estimates using GCM
data; (b) to estimate, using a hydrological model, the effects of future climate change and
land cover change on streamflow at the Potohar Plateau basin under CMIP6 models.

2. Study Area

The Khanpur Dam was constructed at 33◦48′06′′ N and 72◦55′50′′ E, on the Haro River;
Khyber Pakhtunkhwa (KPK) and the capital region are its catchment areas. Its perimeter is
232.4 km, and its catchment area is 783.82 km2. The height of the Khanpur Dam is 50.9 m,
its volume of storage is 130.7 Mm3, and its design flood is 5153 m3 per second. It has a
501.81 km2 gross command area, of which 147.58 km2 are culturable command areas. It
delivers irrigation water at a rate of 11.52 m3 per second to the districts of Attock and
Rawalpindi. It supplies water at a rate of 5.37 m3 per second to Rawalpindi and Islamabad.
The Murree, Ayubia, and Margalla Hills are the mountains from whence the Haro River
rises. Four significant tributaries feed the river, including Lora Haro, Stora Haro, Neelan,
and Kunhad. The river is filled as a result of precipitation, with some elements coming from
snowmelt. The Islamabad and Murree rain gauge stations are the nearest meteorological
stations to the catchment area. The Khanpur Dam catchment area is shown in Figure 1. The
Khanpur Dam is a popular location for day trips outside of the twin cities of Islamabad
and Rawalpindi. People visit the area for picnics and to participate in a variety of sports
including swimming, paragliding, boating, etc.
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Figure 1. Statistics of the Khanpur Dam catchment area’s region and altitude.

3. Materials and Methods
3.1. Datasets
3.1.1. Hydro-Meteorological Data

Three climate locations provided the information on rainfall. The Pakistan Meteo-
rological Department (PMD) provided daily data for the sites of Islamabad (zero point),
Murree, and the Khanpur Dam between 1990 and 2015. As a baseline, all three sites utilized
historical data from 1990 to 2015.

3.1.2. Satellite Data

A DEM of the Khanpur Dam and its catchment area, at resolution 30 m, was provided
by the USGS Earth Explorer together with Landsat images for identifying the Khanpur
Dam basin and deriving physiological traits such as height, gradient, and catchment area.

The present research used imagery from Landsat 8 (OLI) and Landsat 4–5 (TM),
employing bands 8 and 7, respectively, to differentiate among changes of land cover
inside the Khanpur Dam catchment area for three separate eras, i.e., 2000, 2013, and 2023.
Temporal geographic spread and greenery variety were given attention while determining
the image’s durations. All images were downloaded from the USGS Earth Explorer website
as TIFF files.
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3.1.3. Climate Anticipated Data

Among the four GCMs, the MPI-ESM1-2-HR global circulation model, with the most
effective performance, was selected for this research to predict climate during two shared
socioeconomic pathways (SSPs), i.e., SSP2 and SSP5. Information about this GCM can
be found in the sixth assessment report of the IPCC. To forecast localized weather cir-
cumstances, massive GCM data were reduced to resemble a grid. Statistical downscaling
was performed by establishing quantitative correlations between the small-scale GCM
climate variables and the regional climate variables. Downscaling statistics is significantly
easier than comprehensive dynamic downscaling. However, for statistical downscaling,
past climate data and measured data are crucial. For this work, a distribution mapping
(multiplicative for precipitation and addition for temperature) approach was employed in
order to scale down temperature and precipitation.

Based on the effectiveness of several bias correction strategies, the bias correction
strategies selected and applied for the current work were distribution mapping (DM) for
temperature and power transformation for precipitation. The task of transforming analyzed
values to GCM monthly average numbers requires replications as its main operating
concept. To balance discrepancy caused by downscaling, the GCM statistics, gamma shift
functions, and Gaussian transference functions of both temperature and precipitation
information, accordingly, must be scaled down.

3.2. Methodology

The present investigation used a methodical approach to identify how Pakistan’s
Khanpur Dam’s hydrological regime has been affected by changes in climatic conditions
and land cover. The approach involved gathering information, downloading the GCM
imitated weather information, downscaling the results for the Khanpur Dam catchment
area, performing hydrological simulations, and amalgamating different variables with the
goal to obtain an in-depth comprehension of the intricate relationships and consequences
for managing water resources. Figure 2 shows the methodology flowchart used in this
investigation.
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3.2.1. Statistical Downscaling

Global climate models (GCMs), also known as general circulation models, are powerful
tools that are used in climate science to simulate and to predict the Earth’s climate system.
GCMs incorporate complex mathematical representations of the physical and chemical
processes governing the atmosphere, oceans, land surfaces, and sea ice. These models
provide a global-scale perspective on climate patterns, helping us to understand large-scale
climate dynamics, such as the impacts of greenhouse gas emissions on global temperature
trends. However, GCMs operate at relatively coarse spatial resolutions, which can limit
their ability to capture regional and local climate variations. To bridge this gap and to
provide more localized climate information, researchers often turn to statistical downscaling
techniques, which help translate GCM outputs into finer-scale projections tailored to specific
regions or locations. Statistical downscaling methods play a crucial role in assessing the
potential impacts of climate change at a local scale, and therefore they are an essential
component of climate research and adaptation planning.

At the scale of a river basin, the CMhyd framework has been employed to bias correct
GCM-based estimates of weather and rainfall [41,42]; in many parts of the world, it has
been utilized to lessen the bias among gauge-based real climate factors, as it relies on
GCM-forecasted climate data [43]. Employing the CMhyd approach, hydro-climatological
investigations, regardless of the river system area, can effectively and consistently reduce
the results generated by the GCM, according to the results of a study by Anandhi et al. [43].
CMhyd offers a wide range of statistical methods for downsizing temperature and precip-
itation. For this work, the GCM results for temperature in the SSP2 and SSP5 scenarios
were downscaled using the power transformation method, and regarding rainfall, the
distribution mapping approach was followed. In this context, daily time series of pr, tmax,
and tmin throughout the baseline period (1990–2015) and research prospective timeline
(2016–2100) were combined to provide a temporal trend of everyday information for pre-
dicting precipitation (pr), lowest temperature (tmin), and highest temperature (tmax). This
information also included projected GCM calculations.

A statistical downscaling approach, called distribution mapping, can be used to make
connections among data on worldwide climate and observed local factors for calculating
local-scale climate variables. It includes projecting downscaled climate projections to
smaller spatial scales by projecting the measured local factor distribution to a massive
climatic parameter distribution of probabilities system. To determine nonlinear correlations
between large-scale and regional-scale climatic factors, power transformation is a statistical
downscaling approach which includes altering information employing power functions.
Power transformation makes it possible to better understand the relationships among
variables and to capture nonlinearities, allowing for a more precise reduction in weather
estimation scale.

3.2.2. Categorization of Images

A poorly supervised image classification technique was used to build images of both
present and past LULC. The iso-cluster unsupervised image categorization technique
was used to download seven classes, i.e., water bodies, vegetation, dense vegetation,
flooded vegetation, shrub and scrub, built-up areas, and bare land, which is a well-known
unsupervised image categorization approach for dividing and classifying picture data
according to spectral characteristics. ArcGIS was employed to evaluate multiple decades
of satellite footage, which works by repeatedly creating clusters from pixels with similar
spectral properties. To distinguish separate areas or objects inside an image, IsoCluster
uses statistical features of picture information, like spectral data or the intensities of pixels’
fingerprints. The program selects the initial cluster centers at random, and then places the
pixels in the closest cluster according to their spectral similarity. Finally, cluster centers are
changed according to the mean of pixels sent to every group. In order to ensure that pixels
are correctly grouped into clusters, this process is repeated until convergence is reached.
IsoCluster is especially effective when there is a distinct contrast in spectral properties
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of various areas or items in a picture, making it a helpful tool for tasks like land cover
categorization, recognition of objects, and separation of pictures.

