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Abstract: Short-term load forecasting is a prerequisite for achieving intra-day energy management
and optimal scheduling in integrated energy systems. Its prediction accuracy directly affects the
stability and economy of the system during operation. To improve the accuracy of short-term load
forecasting, this paper proposes a multi-load forecasting method for integrated energy systems
based on the Isolation Forest and dynamic orbit algorithm. First, a high-dimensional data matrix
is constructed using the sliding window technique and the outliers in the high-dimensional data
matrix are identified using Isolation Forest. Next, the hidden abnormal data within the time series
are analyzed and repaired using the dynamic orbit algorithm. Then, the correlation analysis of the
multivariate load and its weather data is carried out by the AR method and MIC method, and the
high-dimensional feature matrix is constructed. Finally, the prediction values of the multi-load are
generated based on the TCN-MMoL multi-task training network. Simulation analysis is conducted
using the load data from a specific integrated energy system. The results demonstrate the proposed
model’s ability to significantly improve load forecasting accuracy, thereby validating the correctness
and effectiveness of this forecasting approach.

Keywords: Isolation Forest; dynamic orbit; MIC; multi-task training; integrated energy systems

1. Introduction

Environmental pollution and energy shortages continue to constrain the sustainable
development of human society. A new energy revolution has been launched globally,
driven by China’s national strategic goal of achieving carbon peak by 2030 and carbon
neutrality by 2060. It is necessary to integrate this energy revolution with the advances of
the digital revolution [1-4]. How to achieve efficient and cost-effective interconnection in
different energy sectors, strengthen energy collaboration, and improve energy efficiency
has become a prominent issue of widespread concern in the industry [5-8]. To meet
the urgent need for complementary and coordinated operation across various energy
types, the Integrated Energy System (IES) [9,10] emerged. Short-term load forecasting
serves as a prerequisite for intra-day energy management and optimal scheduling in IES,
and its prediction accuracy directly influences the stability and economy of the system
during operation.

The prediction of loads in integrated energy systems involves four key aspects: data
preprocessing, model selection, optimization strategies, and algorithm selection. Over the
years, extensive research has been conducted in the field of short-term load forecasting
methods for integrated energy systems, leading to significant achievements [11-13]. Exist-
ing forecasting methods mainly include traditional machine learning, ensemble learning,
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deep learning, reinforcement learning, and transfer learning [14,15]. Ping et al. [16] pre-
dicted the wind speed based on the wavelet neural network model and solved the problem
of low prediction accuracy caused by slow convergence speed. Shi et al. [17] considered the
coupling relationship among thermal, electric, and gas loads in the industry. By analyzing
multiple data, such as weather information and historical data, the authors explored the
coupled relationship between the data. A prediction method based on deep learning and
multi-task learning was proposed to enhance the model’s predictive ability and obtain
more accurate results. Wang et al. [18] considered the high-dimensional temporal dynamics
and proposed an encoder-decoder model based on a Long Short-Term Memory (LSTM)
network. In this work, the effectiveness of deep learning methods in integrated energy load
forecasting is validated. Reference [19] proposes a new dynamic multi-sequence intelligent
data-driven decision-making method by combining SCUC decision-making with dynamic
multi-sequence models. Tan et al. [20] analyzed the coupling relationship between different
subsystems and proposed a joint prediction method for electric, heating, cooling, and gas
loads based on multi-task learning and least squares support vector machines (LS-SVM).
In the work of Zhou et al. [21], a comprehensive load forecasting model based on the
Bi-Directional Generative Adversarial Network (BiGAN), data augmentation, and transfer
learning techniques is proposed. The Zhou et al. model considers the issue of data scarcity
in information systems. While maintaining a high level of predictive accuracy, the authors
address the challenges that arise when incorporating new users into integrated energy
systems. Their proposal also enhances the robustness of the integrated energy system and
expands its generality.

