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Abstract: The integration of geomorphological analysis in archaeological investigations is essential to
describe physical geography and land morphology in order to understand the relationship between
the environment and human activities. Recently, the sediment flow connectivity index (SfCI) has
been demonstrated to be a powerful geomorphic indicator for defining the most sensitive areas to
geomorphological modifications in a catchment. This work presents the experimental application of
the SfCI for a landscape archaeological analysis in order to assess the contribution of the index to
potentially recognize, monitor, and interpret the historical evidence in the evaluation of landscape
evolution. The investigation was performed in the basin of Lama Camaggi in the Apulia region
(southern Italy), characterized by precious archaeological evidence found on the surface during
field surveys in the years 2001–2002 and 2012–2013. The results show (1) the correlation between
high-sediment-connectivity areas and areas with high densities of archaeological sites, and (2) the
capacity of the SfCI to identify surface processes that may potentially affect the readability of the
archaeological records to support data interpretation. These results confirm the advantage of applying
an interdisciplinary approach in archaeology and opens innovative research scenarios.

Keywords: sediment connectivity; heritage vulnerability; geomorphology; landscape archaeology

1. Introduction

An interdisciplinary approach based on the comparative assessment of different infor-
mation sources (geology, geomorphology, geophysics, archaeology, history, topography,
cartography, toponymy, literature, epigraphy, etc.) is essential to reconstruct paleoland-
scapes. Indeed, the availability of various data is useful in all phases of archaeological
studies, from the preliminary analysis of sites to planning field surveys, from the detection
of archaeological evidence to the interpretation of discovery contexts, and from the monitor-
ing to the preservation of cultural heritage [1–6]. In this wide framework of archaeological
investigations, the analysis of the evolution of the landforms (i.e., geomorphology) plays
a very important role to better understand: (a) the relationship between environment
and human activities over time, (b) the unfolding of historical events, (c) the interrela-
tion of surface-occurring phenomena and the surficial distribution of archaeological data,
and (d) the natural and anthropogenic processes that affect heritage assets [7–11]. As
demonstrated in the literature, all these fields of research, in which the contribution of
geomorphology is indispensable, are closely interconnected: the preservation of cultural
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heritage requires the examination of past events and the reconstruction of the interaction
of nature and human actions involved in the archaeological evidence [7,10–16]. Over the
years, researchers have highlighted the importance of jointly investigating natural and
cultural heritage in order to sustain it through its promotion and protection [17–21]. It
is therefore evident that an important tool for achieving the sustainability goals defined
by the United Nations (Sustainability Development Goals—SDG 8 and 11, [22]) is the
analysis of the forms and processes occurring on the Earth’s surface applied to archaeo-
logical investigations. In particular, the morphological dynamics of the surface and its
modification over time have always influenced human choices, and, moreover, conditioned
the possibility of site discovery and the readability of surface archaeological traces [23–26].
Furthermore, erosion, transport, and deposition processes that shape landforms continue to
modify the physical environment to which the archaeological heritage is closely connected,
conditioning its cultural value and preservation. In fact, archaeological heritage, either
standing above soil or still buried, is affected by surface mobility. This should therefore be
quantitatively analyzed to better define the dynamics of discovered remains, together with
their conservation and interpretation [27–29]. Therefore, it becomes necessary to describe
and consider these processes in the analysis of archaeological surface evidence in order to
exploit the advantages of geomorphometry so to monitor their evolution and understand
their significance and relevance.

During the past years, geomorphologists focused on sediment connectivity that de-
scribed sediment paths within a catchment by investigating the contiguity of landscape com-
ponents and their interaction in geomorphic, hydrological, and ecological systems [30–35].
Various aspects have been explored, and new approaches and methods have been devel-
oped, providing helpful tools (indices and models) to evaluate and estimate sediment
mobilization and transport from sources to sinks, and the consequent connection with the
hydrographic network [36–39]. From the earliest studies, the increasingly widespread use
of geomorphic indicators to assess the processes of the supply, transfer, and storage of
sediment on the surface demonstrates the applicability of sediment connectivity in different
disciplinary fields: river monitoring and management [40–42], geodiversity and biodiver-
sity [43,44], and climatology and pedology [45–47]. However, the contribution of sediment
connectivity assessment in the analysis of the processes involving surface archaeological
evidence has not yet been investigated.