3.2.3. Hydrological Modeling

In this study, the Khanpur Dam catchment area was divided into five sub-basins based
on several crucial considerations. Firstly, the subdivision helped to strike a balance between
achieving hydrological homogeneity within each sub-basin and managing the complexity
inherent in hydrological modeling. By doing so, it ensured that the modeling approach
was both representative of the catchment’s diverse characteristics and tractable in terms
of computational demands. Secondly, it aligned with the availability of hydrological and
meteorological data, a pivotal factor in this study. Each sub-basin could be adequately
represented with sufficient data, enabling precise parameterization and calibration of the
Hec-HMS model. Furthermore, this reflected practical considerations, including resource
constraints and computational efficiency, which were vital for conducting a comprehensive
study. The delineated watershed was preprocessed with ArcGIS, a spatial analytical
application, in order to extract topographical data. The appropriate coordinate system, or
WGS 43 N, was assigned to the watershed. The catchment’s dimensions, stream alignments,
and basin characteristics including river slope and length were calculated. On the basis
of physical characteristics, flow buildup, flow pattern, and areas that were convenient for
evaluation, the Khanpur Dam basin was separated into five sub-basins.

Then, for hydrological modeling, the divided basin was loaded into the HEC-HMS
model, which was created by the U.S. Army Corps of Engineers as a frequently used piece
of software. HEC-HMS is a model for hydrological simulation and evaluation of watershed
networks, which allows scientists and water scientists to model and foresee the occurrence
of complex hydrological phenomena like precipitation, runoff, evapotranspiration, and
streamflow. Owing to its intuitive interface and broad spectrum of features, HEC-HMS
modeling makes it possible to create realistic hydrological simulations by selecting catch-
ment variables, patterns of precipitation, land utilization, and soil qualities. The SCS curve
number approach, unit hydrographs, and Muskingum–Cunge routing are only a few of the
runoff and streamflow routing techniques included in the program. The study of various
hydrological scenarios is made easier by using the HEC-HMS model to assist with flood
predictions, water resource planning, flood-plain management.

Along with the regular inflows into the reservoir, daily rainfall and temperature
statistics for the Khanpur Dam, Murree Station, and the Islamabad (zero point) site were
added as well. The settings of the model were meticulously adjusted, and the result was
flawless predictions that were compared with values that had been actually obtained. First,
the system was calibrated for every year from 2016 through 2018. The verification phase of
results was conducted using identical criteria. The results validation step utilized the same
parameters. Validation occurred in the years 2019 and 2020.

3.2.4. Model Efficacy Assessment

The efficiency of the HEC-HMS framework was evaluated by employing appraisal
indicators for the percent bias (PBIAS), coefficient of determination (R2), root mean square
error (RMSE), and Nash–Sutcliffe efficiency (NSE) [28]. R2 values which range from −1
to 1 suggest better simulation performances at higher levels. NSE values can vary from 0
to 1, with values over 0.50 considered to be suitable. More simulated errors are indicated
by greater numbers [29,44]. The PBAIS should have readings between −15% and +15,
according to experts [30]. The mathematical formulas involving R2, NSE, and RMSE were
as follows:

R2 =

[
∑
(
Qm −Qm

)(
Qs −Qs

)]2
∑
(
Qm −Qm

)2
∑
(
Qs −Qs

)2 (1)

NSE = 1− ∑
(
Qm −Qs

)2

∑
(
Qm −Qm

)2 (2)
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RMSE =

√
∑n

i=1(Qm −Qs)
2

n
(3)

where Qs, Qm, Qm, and Qs stand for forecasted discharge, calculated discharge, average
calculated discharge, and average forecasted discharge, respectively.

3.3. Land Cover Scenarios and Verification of Land Cover Forecasting

Prospective and historical trends of land cover were also investigated in the present
research. For the periods between 1995, 2010, 2015, 2018, and 2021, land cover images were
produced using Landsat images. After that, areas were marked to determine how every
group had changed throughout that particular period. The creation of projected land cover
images enabled trend evaluation and hydrological model input, which considered both
future climatic circumstances and future land cover conditions. Future land cover maps
were simulated using TerrSet’s integrated Land Change Modeler (LCM). The land cover
conditions for 2040, 2070, and 2100 were predicted in the current study using integrated
Markov and CA (CA Markov). The model was executed in two stages using Markov and
CA Markov.

3.3.1. Markov Chain Analysis (MCA)

A method of predicting shift forecasting is MCA, which is a general, multimodal
stochastic mathematical technique. Prospective pattern forecasts are generated by using
past information. If a region is broken down into an assortment of cells, all of which reflect
a certain use of land at certain times, MCA estimates the probability that every cell will
shift from a single LULC class to a different one in a particular period time frame based
on information collected over time frames. The term “transition probability” refers to the
likelihood that a condition will change. The shift matrix created by MCA includes the
expected pixel alterations and the likelihood that a particular land cover category will
switch to the next category [44,45]. As shown below, a Markov shift matrix P can be written
as: ∥∥Pij

∥∥ =

∥∥∥∥∥∥
P1,1 P1,2 P1,N
P2,1 P2,2 P2,N
PN,1 PN,2 PN,N

∥∥∥∥∥∥(0 ≤ Pij ≤ 1
)

(4)

where Pij is the first and second time period types of land cover and P is the likelihood that
type 1 land cover will change to type 2 land cover. A set of conditional probability pictures,
often referred to as transitional potential maps, emerge after a certain number of time units.
These graphics show the chance of each form of land cover appearing at each pixel. The
reasons for land cover alterations are not included in a Markov evaluation. A Markov
evaluation also has a serious problem with geography since it is spatially insensitive.
Therefore, cellular automata were utilized to provide a spatial component to the modeling
process.

3.3.2. CA MARKOV

The cellular automata and CA MARKOV-embedded component from the TerrSet
program was employed to predict upcoming LULC scenarios. The land cover forecasting
framework called CA MARKOV combines cellular automata, Markov chain, multi criteria,
and multi-objective land allocation (MOLA) to improve spatial proximity along with data
on the anticipated geographic distribution of changes in the Markov Chain assessment. The
method works in the following way: The changing regions’ data contain the anticipated
amount of land cover change from each current division to each of the other groups,
following a time frame based on a Markov Chain examination of two previous LULC
images. The change simulation is launched using the original land cover image, while
the Markov Chain analysis is conducted using subsequent land cover images. To assess
each pixel’s intrinsic eligibility for each form of land cover, appropriateness maps or
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transition potential maps are employed [44]. A contiguity filter often downweighs the
appropriateness preferring continuous acceptable regions rather than pixels that exceed
already existing sections of a category (as of this repetition).

4. Results
4.1. Downscaling of Projected Climate Data

In order to downscale future climate data, a GCM and an appropriate bias correction
approach have to be chosen.

4.1.1. Selection of the GCM

For forecasting climate, four different models were obtained for the SSP2 and SSP5
situations. The highest performing of the four GCMs was selected. Table 1 displays the
names and other details of the GCM simulations that were obtained and evaluated.

Table 1. Characteristics of the GCM models chosen for the present study.

No. Model Name Institute Nominal Resolution

1 BCCCSM2-MR Beijing Climate Centre, Beijing, China 1000 km

2 MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 100 km

3 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change Coupled Climate Model, Italy 100 km

4 CanESM5 Canadian Centre for Climate Modeling and Analysis, Victoria, Canada 250 km

Depending on the needs of a study, a GCM is selected based on the following four primary criteria: (1) resolution,
(2) accessible data, (3) prior studies, and (4) degree of performance indicator.

The efficiency of the model is evaluated using performance metrics like the coefficient
of determination (R2) and both past GCM measurements and actual grounded data, as well
as the root mean square error (RMSE). Tables 2–4 show how four distinct CMIP6 GCMs
performed at the Khanpur Dam stations.

Table 2. GCM models’ accuracies for modeling precipitation.

Model R2 NSE PBIAS MAE RMSE

BCCCSM2-MR 0.07 −0.79 0.63 68.21 103.16
CMCC-ESM2 0.01 −0.52 −0.29 81.10 89.90

MPI-ESM1-2-HR 0.16 0.05 0.21 58.19 74.16
CanESM5 0.09 −0.41 −0.48 87.70 100.37

Table 3. GCM models’ capabilities to simulate highest temperature.