Recently, with the emergence of various intelligent systems and the integration of
distributed energy resources, the energy interaction structure has become more diverse [22].
Consequently, the energy consumption patterns of users under different structures have
become increasingly real-time and complex [23,24]. In the actual operation process, the
application scenarios in the integrated energy system may change (e.g., the start of lengthy
school breaks or the hosting of large-scale events requiring accommodation of a large influx
of visitors), there may be equipment failures and other extreme conditions, and the load
data that occurs at this time is unconventional data. In these cases, the resulting load data
can be classified as unconventional. Due to the scarcity of data on unconventional patterns,
parameter optimization becomes challenging, especially considering the sensitivity of
neural networks to abnormal data. The predictive accuracy of neural networks significantly
decreases when the load is influenced by complex factors and exhibits strong randomness
and nonstationary characteristics. So far, researchers have mostly focused on conventional
design aspects—such as model selection, optimization strategies, and algorithm choices—
for integrated energy systems, which are insufficient to meet the operational requirements
of diverse patterns and volatile operating conditions. Based on these considerations, on one
hand, it is necessary to design the data feature preprocessing stage to eliminate abnormal
data. Moreover, to meet the requirements of real operating conditions, the influence of
event-driven factors should be taken into account, and an analysis of users’ historical
energy consumption patterns should be conducted to enhance the overall stability of the
system. On the other hand, appropriate parameters should be selected in the stages of
model selection, optimization strategies, and algorithm choices. By incorporating these
aspects into the design process, the accuracy of load forecasting under normal patterns can
be improved.

Currently, there is continuous development of methods for identifying anomalies in
time series data. Common cleansing methods [25] include statistical approaches such as
the Gaussian distribution, box plots, and clustering methods used in machine learning.
Based on the assessment of whether the measurement data errors follow a zero-mean
Gaussian distribution, the “30 rule” [26] is employed to detect outliers. Although this
method is simple and convenient, it is influenced by various factors during the operation of
an integrated energy system. The output data from the system exhibits multidimensionality,
randomness, intermittency, and uncertainty [27-29]. The above-mentioned methods greatly
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reduce the accuracy of identifying abnormal data and can only detect simple outliers.
Although clustering algorithms [30] are machine learning techniques capable of detecting
most outliers, they struggle to identify anomalies hidden within sequences, failing to meet
the requirements for data analysis quality. In summary, there is an urgent need for a
method which can eliminate the presence of abnormal data in time series under normal
data patterns that is applicable for multi-load forecasting in integrated energy systems.

To address this gap in the research, this paper proposes a comprehensive multi-load
forecasting approach for integrated energy systems based on the Isolation Forest algorithm
and dynamic orbit method. In this study, the contributions of this paper can be summarized
as follows:

1. A new anomaly data detection method is proposed. Based on the iForest algo-
rithm, the extreme values and some outliers of the high-dimensional data matrix
are identified.

2. A new abnormal data correction method is proposed. The dynamic orbit method
is used to analyze and repair the abnormal data hidden in the time series. If the
abnormal value data are found, the system triggers an alarm, enters the behavior
analysis link of the news surface, visualizes the separation window, and distinguishes
the type of abnormal value.

3. To determine the dependencies between multiple loads. The correlation analysis of
the multivariate load and its weather data is carried out by an autoregressive (AR)
method and maximal information coefficient (MIC) method, and a high-dimensional
feature matrix is constructed.

4. Anew load forecasting structure is proposed. Based on the TCN-MMoL (multi-gate
mixture-of-experts of LSTM) multi-task training network, the predicted value of the
multi-load is output.

2. Related Work
2.1. The Isolation Forest

The Isolation Forest (iForest) [31-33] is a nonparametric anomaly detection algorithm
that does not require specifying a specific physical model or labeling the anomalous data.
It can be used to identify outlier points in a dataset. It estimates the degree of isolation of
data points by means of binary tree, so as to determine whether it is an abnormal point.

The core idea of the Isolation Forest is to utilize the isolation of data points in the
feature space to detect anomalies. It assumes that normal data points are relatively dense
in the feature space, while anomalies are relatively few and more isolated. Therefore,
anomalies should be separated more quickly by the Isolation Forest model. Typically, the
basic steps of the Isolation Forest algorithm are as follows:

1. Randomly select a feature and choose a split point within the range of the
feature values.

2. Use the selected feature and split point as the splitting rule to divide the data points
into two subsets.

3. Recursively repeat steps one and two until each subset contains only one data point
or reaches the maximum depth defined in advance for the tree.