This work presents the experimental application of the sediment flow connectivity
index (SfCI) in landscape archaeology analysis. The SfCI is a powerful geomorphological
indicator for defining the most sensitive areas to geomorphological modifications in a
catchment; it has been previously tested to correlate the effects of various events that occur
in a catchment, conditioned by water and sediment displacement [48–50]. The investiga-
tions were performed in the Lama Camaggi basin, in the Apulia region (southern Italy),
which is characterized by a large presence of archaeological evidence, found on the surface
during field surveys in the years 2001–2022 and 2012–2013. The present work analyses the
relationship between sediment connectivity and the occurrence of surface archaeological
data by assessing whether the SfCI can provide useful information to reconstruct and
preserve paleolandscapes. Then, the experimentation aims to assess the role of phenomena,
such as surface water outflow, downslope wash, or sediment burial, in the evaluation of
the reliability of archaeological records. The main objective is to explore the potential of
the SfCI to monitor and interpret surface archaeological evidence. The relevance to define
the potential contribution of the SfCI in landscape archaeology investigations lies in a
promising opening of new research scenarios in geoarchaeology.

2. Study Area

The rather small basin of Lama Camaggi (210 km2), located in the north–central area
of the Apulia region (southern Italy), extends from the border between the high and low
part of the carbonate Murge plateau, whose evolution is controlled by climate and sea-level
changes [51–54], to the Adriatic coast (Figure 1). Lama Camaggi is a characteristic fluvio-



Sustainability 2023, 15, 15042 3 of 18

karst valley in the Apulian landscape that is intersected by caves and depressions (such
as collapse dolines) and a surface runoff and drainage network of valleys, locally named
Lame and Gravine, incised in Plio–Pleistocene calcarenites and Mesozoic limestones. The
lithological aspect, the change of the base (sea) level, and the low gradient of the topogra-
phy conditioned the generation and the morphological features of these valleys that are
characterized by subvertical walls and flat bottoms filled with colluvial and alluvial de-
posits [10,54,55]. These valleys represent the main hydrographic network of the region. The
main characteristics of the Lama Camaggi catchment are: (1) the ephemeral hydrological
regime of the streams; (2) the overall low-slope angles alternating with the presence of the
Murge hills, such as Monte Santa Barbara (262 m msl) and Monte Faraone (232 m msl);
(3) the low spatial variability in precipitation, soil units, and land use. Furthermore, during
extreme-rainfall events, flood phenomena occurred along Lama Camaggi near the towns of
Andria and Barletta, where some sections of the channel have been buried and diverted.
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Figure 1. Lama Camaggi basin in the north–central of the Apulia region (location area at the top
left), with topographic, geomorphological, and archaeological features. Base map: ESRI National
Geographic (on the left) model and Digital Elevation model (on the right).

The morphology of the area of the Lama Camaggi catchment has influenced the
anthropic dynamics since the earliest times. In fact, the analysis of the archaeological
traces here found (see Section 3.2 and Figure 1) demonstrate that topography affected
the historical evolution of the ancient settlements, as well as the anthropic displacement
in the territory from the Prehistoric to the Medieval age [56]. Furthermore, the ancient
track of the Via Traiana Roman road was identified in an area that crosses the catchment
in the east–west direction [57–59]. These geomorphological aspects, coupled with the
archaeological evidence, make the basin of Lama Camaggi a suitable test area to investigate
the applicability of the SfCI in archaeology.