Model R2 NSE PBIAS MAE RMSE

BCCCSM2-MR 0.19 −1.52 0.32 10.05 10.08
CMCC-ESM2 0.10 −1.72 0.29 9.85 20.43

MPI-ESM1-2-HR 0.28 −0.39 0.04 5.21 7.06
CanESM5 0.12 −1.62 0.26 8.69 14.52

Table 4. GCM models’ capabilities to simulate lowest temperature.

Model R2 NSE PBIAS MAE RMSE

BCCCSM2-MR 0.12 −0.89 0.42 15.16 17.80
CMCC-ESM2 0.09 −1.47 0.63 19.07 19.06

MPI-ESM1-2-HR 0.26 −0.38 0.17 5.19 8.24
CanESM5 0.11 −0.84 0.29 11.33 16.87

The “MPI-ESM1” model was chosen as the climate model for evaluating future climatic
trends of the research region because it had comparably better R2, NSE, and RMSE values
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than the other models for rainfall, highest temperature, and minimum temperature, as listed
in Tables 2–4 above. This study evaluated climate forecasts for the time period 2016–2100,
including precipitation as well as minimum and maximum temperatures, for the MPI–
ESM1 model for both shared socioeconomic pathways (i.e., SSP2 and SSP5). Applying the
hydrological simulation software CMhyd-2016 with inputs from the climate model, the
datasets were bias corrected.

4.1.2. Selection of Bias Correction Approaches

GCMs produce positive outcomes when modeling the more extensive observations
of data, but when studied at the basin level, they still show significant bias [24]. The aim
of a bias adjustment strategy is to employ a certain corrective component for modifying a
predicted time series variable’s mean, variance, and/or quintile so that adjusted modeled
time series match factors that are observed. To try to determine the optimal downscaling
methodology for the acquired GCM information, five varying rainfall adjustment strategies
(Table 5) and four distinct temperature adjustment procedures (Table 5) were explored. The
Khanpur Dam catchment station’s temperature and precipitation were corrected using all
available approaches (Tables 6 and 7), and then the effectiveness of the corrections were
assessed, as demonstrated in Table 8 via time series analytics.

Table 5. Approaches for bias corrections for temperature and precipitation.

Bias Correction for Precipitation Bias Correction for Temperature

• Linear scaling (LS)
• Local intensity scaling (LOCI)
• Power transformation (PT)
• Distribution mapping (DM)
• Delta change (DC)

• Linear scaling (LS)
• Variance scaling (VS)
• Distribution mapping (DM)
• Delta change (DC)

Table 6. Comparison of precipitation downscaling methods.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1

Raw (model simulated
historical) 0.17 0.04 0.22 60.89 86.28

Delta change 0.68 0.60 0.10 31.72 46.83
Distribution mapping 0.71 0.73 0.09 28.80 40.02

Linear scaling 0.65 0.57 0.12 42.61 60.19
Power transformation 0.79 0.78 0.04 19.42 29.44
Local intensity scaling 0.66 0.58 0.11 36.27 53.47

Table 7. Comparison of highest and lowest temperature downscaling methods.

Model Method R2 NSE PBIAS MAE RMSE

M
PI

-E
SM

1

Maximum Temperature

Raw (model simulated
historical) 0.26 −0.58 0.06 7.62 9.00

Delta change 0.68 0.36 0.20 3.69 5.72
Distribution mapping 0.86 0.72 0.02 2.56 3.76

Linear scaling 0.78 0.56 0.10 2.96 4.73
Variance scaling 0.75 0.48 0.16 3.32 5.15

Minimum Temperature

Raw (model simulated
historical) 0.23 −0.55 0.26 7.28 9.40

Delta change 0.64 0.29 0.18 3.58 6.40
Distribution mapping 0.88 0.76 0.05 2.11 3.70

Linear scaling 0.77 0.53 0.14 3.15 5.20
Variance scaling 0.80 0.64 0.10 2.85 4.56
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Table 8. Outline of shift in hydrology under climate change.

Climate Scenarios Precipitation Maximum
Temperature

Minimum
Temperature

Flows (Current Land
Use Land Cover
Future Climate)

Flows (Future Land
Cover and Present
Climate Change)

% change % change % change % change % change
SSP2 21 4.9 13.1 16.9 19.8
SSP5 28 9.1 24.1 21.2 25.1

The estimated output metrics showed that each bias adjustment enhanced the initial
GCM simulations. Overall, the monthly mean values of both temperature and precipitation
can be corrected using any of the bias correction techniques. Based on their variability range
and capacity to improve the fit of raw GCM median to data, for temperature, “distribution
mapping” and, for precipitation, the “power transformation” delivered the best results.

4.2. Expected Changes in Precipitation and Temperature

Following selection of the GCM and downscaling approaches for temperature (max
and min) and rainfall, the predicted data were scaled down for the twenty-first century.
Two databases were produced for expected temperature and precipitation, i.e., a historical
dataset from 1990 to 2015 and a projected database from 2016 to 2100.

4.2.1. Forecast for Mean Maximum Temperature

Up to the end of the twenty-first century, it is anticipated that the maximum tempera-
ture in the Khanpur Dam catchment area will climb from 22.6 ◦C within the initial period
(1990–2015), with increases of 4.9% and 9.1% under SSP2 and SSP5, respectively. For a
periodic analysis of this temperature shift, the months of the year are divided into four
different seasons as follows: winter months are November, December, and January; spring
months are February, March, and April; the autumn months are August, September, and
October; the summer months are May, June, and July (Table 8).

As shown in Figure 3, the analysis of seasonal variation reveals that each of the four
seasons had increased peak temperatures. Figure 3 shows that the peak winter temperatures
increase from 14.06 ◦C to 14.86 ◦C and to 15.63 ◦C under SSP2 and SSP5, respectively.
Under SSP2 and SSP5, the peak summer temperatures increase from 24.7 ◦C to 25.59 ◦C
and to 26.36 ◦C; however, the peak autumn temperatures increase from 21.91 ◦C to 22.83 ◦C
and to 23.6 ◦C, respectively. The maximum temperatures in springtime increased under
SSP2 and SSP5, respectively, from 16.71 ◦C to 17.4 ◦C and to 18.17 ◦C. Climate change
has played a significant role in increasing the maximum temperature within the Khanpur
Dam catchment area. One of the primary mechanisms behind this phenomenon is overall
warming of the Earth’s climate due to an increased concentration of greenhouse gases, such
as carbon dioxide, in the atmosphere. These gases trap heat from the sun, leading to a
general rise in global temperatures. In the specific context of the Khanpur Dam catchment
area, this global warming effect translates into hotter summers and prolonged heatwaves.
Additionally, changes in regional climate patterns, such as altered precipitation and increased
aridity, can exacerbate the warming trend. As a result, the higher temperatures not only
directly influence the local climate but also contribute to increased evaporation rates from
the dam’s reservoir, potentially affecting water availability and overall ecosystem health.
Understanding these temperature changes and their drivers is essential for effective climate
adaptation and water resource management in the region [45,46].
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Figure 3. Comparison of the Khanpur catchment area’s seasonal maximum temperature during
climate change.

4.2.2. Forecasting of Mean Minimum Temperature

Up to end of the twenty-first century, it is expected that tmin in the catchment area of
the Khanpur Dam would increase from 8.6 ◦C during the initial timeline (1990–2015) to
9.7 ◦C for SSP2 and 10.6 ◦C for SSP5. The months of the year, divided into four seasons
(winter being November, December, and January), were utilized to study this evolution
from a seasonal viewpoint. While August, September, and October are regarded as autumn
months, May, June, and July are known as summer months.