4. Construct multiple random trees and form a random forest.

5. For each data point, calculate its path length in the random forest, which is the average
number of edges from the root node to the data point.

6.  The anomaly score of a data point is measured by its path length. A shorter path
length indicates an outlier that is easily isolated, while a longer path length indicates
a normal point.

7. Finally, by setting a threshold, the path lengths can be compared with the probability
of abnormal points to determine which data points should be classified as anomalies.

The Isolation Forest algorithm utilizes binary trees to partition the data, and the
depth at which a data point lies in the binary tree reflects its level of “isolation” [34]. The
decision-making process of the algorithm is illustrated by Figure 1.
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Figure 1. Isolation Forest Decision Diagram.

The Isolation Forest algorithm exhibits excellent scalability and efficiency in anomaly
detection and also demonstrates good performance for high-dimensional and large-scale
datasets. Serving as an ensemble-based, fast, and unsupervised anomaly detection method,
the Isolation Forest algorithm achieves high efficiency and accuracy, delivering promising
results in the field of industrial inspection [35].

2.2. Dynamic Orbit

For anomaly detection in time series data, the common approach is to set a threshold
value, and when data exceeds this range, it is considered anomalous. However, due to
the strong volatility and randomness of multiple load fluctuations within an integrated
energy system, the conventional time series anomaly detection methods are not suitable
for the application scenarios of such systems. Hence, this study proposes a dynamic orbit
approach specifically designed for anomaly repair in integrated energy system data.

The dynamic orbit consists of a middle orbit, an upper orbit, and a lower orbit, as
illustrated in Figure 2. The dynamic orbit takes the form of a channel, where data values
within the channel range are considered normal, while data values that cross the channel
and fall outside of it are classified as anomalies.

Dynamic orbit
18,000

—— operating data
—— upper orbit
—+= middle orbit
——— lower orbit

16,000

14,000
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T T T T T
100 150 200 250 300 350 400
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Figure 2. Schematic Diagram of Dynamic Orbit.

The calculation of the dynamic orbit primarily involves two major steps. First, the
establishment of the reference orbit of the dynamic orbit is achieved using the moving aver-
age method. The concept of the reference orbit is derived from the smoothing method [36],
which is commonly used for trend analysis and prediction; the smoothing techniques
reduce the influence of short-term random fluctuations on a sequence and thus achieve a
smoother sequence. Depending on the specific smoothing technique employed, it can be
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categorized into the simple moving average method, exponential moving average method,
and weighted moving average method.

Next, calculations are performed for the upper and lower bound orbits. After deter-
mining the reference orbit, calculations are performed for the upper and lower bound orbits
using the following specific formulas shown in Equations (1) and (2):

Uuo = (1 - M1) x MO ¢y

LO = (1 — M2) x MO. ©)

In Equations (1) and (2), UO is the abbreviation of the upper orbit, MO is the abbrevia-
tion of the middle orbit, and LO is the abbreviation of the lower orbit. M1 represents the
margin of the upper orbit, and M2 represents the margin of the lower orbit.

Simple Moving Average

The simple moving average (SMA) method [37] gradually moves along the time series
and calculates the sequential average over a certain number of terms to reflect the long-
term trend of the sequence. The SMA is obtained by summing the previous historical data
points in the time series and calculating their arithmetic mean. As shown in Equation (3),
when the time window scale is represented by /, the SMA index at the t time node can be
calculated as: ,

SMA(l) = Zz‘:t—ll+1 Xi @)
where x; represents the data at the t time node.

The SMA indicator effectively mitigates the rapid fluctuations in the time series by
summing and averaging the values, resulting in smoother peaks and valleys. However, this
calculation method assigns equal weight to the time series data, disregarding the varying
importance of data at different time points. As a result, it exhibits insensitivity to changes
in the time series and possesses a certain degree of lag.