3. Materials and Methods
3.1. Geomorphological Analysis
3.1.1. SfCI Computation

As presented in [48], the SfCI is based on a mapping approach that includes functional
aspects in the structural component of sediment connectivity. Structural connectivity
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indicates the physical contiguity of morphological units in a hydrographic catchment,
while functional connectivity indicates the interaction between morphological units through
geomorphic processes [31,47,60]. In particular, in the SfCI, the connectivity is defined as the
connection by sediment transport, considering the mobilization (erosion) of sediment and
its transfer along the channel to the outlet in the lateral and longitudinal directions; then,
assessing sediment linkages through material transport. The index is founded on two main
assumptions: (i) if there is no sediment mobilization, there is no connection; (ii) the greater
the sediment mobilization in a cell, the greater the possibility that mobilized sediment
reaches other cells [36,48]. This combination of structural and functional components is
supported by the definition of a soil stability index (recognized as a functional property
of sediment connectivity, [61]) and by the use of a flow-routing algorithm (considered as
a proxy for runoff processes) to estimate water- and sediment-contributing areas, thus
defining sediment paths according to the steepest descent direction. Clearly, the latter is
a simplified method to describe the complex dynamics of sediment transport that partly
limits the analysis; nevertheless, it is justified by the initial assumptions (i-ii) and by the
common application of similar contributing-area approaches in sediment connectivity
assessment ([61,62] and reference therein).

The computation of the SfCI consists of three main steps: (1) the computation of a
sediment mobility map, (2) the derivation of the SfCI map through flow routing, and
(3) the (optional) production of a simplified SfCI map for applicative purposes (see Figure 1
in [48]). The sediment mobility map estimates the potential detachment and mobilization
of sediment, while the sediment-flow-accumulation algorithm estimates the potential
sediment fluxes through slope-driven flow accumulation.

The sediment mobility map (SM) derives from the product of two factors, SM1 (po-
tential sediment detachment, controlled by rainfall, soil stability, and land use) and SM2
(potential movement towards surrounding cells, controlled by topographic and morpho-
logical aspect of the surface). SM is defined as:

SM = SM1·SM2 (1)

with
SM1 =

R
SI

L (2)

SM2 =
S

Ru
(3)

where R is a rainfall index, SI is a soil stability index, L is a land-use index, S is a slope
index, and Ru is a surface ruggedness index (which describes the topographic variability as
the mean difference of height between a central pixel and its surrounding cells; see [48]).
Each of these indices is dimensionless and determined by ranking the values of all the
corresponding variables through a qualitative approach based on the a priori interpretation
of erosion surface processes [35,48]. In this simplified approach, 1 is assigned to the
maximum value, 0.05 (in order to avoid null values) is assigned to the minimum value,
and the range from 0.05 to 1 is assigned to intermediate values in relatively uniform
intervals [48,49].

The sediment flow connectivity map is obtained by propagating the SM values (initial
seed values) through a classical flow-accumulation algorithm F [63,64], which allows us
to simulate a “sediment contributing area” for each cell according to a steepest slope
principle. In this way, after iterations, the cells with the highest flow-accumulated values
are sediment-active cells (i.e., cells that contribute to sediment flux), and the cells with the
lower flow-accumulated values are sediment-inactive cells (i.e., the cells that are not on a
sediment pathway). The SfCI is given by:

SfCI = log10 F(SM) (4)
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The applicative SfCI (a_SfCI) map is derived by applying a mean filter through a rect-
angular window to the SfCI map in order to aggregate similar connectivity data over map
areas (and not single paths). This smoother map is classified in three connectivity classes
(high, medium, and low) defined through a natural break index (Jenks). This sediment
connectivity representation helps highlighting hotspots (corresponding to high-sediment-
connectivity areas) in the catchment, i.e., areas most sensitive to geomorphological mod-
ification. Therefore, the a_SfCI constitutes the main tool to directly apply the sediment
connectivity index to fluvial, alluvial, and (here) archaeological contexts [48,49].