The study of seasonal variation (Figure 4) shows that the minimum temperature
increases over the four different schedules. Figure 4 shows that the minimum winter tem-
perature increases from 3.6 ◦C to 4.4 ◦C and to 5.2 ◦C for SSP2 and SSP5, respectively. For
SSP2 and SSP5, the maximum summer temperatures increase from 15.7 ◦C to 16.5 ◦C and
to 17.2 ◦C, respectively, while the maximum autumn temperatures increase from 10.7 ◦C
to 11.5 ◦C and to 12.2 ◦C, respectively. The peak springtime temperatures increase under
SSP2 and SSP5, from 7.1 ◦C to 7.9 ◦C and to 8.6 ◦C, respectively. Climate change has led to
an increase in the minimum temperature throughout the year within the Khanpur Dam
catchment area. This phenomenon is primarily attributed to the global warming trend
resulting from the accumulation of greenhouse gases in the atmosphere. Elevated levels
of greenhouse gases trap heat, preventing it from escaping into space, and consequently,
the planet experiences higher temperatures. In the context of the Khanpur Dam catchment
area, this translates into milder and warmer winters and nights. The warmer minimum
temperatures are not limited to a particular season but persist year round. Climate change
can disrupt traditional temperature patterns, affecting ecosystems and agriculture. Ad-
ditionally, altered temperature regimes can influence precipitation patterns, exacerbating
water stress and further impacting the local environment and water resources in the region.
Understanding and addressing these shifts in minimum temperatures is crucial for climate
adaptation and sustainable resource management in the Khanpur Dam catchment area and
similar areas affected by climate change.
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Figure 4. Comparison of seasonal tmin in the Khanpur catchment area under climate change.

4.2.3. Precipitation Forecasting

Precipitation in the Khanpur Dam basin region is anticipated to rise by 21% and
28% by the end of the twenty-first century, between 1532.7 mm in the original timeframe
(1990–2015) to 1854.5 mm and to 1961.8 mm, under SSP2 and SSP5, respectively. The
months of the year, divided into four seasons (spring is February, March, and April, while
winter is November, December, and January), were utilized to study its evolution from
a seasonal viewpoint. While August, September, and October are regarded as autumn
months, May, June, and July are considered to be summer months.

For summer, winter, and fall, we saw a spike in rainfall, while in spring, there was a
decrease, according to the study of seasonal change shown in Figure 5. Winter precipitation
increased under SSP2 and SSP5 from 45.3 mm to 47 mm and to 54 mm, respectively.
Summer and fall rainfall increased more noticeably than winter precipitation, but otherwise
followed a similar pattern. For instance, rainfall increased from 157.3 mm to 228.5 mm in the
summer and from 222.9 mm to 252.5 mm in the autumn under SSP2, whereas under SSP5, it
increased from 170.8 mm to 236.7 mm in the summer and from 252.5 mm to 252.5 mm in the
autumn. In contrast, it is anticipated that, for SSP2 and SSP5, the amount of rainfall in the
Khanpur Dam basin region, in spring, will drop from 106.4 mm to 93.5 mm and to 88 mm,
respectively. Climate change has had a multifaceted impact on the precipitation patterns
within the Khanpur Dam catchment area throughout the seasons. The observed increases
in precipitation during winter, summer, and autumn can be attributed to several factors.
Warmer temperatures associated with climate change can lead to greater evaporation rates,
which, in turn, can increase moisture in the atmosphere. This increased moisture content
can contribute to heavier rainfall during these seasons. Additionally, altered atmospheric
circulation patterns due to climate change can result in changes in the paths and intensity
of storms, further enhancing precipitation.

Conversely, the decrease in precipitation in spring is likely influenced by the same fac-
tors but in a different manner. Warming temperatures in spring can lead to earlier snowmelt
in mountainous regions surrounding the catchment area. This premature snowmelt can
reduce the availability of moisture during the spring months when it is traditionally ex-
pected, leading to drier conditions. The shift in precipitation patterns, with increased
rainfall in other seasons and decreased spring precipitation, poses challenges for water
resource management, agriculture, and ecosystems within the Khanpur Dam catchment
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area. Adaptation strategies and long-term planning are crucial to address these changing
precipitation dynamics and their implications for the region.
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Figure 5. Seasonal precipitation in the Khanpur catchment area under climate change comparison.

4.3. Land Cover Change Trends

The mosaicked Landsat 2000, 2013, and 2023 images were categorized unsupervised
using ArcGIS’s image classification tool. Figure 6 displays the categorized images of the
study site. Seven categories were created from the images as follows: vegetation, flooded
vegetation, barren ground, water bodies, shrubs and scrub, and built-up areas.
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Using the embedded Land Change Modeler in TerrSet, land cover maps for the years
2030, 2070, and 2100 were created. In 1987, Prof. J. Ronald of Clark University created
TerrSet, a Geospatial Monitoring and Modeling System comprised of tools for studying
image time series. Future land cover is simulated using the cellular automata-Markov
chain model (CA-MCM).

Figure 6 shows the projected land cover maps for the research region. The results
indicate that, in the watershed of the Khanpur Dam, the areas of water bodies, vegetation,
bare land, dense vegetation, flooded vegetation, and scrub decreased by 3.6%, 6.8%, 5.5%,
4.6%, and 3.9%, respectively, between 2000 and 2100. Even though the built-up area
increased by 28.9%, this is still a considerable growth. Figure 7 depicts this shift in land
cover classifications. The increase in the built-up area within the Khanpur Dam catchment
area can be attributed to various socioeconomic factors, including population growth,
urbanization, and infrastructure development. As the local population continues to expand,
there is a rising demand for residential, commercial, and industrial areas, resulting in
the conversion of natural landscapes into built-up environments. This urban expansion
often leads to the transformation of water bodies, vegetation, bare land, dense vegetation,
flooded vegetation, and scrub into paved surfaces and structures. Additionally, factors like
increased agricultural activities and deforestation can further contribute to land use changes.
Simultaneous decreases in the natural and semi-natural land cover types underscore the
complex interplay between human activities and environmental dynamics, emphasizing the
need for sustainable land use planning and conservation efforts to mitigate the ecological
and hydrological impacts of these transformations.
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Figure 7. Calculations of land cover areas and their trends over time.

4.4. Calibration and Validation of the Hydrological Model

The HEC-HMS model has been deployed by many academics and industry profes-
sionals for hydrological modeling. For the years 2016–2100, hydrological modeling of the
Khanpur Dam basin area was conducted to analyze the effect of CC and LULC on the
catchment area’s water availability. Through this procedure, the model was calibrated
and validated. In the context of utilizing a Hydrologic Engineering Center’s Hydrologic
Modeling System (HEC-HMS) model for hydrological modeling, it becomes evident that a
thorough grasp of essential components is indispensable for a precise depiction of the intri-
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cate hydrological cycle. These pivotal elements encompass loss mechanisms that address
water diminishment due to factors such as evaporation and transpiration; transformation
processes, covering shifts in water states like snowmelt and ice melt; base flow, signify-
ing the consistent groundwater-fed contributions to river and streamflow; and channel
processes that dictate the hydraulic and geomorphic characteristics of watercourses. The
incorporation and accurate portrayal of these elements within the HEC-HMS model is
crucial, as it fosters a more robust and meticulous simulation of hydrological processes,
facilitating comprehensive evaluations of water movement within the specified study area.

In the conducted hydrological modeling, a combination of methods was employed
to effectively represent key components of the hydrological cycle. To account for loss
processes, both the deficit and constant methods were utilized. The deficit method en-
abled the assessment of water diminishment caused by phenomena such as evaporation
and transpiration, offering a comprehensive understanding of the overall water balance.
Simultaneously, the constant method provided valuable insights into steady-state losses,
shedding light on the persistent nature of these reductions over time.

In addressing transformation processes, the Clark unit hydrograph method was ap-
plied. Rooted in fundamental rainfall-runoff transformation principles, this method al-
lowed for accurate representation of changes in water states, particularly those resulting
from snowmelt and ice melt. Its ability to capture the temporal dynamics of runoff con-
tributed significantly to the precision of the hydrological model. Additionally, to model the
base flow component, the recession method was utilized. This approach provided nuanced
insights into the gradual, groundwater-derived contributions to river and streamflow,
ensuring a comprehensive representation of base flow dynamics within the hydrological
cycle.

4.4.1. Deficit and Constant Method

The “deficit and constant” method, employed as a quasi-continuous model to calculate
precipitation loss, operates with the characteristic feature of initial loss recovery following
extended dry periods devoid of rainfall. This method utilizes a single layer to account for
ongoing changes in moisture content. In accordance with the HEC-HMS user’s manual [47],
the “deficit and constant” method is typically recommended for use in conjunction with
the “canopy” method. The “canopy” method leverages potential evapotranspiration,
as determined by meteorological models, to extract water from the soil and represents
the influence of vegetation in the landscape. The soil layer tends to desiccate between
storm events as the canopy withdraws moisture, though it is worth noting that soil water
extraction is only realized when employing a 25-canopy method. Additionally, the “surface”
method, in which water accumulates within depression surface storage, can be employed
as an alternative approach. In the “deficit and constant” method, percolation transpires
when the soil layer attains saturation. The key parameters that are integral to this approach
include initial deficit (measured in mm/day), maximum deficit (measured in mm/day),
constant rate (measured in mm/day), and imperviousness percentage (%). The initial
deficit represents the quantity of water necessary to fill the soil layer up to its maximum
storage capacity, while the maximum deficit, quantified as depth, delineates the soil layer’s
water-holding capacity. The constant rate defines the percolation rate when the soil layer
reaches saturation. By specifying the impervious area percentage, the contribution of
impervious surfaces to the overall loss calculations is duly excluded.

4.4.2. Clark Unit Hydrograph

The Clark unit hydrograph method was applied, which leverages the concept of
an instantaneous unit hydrograph to route excess precipitation toward the sub-basin
outlet. In this approach, an instantaneous unit hydrograph is derived by immediately
applying a unit depth (e.g., one inch) of excess precipitation over the entire watershed [48].
This method effectively captures two crucial processes involved in the transformation of
excess precipitation into runoff: (1) translation, or movement, of excess precipitation from
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its origin throughout the watershed to the outlet, and (2) attenuation, or reduction, in
discharge magnitude as excess precipitation is temporarily stored within the watershed
(U.S. Army Corps of Engineers) [49]. These processes are explicitly integrated to estimate
the hydrograph at the outlet of the watershed. Initially, runoff is translated to the watershed
outlet with a delay, devoid of attenuation. Subsequently, attenuation is introduced at the
watershed outlet. Within this method, three parameters are employed:

• The time of concentration (Tc), which is equivalent to the duration it takes for excess
precipitation to travel from the hydraulically most remote point of the watershed to
the outlet.

• The watershed storage coefficient (R), corresponding to the attenuation attributed to
storage effects across the watershed [50].

• The time-area histogram, which depicts the portion of the watershed area contributing
to flow at the outlet in relation to time. This method is well-established, thoroughly
documented, and straightforward to set up and utilize. Additionally, it allows for
regionalization of parameters, their correlation with measurable basin characteris-
tics, and variability with excess precipitation rates. These attributes are particularly
valuable for applications in dam safety studies. A prior study had formulated re-
gional regression equations to estimate Clark unit hydrograph parameters across
California, as part of a Memorandum of Agreement with DSOD (U.S. Army Corps of
Engineers) [51].

4.4.3. Recession

The “recession” base flow method was employed for basins characterized by an
exponential decline in channel flow following a storm event. This method is designed
for both event-based and continuous simulations and entails the selection of three key
parameters: the “initial type”, the “recession constant”, and the “threshold type”. The
“initial type” offers two options, which are the initial discharge and the initial discharge per
area. The choice between these two options depends on the availability of observed flow
records. If such records are accessible, the initial discharge method is applied; otherwise,
the initial discharge per area is utilized. In cases where the latter method is employed,
estimations can be based on general guidelines used for assessing basin yield to determine
the initial flow. The rate at which base flow recedes, represented by the recession constant,
determines the ratio of base flow at day t to the base flow at the preceding day (t − 1).
To reset the base flow, either the ratio to peak or threshold flow methods can be adopted,
depending on the preference and requirements of the analysis.

At the location of the Khanpur Dam, the Haro River was utilized for model calibration
and validation. Finding the perfect combination of parameters that closely matches the
observed and simulated discharge is a necessary step in the calibration process. In our
study, we adopted a trial-and-error procedure as a fundamental component of the calibra-
tion process. This method involves systematically adjusting various model parameters,
such as initial loss coefficients, curve number values, and channel routing parameters,
through a series of iterations. The goal is to fine tune these parameters until the model’s
simulated results align closely with the observed data. During each iteration, parameter
values are modified, and the model is rerun to assess the impact of these adjustments on
its performance. This iterative approach allows us to identify the parameter combinations
that best represent the physical processes of the watershed under study. The trial-and-error
procedure acknowledges the complexity of hydrological systems and the inherent uncer-
tainties in modeling them. It ensures that the model’s output is a more accurate reflection of
the real-world hydrological processes, ultimately leading to a higher degree of confidence
in the model’s predictive capabilities. While we recognize that a more detailed explanation
of this procedure is necessary for clarity, the trial-and-error calibration method remains a
fundamental and widely accepted approach in hydrological modeling, particularly in cases
where complex processes and numerous parameters need to be considered for model cali-
bration. All the values presented in Table 9 have been meticulously obtained through this
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iterative “trial-and-error” procedure during the calibration phase of our study. The model
is calibrated from 2016 to 2018, and then validated from 2019 to 2020. The calibration’s
input variables are listed in Table 9.

Table 9. Variable values for calibration and validation.

Sub-Basin

Loss Method Transform Method Base Flow Method

Initial
Deficit
(mm)

Max
Deficit
(mm)

Constant
Rate

(mm/h)

Time of
Concentration (h)

Storage Coefficient
(h)

Recession
Constant

1 13 27 2.5 4 8 0.85
2 13 27 2.4 4 9 0.85
3 13 27 1.7 2.8 5 0.85
4 13 27 1.8 2.8 5 0.85
5 13 27 1.6 2.4 3 0.85

Within HEC-HMS modeling for the Khanpur Dam basin, we acknowledge the in-
herent uncertainty in estimating model parameters. In addressing this uncertainty, we
consider the variability in critical parameters, including initial deficit, maximum deficit,
constant rate, time of concentration, storage coefficient, and recession constant, all of which
significantly influence the model’s outcomes. The uncertainty analysis begins with a sys-
tematic examination of the sources of variability within these parameters. For instance,
the initial deficit parameter introduces uncertainty due to its influence on the quantity of
water required to reach the soil layer’s maximum storage capacity during rainfall events.
Similarly, the maximum deficit parameter’s uncertainty stems from variations in the depth
of the soil layer’s water-holding capacity and its implications for hydrological processes.
To mitigate this uncertainty, our study incorporated a sensitivity analysis to assess how
parameter variations affected the model’s performance. The sensitivity analysis allowed us
to identify which parameters had the most substantial impact on the model’s predictive
accuracy. This process involved systematically adjusting these parameters and observing
the resulting changes in the model’s outcomes. Through the sensitivity analysis, we could
recognize the parameters, such as constant rate, which play vital roles in determining the
percolation rate when the soil layer reaches saturation, and their influence on the model’s
ability to accurately simulate hydrological processes.

While our study does not explicitly address the concept of equifinality, the sensitivity
analysis and the fine tuning of these parameters play a crucial role in managing parameter
uncertainty. By systematically assessing the influence of these parameters on the model’s
performance, we enhance the model’s reliability and credibility. This approach enables us
to provide accurate insights into the implications of climate change and land use alterations
on water availability within the Khanpur Dam basin, while considering the associated
uncertainty in parameter estimation. The model successfully replicated the daily and
monthly discharges. When it comes to reproducing the low, medium, and peak flows,
the model is reliable. Figures 8 and 9 show, respectively, how the Haro River calibration
and validation were done. The HEC-HMS model’s calibration and validation revealed an
acceptable level of agreement between the observed and anticipated discharges. Table 10
gives the calibration and validation values for the Nash–Sutcliffe coefficient, RMSE, and
determination R2.
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Table 10. Statistics for the calibration and validation of the hydrological model for the month.

Parameters Calibration Validation

NSE 0.82 0.83
R2 0.81 0.79

RMSE 1.98 2.4
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4.5. Effect of Forecasted Climate on Flows

Once the model was calibrated and confirmed, this configuration was used to predict
future flows on a yearly schedule from 2016 to 2100. Two simulations’ future flows were
analyzed.

Hydrological response to expected climate and present land cover and hydrological
response under current climate and projected land cover are two hypothetical situations.

Scenario A evaluates the hydrological response considering the expected climate and
present land cover.