3.1.2. SfCI Data Processing

All maps derived for the SfCI computation (i.e., rainfall, soil stability, land-use, slope,
and ruggedness indices maps) have here a spatial resolution of 8 m that corresponds to the
resolution of the regional DEM used in the extraction of surface characteristics. The regional
DEM of the Apulian territory was realized by combining the photogrammetry and technical
regional cartography with a vertical accuracy of 1 m; the dataset, which is composed by
tiles in ASCII format, can be downloaded from the UTM33N-WGS84 projection system
from the regional WebGIS site (http://www.sit.puglia.it; accessed on 12 September 2023).

Rainfall data correspond to the mean annual precipitation (MAP) recorded by rain-
gauge stations (located in Apulia, Campania and Basilicata regions) in the period 1921–
2020, freely available from Puglia, Dipartimento di Protezione Civile Regione Puglia
(https://protezionecivile.puglia.it; accessed on 12 September 2023). Data were converted
to isohyet maps by applying inverse distance-weighted interpolation (Shepard, 1968) [65].
In particular, the range of the MAP values over the Lama Camaggi basin, corresponding to
517–598 (mm/y), was extracted from the isohyet map and rescaled into index values from
0.05 to 1 (see Table 1 and Figure 2a).

Table 1. Mean annual precipitation (MAP) in the Lama Camaggi basin classified in rainfall index val-
ues. The maximum values correspond to 1, the minimum values correspond to 0.05, and intermediate
values correspond to uniform ranges (see text for details).

MAP
(mm per Year) Rainfall Index Value

517–522 0.05
523–541 0.25
542–560 0.50
561–579 0.75
580–598 1

Soil stability data were obtained from the classification of soil properties, such as thick-
ness and permeability, considered for the evaluation of the layer saturation and drainage-
runoff capacity of the soil surface, respectively (Cevasco et al., 2014 [66]; Zingaro et al.,
2019 [48]; Zingaro et al., 2020 [49]). Soil units and relative properties come from a regional
soil map (1:100.000 scale) and from the ACLA (Agro-ecological characterization of Apulia)
dataset (https://pugliacon.regione.puglia.it; accessed on 12 September 2023). First, the
classes of permeability (from 1 to 6) and the values of the thickness of the soil units were
examined and classified (high, medium, and low permeability and thickness; see Table 2);
then, a matrix of combined properties was developed (Table 3) and the definition of three
classes of the soil stability index, with corresponding values from 0.05 to 1, was derived
(Table 4 and Figure 2b). In addition, the field observation of the soil units described in the
database was applied.

http://www.sit.puglia.it
https://protezionecivile.puglia.it
https://pugliacon.regione.puglia.it
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Figure 2. SfCI input data in the Lama Camaggi basin. (a) Rainfall data: isohyets in the value classes
(mean annual precipitation). (b) Soil stability data: soil properties conditions in assigned value classes.
(c) Land-use data in associated value classes.

Table 2. Classification of soil properties (permeability and thickness) useful to determine the soil
stability conditions. Categories of the properties are derived from the relative classes and values
(see text for details). LP = low permeability; MP = medium permeability; HP = high permeability;
LT = low thickness; MT = medium thickness; HT = high thickness.

Soil Properties Soil Properties Classes

Permeability Classes

1 HP

2 HP

3 MP

4 MP

5 LP

6 LP

Thickness Classes

<100 cm LT

100–199 cm MT

>199 cm HT

Table 3. Soil stability classes defined by the matrix of soil properties conditions (see text for details
and previous caption for the soil properties abbreviations). HS = high soil stability; MS = medium
soil stability; LS = low soil stability.

HT MT LT
HP HS MS MS
MP HS MS LS
LP MS MS LS
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Table 4. Soil stability classes with corresponding soil stability index values (see text for details and
previous caption for abbreviations).

Soil Stability Classes Soil Index Value

LS 0.05
MS 0.5
HS 1

Land-use data were derived from the regional soil-use map (updated to 2011), avail-
able on the WebGis site (http://www.sit.puglia.it; accessed on 12 September 2023). The
classification of the land-use index was defined by assigning high values to classes that can
favor sediment detachment (e.g., poorly vegetated, croplands) and low values to classes
that can obstruct sediment detachment (grasslands, pastures, shrubs). The classification is
reported in Table 5 and Figure 2c.