By the end of the century, inflows according to climate change were forecasted em-
ploying calibrated models. The tmax rose with SSP2 and SSP5, respectively, by 4.9% and
9.1%, the tmin by 13.1% to 24.1%, and the precipitation grew by 21% and 28%. In Table 11,
it is shown that with SSP2 and SSP5, flow rates will rise from 261.8 cusecs in the beginning
duration (1990–2015) to 306 cusecs and 317.3 cusecs, respectively, in the foreseeable time
span (2016–2100). In the present-day scenario with unchanging land cover, the variations
in temperature and rainfall were entered into the verified HEC-HMS simulation.

Table 11. Change in flows by percentage at the Khanpur Dam in Scenario A (i.e., forecasted climate
and present land use).

Climate Scenarios Flows (Current Land Use Land Cover Future Climate) (2016–2100)

cusecs % change
Observed 261.8 -

SSP2 306 16.9
SSP5 317.3 21.2

Figure 10 relates average monthly inflows of the initial era (1990–2015) to inflows
throughout the future time span for SSP2 and SSP5 assumptions to investigate historical
trends in the average month inflows in the Khanpur Dam basin. The SSPs predict a spike
in inflow during the full year.
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Figure 10. Khanpur Dam inflow comparison for Scenario A (i.e., forecasted climate and current land
use).

Scenario B: hydrological response in light of future land cover and future climate.
Then, the calibrated method was utilized for predicting flows considering forecasted

temperature and anticipated LULC transition once flows were anticipated of anticipated
climate and current LULC. Land cover trends show that the Khanpur Dam basin’s built-up
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area increased by 28.9% between 2000 and 2100. Given that, as a whole, the metropolitan
region is 70% impermeable and the remaining 20% is made up of houses, lawns, etc., the
transition of industrialization was additionally broadened and added to the model as
imperviousness with an index of 0.7. The percentages of various land use groups, such
as water bodies, vegetation, bare land, dense vegetation, flooded vegetation, shrubs, and
scrub, decreased by 3.6%, 6.8%, 5.5%, 4.6%, and 3.9%, respectively, in the Khanpur Dam
catchment area. The shift in land utilization and climate factors acquired throughout the
initial era (1990–2015) are subsequently incorporated into the corrected HEC-HMS program
with rising impermeability so as to analyze the impacts of development on inflows of the
Khanpur Dam. The results show the inflows would increase from 261.8 cusecs during
the initial time (1990–2015) to 313.5 cusecs under SSP2 and from 261.8 cusecs during the
benchmark era (1990–2015) to 327.6 cusecs under SSP5 (Table 12).

Table 12. Shift of flows as a percentage in Scenario B at the Khanpur Dam (i.e., anticipated climate
and future land cover).

Flows (Future Land Cover and Future Climate) (2016–2100)

cusecs % change
Observed 261.8 -

SSP2 313.5 19.76
SSP5 327.6 25.13

Figure 11 examines the temporal fluctuations in the Khanpur watershed by comparing
mean monthly flows throughout the initial timeline (1990–2015) in light of anticipated
flows and changing land cover. Flows had a pattern of increasing during the whole
year. The increase in flows at the Khanpur Dam under the combined influence of climate
change scenarios SSP2 (shared socioeconomic pathway 2) and SSP5 (shared socioeconomic
pathway 5) along with land use changes can be attributed to several interconnected factors.
Firstly, climate change, as projected under these scenarios, is expected to bring about
alterations in precipitation patterns, including an increase in extreme rainfall events. This
intensification of rainfall can lead to higher runoff and increased streamflow into the
dam, particularly during the monsoon season. Additionally, rising temperatures linked
to climate change can accelerate snowmelt in the catchment area’s mountainous regions,
further contributing to increased flows, particularly in the early spring. Secondly, land use
changes driven by human activities can play a pivotal role. Urbanization and deforestation,
often associated with SSP2 and SSP5, can lead to changes in the hydrological characteristics
of the catchment area. Paved surfaces and impermeable urban landscapes can enhance
surface runoff and decrease infiltration, channeling more water directly into the dam.
Simultaneously, deforestation reduces the capacity of vegetation to intercept and absorb
rainfall, leading to higher runoff rates. These land use changes can collectively amplify the
impacts of climate change on flow patterns, resulting in increased flows at the Khanpur
Dam.

The combined effects of climate change and land use change on flows at the Khanpur
Dam highlight the need for integrated water resource management strategies that consider
both environmental and socioeconomic factors. It underscores the importance of adapting
to changing hydrological regimes and implementing sustainable land use practices to
mitigate potential risks and ensure the availability of water resources in the face of evolving
climate and land use scenarios.



Sustainability 2023, 15, 15223 22 of 28

Sustainability 2023, 15, x FOR PEER REVIEW  22  of  28 
 

Figure 11 examines the temporal fluctuations in the Khanpur watershed by compar-

ing mean monthly flows throughout the initial timeline (1990–2015) in light of anticipated 

flows and changing land cover. Flows had a pattern of increasing during the whole year. 

The increase in flows at the Khanpur Dam under the combined influence of climate change 

scenarios SSP2 (shared socioeconomic pathway 2) and SSP5 (shared socioeconomic path-

way 5) along with land use changes can be attributed to several interconnected factors. 

Firstly, climate change, as projected under these scenarios, is expected to bring about al-

terations in precipitation patterns, including an increase in extreme rainfall events. This 

intensification of rainfall can lead to higher runoff and increased streamflow into the dam, 

particularly during the monsoon season. Additionally, rising temperatures linked to cli-

mate change can accelerate snowmelt in the catchment area’s mountainous regions, fur-

ther contributing to increased flows, particularly in the early spring. Secondly, land use 

changes driven by human activities can play a pivotal role. Urbanization and deforesta-

tion, often associated with SSP2 and SSP5, can lead to changes in the hydrological charac-

teristics of  the catchment area. Paved surfaces and  impermeable urban  landscapes can 

enhance surface runoff and decrease infiltration, channeling more water directly into the 

dam. Simultaneously, deforestation reduces  the capacity of vegetation  to  intercept and 

absorb rainfall, leading to higher runoff rates. These land use changes can collectively am-

plify the impacts of climate change on flow patterns, resulting in increased flows at the 

Khanpur Dam. 

 

Figure 11. Flow comparison at the Khanpur Dam for Scenario B (i.e., future climate and future land 

cover). 

The combined effects of climate change and land use change on flows at the Khanpur 

Dam highlight the need for  integrated water resource management strategies that con-

sider both environmental and  socioeconomic  factors.  It underscores  the  importance of 

adapting to changing hydrological regimes and implementing sustainable land use prac-

tices to mitigate potential risks and ensure the availability of water resources in the face 

of evolving climate and land use scenarios. 

5. Discussion 

Wintertime precipitation is mostly snow, especially in northern regions. According 

to information on river flow, the highest discharge is observed in July, with an average 

yearly inflow of 261.8 cusecs as estimated at the Khanpur Dam gauge station [28,29]. Many 

of the results from the CMIP6 GCMs are viewed as a useful choice for comprehending 

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

jan feb mar apr may jun jul aug sep oct nov dec

F
lo
w
s 
(c
u
se
cs
)

Months

obs SSP5 SSP2

Figure 11. Flow comparison at the Khanpur Dam for Scenario B (i.e., future climate and future land
cover).

5. Discussion

Wintertime precipitation is mostly snow, especially in northern regions. According
to information on river flow, the highest discharge is observed in July, with an average
yearly inflow of 261.8 cusecs as estimated at the Khanpur Dam gauge station [28,29]. Many
of the results from the CMIP6 GCMs are viewed as a useful choice for comprehending
how climate change impacts river flow patterns [45–49]. The objective of the present
investigation was to analyze how anticipated changes in land cover and climate might
affect inflows in the Marghalla Hills basin of the Khanpur Dam. To evaluate foreseeable
consequences of anticipated LULC and CC, a corrected HEC-HMS hydrological model was
employed [52–54]. The downscaled forecasts of temperature and precipitation from the
selected GCM (MPI-ESM1-2-HR) were in excellent accordance with forecasts obtained from
gauge-based calculations (1990–2015). This could be because the CMIP6 scenarios have
significantly better abilities to predict rainfall and temperature in Karakoram, Himalaya,
and Hindukush areas [33–36].