Table 5. Land-use classes and index values assigned considering the related sediment mobility (see
text for details).

Land-Use Classes Land-Use Index Value

Urban areas 0.05
Grassland/pastures/shrubs 0.25

Woods 0.50
Croplands 0.75

Beaches/Poorly vegetated 1

Slope and ruggedness indices maps were obtained by computing slope and ruggedness
from the regional DEM (see Section 3.1.1) and classifying the corresponding ranges of values.
In particular, the TRI (terrain ruggedness index, Wilson et al., 2007) [67] was computed
by using a tool implemented in the “gdaldem” module of the GDAL/OGR Geospatial
Data Abstraction software library, version 3.7.2 (Open Source Geospatial Foundation,
https://gdal.org; accessed on 12 September 2023). The ranges of the slope and ruggedness
were rescaled into values from 0.05 to 1 (see Tables 6 and 7 and Figure 3).

Table 6. Slope ranges rescaled in slope index values from 0.05 and 1 (see text for details).

Slope (Degree) Slope Index Value

0.00–0.99 0.05
1.00–15.99 0.25

16.00–30.99 0.50
31.00–45.99 0.75
46.00–60.74 1

Table 7. Terrain ruggedness index ranges rescaled in TRI values from 0.05 to 1 (see text for details).

TRI (m) TRI Value

0.00–0.25 0.05
0.26–3.00 0.25
3.01–6.00 0.50
6.01–9.00 0.75
9.01–12.65 1

http://www.sit.puglia.it
https://gdal.org
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index map.

All the steps of the mapping procedure were carried out using ArcMap®, version
10.8 (ESRI, www.esri.com; accessed on 12 September 2023) and QGIS®, version 3.16.1
(Open Source Geospatial Foundation Project, http://qgis.org; accessed on 12 September
2023) software.

3.2. Archaeological Analysis

Historical analysis and field surveys have been performed in the Lama Camaggi
basin in recent years as part of various scientific research and urban-planning investi-
gations. In particular, archaeological evidence found during the activities performed
in the years 2001–2002 and 2012–2013 in the territory of Andria (involving part of the
Lama Camaggi basin) are considered here [56,68]. Following a preliminary landscape
study, the archaeologists of the University of Bari (https://www.uniba.it; accessed on
12 September 2023) and the Superintendence of Archaeology, Fine Arts and Landscape
(https://sabapba.cultura.gov.it/; accessed on 12 September 2023) carried out systematic
surface surveys in the areas of greatest geomorphological and historical interest, according
to the current guidelines of landscape archaeology investigations [14,69–71]. As described
in the related literature [56,68], tools, such as cartographic support (map of the Italian
Military Geographic Institute, digital terrain model—DTM, orthophotos, hydrogeomor-
phological, and cadastral maps), global positioning system (GPS) devices, and site and
topographical unit cards, were used in the field; digital database and GIS platforms were
used in the processing phase. The evidence (areas of archaeological material, ancient
structures) identified on the surface, henceforth called archaeo-records (Figure 1), were
recognized as traces of the anthropogenic presence in the territory from Prehistory to the
Modern Age, made easier by the morphological characteristics of the natural landscape.
In fact, through the historical interpretation of this evidence, the archaeologists described
the anthropic choice to occupy this area, above all in the Prehistoric and Protohistoric
ages, as strongly determined by the availability of shelter and defense in hills and caves
(represented by the karst and tectonic morphologies of the Murge hills), and the proximity
of primary sources (such as water, wild fruits and plants, game, wood). Thus, deep valleys

www.esri.com
http://qgis.org
https://www.uniba.it
https://sabapba.cultura.gov.it/
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(Lama Camaggi and other smaller valleys in the catchment) could represent advantageous
territories and could be exploited as reference lines for moving around the territory from the
high part of the Murge plateau to the Adriatic coast [10,72]. A greater human organization
of spaces could then be ascribed to the Archaic–Classical and Roman ages, documented
by the traces of settlements (such as the sites of Monte Santa Barbara, Tavernola, and
Quadrone) and roads. Moreover, historical analysis shows that the Via Traiana and other
minor roads continue to follow the orientation of the natural forms (see Figures 2 and 3
in [56]). Archaeological remains (pottery artifacts, ruins, cisterns, masserias) demonstrate
that the territory was highly populated in the Medieval and Modern ages.