The outcomes of the product evaluation of the GCM (MPI-ESM1-2-HR) revealed
continued warming on annual and seasonal timescales throughout the basin region of the
Khanpur Dam in the twenty-first century, characteristics that are comparable with those
in nearby South Asian regions of the Tibetan Plateau [55,56] and Himalaya [33–36,38,39].
The much higher temperatures in the HKH Mountains may be due to regional climate-
elevated quantities of greenhouse gases and aerosols [57,58]. On average, it is predicted
that there will be more precipitation in the future (2016–2100). Between 2015 and 2100,
an increase in the waterways of the Yellow River region was also seen [59]. Precipitation
is anticipated to rise across the board in the future, with the summer and fall seeing the
largest increases, according to the GCM. These results conflict compared to those from the
upper Cruz River watershed and Kelantan River region in Malaysia [60,61]. The seemingly
contradictory trend of summer rainfall tending to fall in areas with powerful westward
winds (Afghanistan and Iran) was also uncovered by Ozturk et al. [62]. However, seasonal
rainfall trends in the studied region mimic those of the Karakoram and Himalayan ranges.
According to Babur et al. [46], the Jhelum River watershed of the Himalayan Mountains
has experienced growing regular and yearly rainfall patterns. Garee et al. [63] and Pande
et al. [64] have predicted that inter-annual and seasonal rainfall would show a stronger
tendency for rain to fall over the Karakoram Mountains in the Hunza River valley [65–69].
The observed parallelism may be attributed to the predominance of westerlies circulatory
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pattern in the Hindukush Himalaya [70–73]. The high level of human-made aerosols in
the South Asian environment is a different factor contributing to such analogies in rainfall
patterns [74–76].

An examination of the HEC-HMS model’s expected flows reveals that, annually, the
average flow for the two SSPs (SSP2 and SSP5) is increasing over the course of the forecasted
time periods [77–79]. Increases in future flow may be attributed to projected increases
in yearly rainfall and global change [80–82]. he anticipated rise in future water flow can
be linked to two main factors: the projected increase in annual rainfall and the broader
impacts of global environmental changes [83–85]. As climate patterns evolve, leading to
shifts in precipitation, regions may experience greater amounts of rainfall annually [86–88].
Additionally, the broader context of global environmental changes, such as alterations in
temperature and atmospheric conditions, can influence the hydrological cycle, further con-
tributing to increased water flow in the future [89–91]. These combined factors emphasize
the complex interplay between climate and the environment, highlighting the need for
proactive water resource management and adaptation strategies to address the changing
dynamics of water availability [92–95]. The Indus River and Swat River levels will also
increase, according to projections made by Immerzeel et al. [96–98] and Masood et al. [20],
respectively.

6. Conclusions

The hydrological behavior of the Khanpur Dam basin to past rainfall was simulated
using HEC-HMS modeling. Then, the potential aspect of changing LULC and climate on
dam inflows was determined using trained simulation. The Khanpur Dam catchment area
was divided into five sub-basins by the HEC-HMS hydrological approach, with distinctive
characteristics. To monitor the overall dam basin area, three climatic sites were picked:
Murree, Islamabad (zero point), and the Khanpur Dam. For the timelines 2003–2005 and
2006–2007, the simulation was tested and chosen. Following calibration, the model’s
attributes were modified, and then the calibrated model was employed for affirmation.
Comparing expected and actual storage stages, the model showed satisfactory concordance.
Then, the CMhyd software employed climate change rainfall forecasts for both shared
socioeconomic pathways (SSPs) (SSP2 and SSP5), statistically downscaling data produced
from the GCM (MPI-ESM1-2-HR). Upon downscaling, forecasts were included for the
calibrated model to identify any repercussions from CC on the Khanpur Dam. This study
was carried out for the baseline (1990–2015) and (2016–2100), which covered the present
century. A few takeaways of the study are as follows:

• Since 2016, the annual minimum, maximum, and mean temperatures and precipitation
in the Khanpur Dam basin have been rising gradually compared to those of the
reference period (1990–2015). The increasing precipitation will have an impact on
future streamflow.

• With the current land cover ailments, it is anticipated that the average everyday
streamflow of the Khanpur Dam will increase by 261.8 cusecs (1990–2015) to 306 cusecs
for SSP2 and to 317.3 cusecs for SSP5.

• The flow increased by 313.5 cusecs under SSP2 and 327.6 cusecs under SSP5 future
land cover scenarios (from 1990 to 2015).

• The results reveal that the mean monthly flows have increased generally.

This study deepened our understanding of the effects of CC and land cover change on
the Khanpur Dam catchment area and showed that the impacts are significantly sufficient
for project managers and planners to include them when creating long-term operating
plans.

Future studies could also consider the consequences on the catchment area’s ground-
water and sediment alterations, even though the present research has focused on how CC
and land cover change affect streamflow.
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of Projected Climate and Land Use Change on Runoff under CMIP6 Scenarios. Water 2023, 15, 3421. [CrossRef]

24. Yang, L.; Feng, Q.; Yin, Z.; Deo, R.C.; Wen, X.; Si, J.; Li, C. Separation of the Climatic and Land Cover Impacts on the Flow Regime
Changes in Two Watersheds of Northeastern Tibetan Plateau. Adv. Meteorol. 2017, 2017, 6310401. [CrossRef]

25. Sinha, R.K.; Eldho, T.I.; Subimal, G. Assessing the Impacts of Land Use/Land Cover and Climate Change on Surface Runoff of a
Humid Tropical River Basin in Western Ghats, India. Int. J. River Basin Manag. 2020, 21, 1–12. [CrossRef]

26. Ahmed, N.; Wang, G.; Booij, M.J.; Xiangyang, S.; Hussain, F.; Nabi, G. Separation of the Impact of Landuse/Landcover Change
and Climate Change on Runoff in the Upstream Area of the Yangtze River, China. Water Resour. Manag. 2022, 36, 181–201.
[CrossRef]

27. Nickman, A.; Lyon, S.W.; Jansson, P.E.; Olofsson, B. Simulating the Impact of Roads on Hydrological Responses: Examples from
Swedish Terrain. Hydrol. Res. 2016, 47, 767–781. [CrossRef]

28. Rahman, K.U.; Balkhair, K.S.; Almazroui, M.; Masood, A. Sub-Catchments Flow Losses Computation Using Muskingum–Cunge
Routing Method and HEC-HMS GIS Based Techniques, Case Study of Wadi Al-Lith, Saudi Arabia. Model. Earth Syst. Environ.
2017, 3, 4. [CrossRef]

29. Wang, G.; Zhang, J.; Pagano, T.C.; Xu, Y.; Bao, Z.; Liu, Y.; Jin, J.; Liu, C.; Song, X.; Wan, S. Simulating the Hydrological Responses
to Climate Change of the Xiang River Basin, China. Theor. Appl. Climatol. 2015, 124, 769–779. [CrossRef]

30. Chu, X.; Steinman, A. Event and Continuous Hydrologic Modeling with HEC-HMS. J. Irrig. Drain. Eng. 2009, 135, 119–124.
[CrossRef]

31. Tassew, B.G.; Belete, M.A.; Miegel, K. Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of
Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology 2019, 6, 21. [CrossRef]

32. Gunacti, M.C.; Gul, G.O.; Cetinkaya, C.P.; Gul, A.; Barbaros, F. Evaluating Impact of Land Use and Land Cover Change Under
Climate Change on the Lake Marmara System. Water Resour. Manag. 2022, 37, 2643–2656. [CrossRef]

33. Azizi, S.; Ilderomi, A.R.; Noori, H. Investigating the Effects of Land Use Change on Flood Hydrograph Using HEC-HMS
Hydrologic Model (Case Study: Ekbatan Dam). Nat. Hazards 2021, 109, 145–160. [CrossRef]

34. Azmat, M.; Qamar, M.U.; Huggel, C.; Hussain, E. Future Climate and Cryosphere Impacts on the Hydrology of a Scarcely Gauged
Catchment on the Jhelum River Basin, Northern Pakistan. Sci. Total Environ. 2018, 639, 961–976. [CrossRef] [PubMed]