This archaeological analysis, which is based on past works, was applied here with
reference to two main aspects: (1) acquiring the location of archaeo-records in the Lama
Camaggi basin and (2) understanding the cultural significance of this evidence closely
related to the landscape context.

3.3. SfCI and Archaeo-Records Comparison

In order to compare sediment connectivity values with the archaeological occurrence,
a visual analysis was applied. In particular, the a_SfCI map and archaeo-records were
overlapped to identify a potential spatial correspondence of high-sediment-connectivity
areas with archaeo-records areas. Moreover, a further focus on surface-occurring phenom-
ena was attempted by using the SfCI map in order to observe the sediment paths in areas
affected by the presence of the archaeological evidence.

4. Results
4.1. SM, SfCI, and a_SfCI Maps

Figure 4 shows the SM, SfCI, and a_SfCI maps derived from Equations (1)–(4). In the
SM map (Figure 4a), most of the Lama Camaggi basin is characterized by low sediment
mobility (blue cells), with higher values of mobility (orange–red cells) predominantly
distributed in two parts of the catchment. This sediment mobility pattern is mostly con-
ditioned by the lower stability of soils in these areas of the basin rather than by the
rainfall rate, land use, and topography. In fact, the presence of thinner and less permeable
soils (see Section 3.1.2 and Figure 2b) appears to be the most important contributor to
increased sediment mobility, given the low spatial variability of other mobility factors (see
Figures 2 and 3).
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The SfCI map (Figure 4b) shows values of the index ranging between −4.5 (very
low) and 5.6 (very high). Sediment paths are identified by high SfCI values (red cells) in
greater sediment mobility areas, showing that sediment flow tends to concentrate only in
those parts of the basin where sediment supply in the drainage network occurs from local
sediment sources (higher areas). Disconnected areas (green cells) are present in almost the
entire basin, with a greater extent in the northern part.

In the a_SfCI map (Figure 4c), areas with low, medium, and high sediment connectivity
are more visible (green, yellow, and red, respectively). The spatial distribution of sediment
connectivity shown by the map makes the presence of hotspot areas (red) in the Lama
Camaggi basin even more identifiable in two main regions of the catchment.

4.2. SfCI Comparison with Archaeological Occurrence

Figure 5 shows the visual comparison between the sediment connectivity areas and
archaeological occurrence areas through the overlap of the a_SfCI map and archaeo-records.
As visible in the figure, most areas with archaeological evidence are located in one of
the two main hotspot regions, thus showing a higher tendency of areas most active in
geomorphological dynamics (i.e., affected by high sediment connectivity) to host areas
characterized by the presence of archaeological data on the surface (detailed box).
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Figures 6 and 7 focus the analysis in the most significant area for the presence of
archaeological evidence (the site of Monte Santa Barbara, see Section 3.2 and Figure 7a)
by observing the location of the archaeo-records within the sediment paths (SfCI map,
Figure 6b). The comparison shows that there are archaeological areas (highlighted in light
blue in Figure 6 and visible in photos in Figure 7b–d) receiving a high contribution of
water and sediment due to their location on sediment flows (marked by red arrows in
Figure 6a,b).
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5. Discussion