35. Candela, L.; Tamoh, K.; Olivares, G.; Gomez, M. Modelling Impacts of Climate Change on Water Resources in Ungauged and
Data-Scarce Watersheds. Application to the Siurana Catchment (NE Spain). Sci. Total Environ. 2012, 440, 253–260. [CrossRef]
[PubMed]

36. Verma, A.K.; Jha, M.K.; Mahana, R.K. Evaluation of HEC-HMS and WEPP for Simulating Watershed Runoff Using Remote
Sensing and Geographical Information System. Paddy Water Environ. 2009, 8, 131–144. [CrossRef]

37. Zelelew, D.G.; Melesse, A.M. Applicability of a Spatially Semi-Distributed Hydrological Model for Watershed Scale Runoff
Estimation in Northwest Ethiopia. Water 2018, 10, 923. [CrossRef]

38. Karlsson, I.B.; Sonnenborg, T.O.; Refsgaard, J.C.; Trolle, D.; Børgesen, C.D.; Olesen, J.E.; Jeppesen, E.; Jensen, K.H. Combined
Effects of Climate Models, Hydrological Model Structures and Land Use Scenarios on Hydrological Impacts of Climate Change. J.
Hydrol. 2016, 535, 301–317. [CrossRef]

39. Li, B.; Li, C.; Liu, J.; Zhang, Q.; Duan, L. Decreased Streamflow in the Yellow River Basin, China: Climate Change or Human-
Induced? Water 2017, 9, 116. [CrossRef]

40. Liu, L.; Liu, Z.; Ren, X.; Fischer, T.; Xu, Y. Hydrological Impacts of Climate Change in the Yellow River Basin for the 21st Century
Using Hydrological Model and Statistical Downscaling Model. Quat. Int. 2011, 244, 211–220. [CrossRef]

41. Ahmadalipour, A.; Rana, A.; Moradkhani, H.; Sharma, A. Multi-Criteria Evaluation of CMIP5 GCMs for Climate Change Impact
Analysis. Theor. Appl. Climatol. 2015, 128, 71–87. [CrossRef]

https://doi.org/10.1016/j.geomorph.2017.06.005
https://doi.org/10.1080/02626660009492371
https://doi.org/10.1007/s00704-017-2269-4
https://doi.org/10.1007/s11269-013-0499-5
https://doi.org/10.3390/w15071313
https://doi.org/10.3390/w5020728
https://doi.org/10.5194/hess-15-2275-2011
https://doi.org/10.3390/w15193421
https://doi.org/10.1155/2017/6310401
https://doi.org/10.1080/15715124.2020.1809434
https://doi.org/10.1007/s11269-021-03021-z
https://doi.org/10.2166/nh.2016.030
https://doi.org/10.1007/s40808-017-0268-1
https://doi.org/10.1007/s00704-015-1467-1
https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(119)
https://doi.org/10.3390/hydrology6010021
https://doi.org/10.1007/s11269-022-03317-8
https://doi.org/10.1007/s11069-021-04830-6
https://doi.org/10.1016/j.scitotenv.2018.05.206
https://www.ncbi.nlm.nih.gov/pubmed/29929335
https://doi.org/10.1016/j.scitotenv.2012.06.062
https://www.ncbi.nlm.nih.gov/pubmed/22795259
https://doi.org/10.1007/s10333-009-0192-8
https://doi.org/10.3390/w10070923
https://doi.org/10.1016/j.jhydrol.2016.01.069
https://doi.org/10.3390/w9020116
https://doi.org/10.1016/j.quaint.2010.12.001
https://doi.org/10.1007/s00704-015-1695-4


Sustainability 2023, 15, 15223 26 of 28

42. Rozenberg, J.; Davis, S.J.; Narloch, U.; Hallegatte, S. Climate Constraints on the Carbon Intensity of Economic Growth. Environ.
Res. Lett. 2015, 10, 095006. [CrossRef]

43. Anandhi, A.; Frei, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.; Matonse, A.H. Examination of Change
Factor Methodologies for Climate Change Impact Assessment. Water Resour. Res. 2011, 47, 1–10. [CrossRef]

44. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

45. Kumar, K.S.; Kumari, K.P.; Bhaskar, P.U. Application of Markov Chain & Cellular Automata Based Model for Prediction of
Urban Transitions. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT), Chennai, India, 3–5 March 2016; pp. 4007–4012.

46. Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of Climate Change Impact on Reservoir Inflows
Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water 2016, 8, 389. [CrossRef]

47. US Army Corps of Engineers Hydrologic Modeling System HEC-HMS, Hydrologic Modeling System HEC-HMS; User’s Manual; Version
4.3; Hydrologic Engineering Centre: Davis, CA, USA, 2018; p. 640.

48. Michael Bartles, P.E. Variable Clark Unit Hydrograph Parameter Regression Equations for California. In Proceedings of the
SEDHYD 2023 Conference, St. Louis, MO, USA, 8–12 May 2023.

49. Normand, A.E.; Carter, N.T. US Army Corps of Engineers: Annual Appropriations Process and Issues for Congress. CRS Report.
R46320. 2020. Available online: https://sgp.fas.org/crs/natsec/R46320.pdf (accessed on 10 October 2023).

50. Kull, D.W.; Feldman, A.D. Evolution of Clark’s Unit Graph Method to Spatially Distributed Runoff. J. Hydrol. Eng. 1998, 3, 9–19.
[CrossRef]

51. Sparrow, K.H.; Gutenson, J.L.; Wahl, M.D.; Cotterman, K.A.; US Army Engineer Research and Development Center. Evaluation of
Climatic and Hydroclimatic Resources to Support the US Army Corps of Engineers Regulatory Program; US Army Engineer Research and
Development Center, Coastal and Hydraulics: Vicksburg, MS, USA, 2022.

52. Nasim, W.; Amin, A.; Fahad, S.; Awais, M.; Khan, N.; Mubeen, M.; Wahid, A.; Rehman, M.H.; Ihsan, M.Z.; Ahmad, S.; et al.
Future Risk Assessment by Estimating Historical Heat Wave Trends with Projected Heat Accumulation Using SimCLIM Climate
Model in Pakistan. Atmos. Res. 2018, 205, 118–133. [CrossRef]

53. Anjum, M.N.; Ding, Y.; Shangguan, D.; Ijaz, M.W.; Zhang, S. Evaluation of High-Resolution Satellite-Based Real-Time and
Post-Real-Time Precipitation Estimates during 2010 Extreme Flood Event in Swat River Basin, Hindukush Region. Adv. Meteorol.
2016, 2016, 2604980. [CrossRef]

54. Chen, L.; Frauenfeld, O.W. Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated
by 20 CMIP5 Models. J. Clim. 2014, 27, 3920–3937. [CrossRef]

55. Kent, C.; Chadwick, R.; Rowell, D. Understanding Uncertainties in Future Projections of Seasonal Tropical Precipitation. J. Clim.
2015, 28, 150317081728001. [CrossRef]

56. Yang, T.; Hao, X.; Shao, Q.; Xu, C.-Y.; Zhao, C.; Chen, X.; Wang, W. Multi-Model Ensemble Projections in Temperature and
Precipitation Extremes of the Tibetan Plateau in the 21st Century. Glob. Planet. Change 2012, 80–81, 1–13. [CrossRef]

57. Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance
Evaluation of Latest Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) over the Northern
Highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [CrossRef]

58. Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future Changes over the Himalayas: Maximum and Minimum Temperature.
Glob. Planet. Change 2018, 162, 212–234. [CrossRef]

59. Zhang, Y.; Su, F.; Hao, Z.; Xu, C.; Yu, Z.; Wang, L.; Tong, K. Impact of Projected Climate Change on the Hydrology in the
Headwaters of the Yellow River Basin. Hydrol. Process. 2015, 29, 4379–4397. [CrossRef]

60. Xin, J.; Gong, C.; Wang, S.; Wang, Y. Aerosol Direct Radiative Forcing in Desert and Semi-Desert Regions of Northwestern China.
Atmos. Res. 2016, 171, 56–65. [CrossRef]

61. Gan, R.; Zuo, Q. Assessing the Digital Filter Method for Base Flow Estimation in Glacier Melt Dominated Basins. Hydrol. Process.
2015, 30, 1367–1375. [CrossRef]
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