The geomorphological processes modify the environment where human actions take
place, thus affecting evolution, the finding conditions, and the preservation of the ancient
sites [9,25]. The application of geomorphological indicators that define the most sensitive
areas to modifications can contribute to assessing the effects of surface phenomena on
landscape archaeology investigations, thus helping to understand the cultural value of
surface evidence. The processes of sediment erosion, transport, and deposition can, respec-
tively, expose, move, and bury the archaeological material, thus influencing the context
of discovery, the opportunity of detection, and the state of analysis and interpretation, in
addition to the possibility of preservation [9,12,28,29]. An archaeological record uncovered
on the surface by soil erosion could be transported and then deposited and discovered, just
as it could be covered and buried again. Similarly, eroded material could be dispersed and
never again found. Again, the transported sediment could be deposited to layers of storage
covering potential archaeological deposits. These and other situations define the role of
surface natural phenomena, here represented by sediment connectivity and described by
the SfCI in the postdepositional dynamics of the archaeological record.

The computation of the SfCI index in the Lama Camaggi basin, which can be consid-
ered an archaeological-prone area for the significant presence of evidence (see Section 3.2),
allows for the evaluation of the potential contribution of sediment connectivity to the archae-
ological landscape analysis. The results first define hotspot areas, where greater sediment
mobilization and transport increase exposure to morphological changes (Figure 4); then,
they suggest that the areas with the greatest archaeological occurrence mostly fall in hotspot
areas (Figures 5 and 6). This agreement establishes a connection between geomorphological-
modification-prone areas and archaeological-prone areas, potentially making the SfCI a
useful tool for evaluating the vulnerability of the evidence to the surface processes. In
fact, the greater displacement of sediment (due to intense linkage with the sources and
the paths of sediment flow) in hotspot areas results in greater preservation precariousness
of the archaeological records on the surface, and thus the potential loss of information. It
might be argued that sediment and archaeological material move on the surface according
to the same geomorphological dynamics, assuming that the transport process is similar
to that controlling water flow (simplified in the SfCI calculus as a basic propagation in
the steepest descent direction; [48]). Moreover, [49] demonstrated the applicability of the
SfCI in flood susceptibility, proving the connection between morphological and hydraulic
conditions, partly described by the index and flood dynamics. It is thus plausible that
the effects of surface-occurring phenomena (processes of supply, transfer and the storage
of sediment, and extreme events) could affect both areas of archaeological material and
ancient structures. If this is true, archaeo-records found in sediment-hotspot areas of the
Lama Camaggi basin could be considered heritage emergencies to be monitored (1) to
reduce the risk of damaging and biasing and (2) to interpret their historical value. The latter
aspect can be deduced from the results of the comparative analysis shown in Figure 6. In
fact, the finding of archaeological material in areas where sediment flow occurs cannot but
be conditioned by surface processes. This could mean that the evidence documented on
the surface may not be indicative of an archaeological deposit in the area of discovery, but
may have been transported from another site along sediment paths according to a process
of surface water outflow or downslope wash, above all in higher regions. For example,
archaeo-records near Monte Santa Barbara (Figure 8) could be related to the same namesake
site by interpreting the materials as sliding down the valley along the slope of the hillside
(potential sediment source) by sediment flow (schematically reconstructed in Figure 8b).
This data analysis is supported by the consistency of materials found in the archaeo-records
and on the site of Monte Santa Barbara (Figure 8c).
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Figure 8. Interpretation of the relation between sediment connectivity and archaeo-records (high-
lighted in light blue) near the Monte Santa Barbara site. (a) Detailed SfCI map; (b) Hillshade DEM of
the area with schematic reconstruction of potential downslope wash path (red arrow); (c) Archae-
ological material (sherds of geometric pottery–subgeometric II style–with bichromatic decoration:
checkerboard patterns, wavy lines, zigzags, lozenges, squares, circles) from the Monte Santa Barbara
site (on the left) and archaeo-records (on the right) documented on the surface during surveys in
2012–2013 (details of archaeological survey results can be found in [56]).

In relation to the reconstruction of surface dynamics, the SfCI might provide informa-
tion even when archaeological evidence is not in the hotspot areas. In fact, if it is known that
low-sediment-connectivity areas are representative of poor occurrence or the lack of supply
and mobilization of sediment (as explained in Section 4.1), archaeo-records, such as those
located in the Quadrone site (Figure 9), might be surface traces of potential archaeological
deposits. In this perspective, the SfCI could be useful in preliminary excavation investiga-
tions and in preventive archaeology evaluation to support the detection of remains [73,74].
However, it should be considered that, in flat areas (as with the Quadrone site), sediment
tends to accumulate in layers. Therefore, the presence of a potential archaeological deposit
would not be detectable by traces on the surface, being covered by burying colluvial and
alluvial sediment. It follows that the historical interpretation of the archaeological material
on the surface could be greatly affected by these considerations, which would change the
meaning of the surface data. As this study shows, the experimental application of the
SfCI in the Lama Camaggi basin demonstrates the contribution of sediment connectiv-
ity to the interrelation of surface processes influencing the readability of archaeological
data through an interdisciplinary approach. The possibility of using a geomorphological
indicator in landscape investigations can improve detection, monitoring, and analysis
activities, opening new research scenarios in geoarchaeology. Moreover, the applicability
of geomorphometry in mitigating the impact of damage to archaeological evidence fits
very well with the new trends in the research community, aimed at providing a struc-
tured framework of innovative methodologies for risk assessment and the management
of cultural heritage [20,75]. Indeed, the present test case contributes to developing a new
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interdisciplinary approach, useful for enhancing the research effort towards sustainability.
In particular, this experimentation can be considered a step forward to the achievement of
SDG 11 [22], which aims to protect and safeguard the world’s natural and cultural heritage.
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6. Conclusions

The applicability of the sediment flow connectivity index (SfCI) was tested in the
Lama Camaggi basin, a high-density archaeological area, in order to explore the potential
contribution of sediment connectivity to landscape archaeology investigations. A visual
comparative assessment of the SfCI maps and archaeo-records found during field surveys in
the years 2001–2022 and 2012–2013 was applied. The main results show (1) the correlation
between areas affected by high sediment connectivity and areas characterized by the
occurrence of surface archaeological data, and (2) the potential of the SfCI to support the
interpretation of data by identifying the interrelation of surface processes.

The results suggest that the computation of the SfCI might be useful to assess the
readability and the conservation of archaeological evidence. Therefore, this work has the
advantage to be a novelty in the current research scenario for applying a new approach
based on the integration of data and methods.

On the other hand, the experimental study has limitations that can be summarized
as follows:

1. The simplified approach of our index may overlook: (i) the complex dynamics of
sediment transport (represented by the use of a flow-accumulation algorithm, and
justified by the assumptions on which the index itself is based); (ii) the different
characteristics of the various factors involved in the calculation (represented by the
intermediate dimensionless indices, i.e., rainfall, soil stability, land use, slope, and
ruggedness, defined by normalization procedure);

2. Some characteristics of the Lama Camaggi basin (such as the poor spatial variability
of precipitation, overall low slopes) could affect the results; which, however, were
shown to be such that they did not invalidate the test. It should be specified that our
study area, while not constituting an exemplar case study, represents a good test case
because of the significant presence of surface archaeological evidence and the presence
of fluvio-karst valleys that correspond to the main surface hydrographic network;
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3. The spatial resolution of maps (8 m) partially limits the sediment connectivity analysis
and the subsequent assessment, especially when considered in relation to the spatial
extent of the archaeological evidence.

Considering these limitations, the index can be claimed as a first guide to identify sites
to be investigated by excavations. Indeed, subsequent geoarchaeological investigations
at the site scale could provide information on the presence of archaeological records
(along and/or downstream of sediment paths and/or buried by sediment layers, etc.)
so as to possibly validate retrospectively the SfCI contribution to landscape archaeology
analyses. Indeed, the most important outcome of the present work is to provide the
scientific community with the opportunity to apply the geomorphological indicator of
sediment connectivity in evaluating the vulnerability and the historical significance of
archaeological evidence. This awareness can be used in the future to further develop this
interdisciplinary approach, contributing to one of the sustainability goals.
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