The exponential moving average (EMA) [38] addresses several issues associated with
SMA, including the fact that SMA assigns equal weight to all data points in a time series.
In contrast, EMA assigns different weight to the data points at each time point in the
time series. This is based on the assumption of recent bias, which posits that there is a
strong correlation between the future trend of a time series and its recent volatility. EMA
accomplishes this by applying exponential decay to the weight of the time series data. It
gives greater weight to the most recent data points over past data points. Equation (4)
provides a recursive calculation for EMA:

EMAt(l) = ﬁ X (xt — EMAt_l (l)) + EMAt_l (l)
{ _ 2 )
B=r7 BE(01)

where B represents the degree of weight reduction. Through this approach, the EMA
indicator can effectively filter out noise that is less correlated with changes in the time
series trend and become more sensitive to the variations in the time series. As a result, the
prediction of time series trends becomes more reliable and accurate.

The weighted moving average (WMA) [39], which is similar to the EMA indicator,
allocates greater weight to recent data in a time series. The specific calculation method for
WMA is as follows:

25:1 Xt—i+1Wi

WMA(l) = Zle "

©)
where w; denotes the predefined weights.

In this paper, we employ the WMA indicator. Starting from the first data point in
the time series, the weights assigned to the time series data increase linearly as the time
series expands.
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2.3. Temporal Convolutional Neural Network

Temporal convolutional neural network (TCN) [40] is a deep learning model used
for handling time series data. It consists of causal convolution, dilated convolution, and
residual connections, as illustrated in Figure 3. TCN exhibits the following characteristics
when dealing with time series data.
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e  Causal Convolution: TCN utilizes a unique form of causal convolution, which pre-
serves the causality of the input sequence, prevents leakage of future data, and expands
the receptive field. The entire network’s perception range and information length
are the same as the input sequence, ensuring that the sequence influences the deep
network as a whole.

e Dilated Convolution: To address the problem of information overlap, TCN employs
dilated convolution. Unlike regular convolution, the convolutional kernel of dilated
convolution reads data through interval sampling. This sampling technique allows
TCN to acquire a larger receptive field for sequence feature extraction and preserve
more historical information. The output of dilated convolution is obtained by accumu-
lating the element-wise multiplication of the convolutional kernel and the input.

o Residual Module: To address the problem of gradient vanishing caused by convolu-
tional degradation, TCN introduces the residual module, which consists of two dilated
causal convolutions, batch normalization, dropout, and ReLU activation function,
among others. The advantage of the residual module is that it prevents excessive
information loss during feature extraction. By adding the features extracted to the
input data using causal convolutions, the final output is obtained. Additionally,
al x 1 convolutional layer is added to maintain the same scale of output as the input.

Figure 3. TCN Network Layer.

Compared to traditional recurrent neural networks (RNN), TCN utilizes convolu-
tional operations to capture the local dependencies in time series data, resulting in higher
parallelism and greater computational efficiency. With causal and dilated convolutions,
TCN is able to process long input sequences by rapidly reading them as a whole. The
backpropagation path is different from the time direction of the sequence, which prevents
the issues of gradient explosion and gradient vanishing.

2.4. Long Short-Term Memory

Long Short-Term Memory (LSTM) [41] is a variant of recurrent neural networks (RNN)
that effectively handles long-term dependencies in sequential data. At the core of LSTM is
a structure called the memory cell, which stores and updates information in the sequence.
LSTM comprises three gate structures—the input gate, forget gate, and output gate—which
control the flow of information within the memory cell. The input gate determines how
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the current input and previous hidden state affect the state of the memory cell. The forget
gate determines what information in the memory cell should be discarded, and the output
gate determines how the state of the memory cell influences the current hidden state and
output. Through this mechanism, LSTM can learn and extract long-term dependencies
in sequences while avoiding the issues of vanishing or exploding gradients. The LSTM
structure is illustrated in Figure 4.

Figure 4. Schematic of LSTM.

2.5. The Multi-Task Learning Mechanism

The multi-task learning mechanism [42,43] involves simultaneously learning multi-
ple related subtasks within a learning framework, which enables the sharing of learned
information throughout the learning process. Compared to single-task learning, multi-task
learning is able to better extract the coupling relationships that exist among multiple tasks.
This avoids the handling of complex real-world problems, such as independent subtasks in
single-task learning, followed by merging and superimposing the results, which neglects
the rich information pertaining to the relationships between subtasks. Figure 5 illustrates
the principles of a single-task versus a multi-task learning mechanism.

Task 1 Model 1 ——Output—»
Sample size Task 2 Model 2 —Output—>

(X X} (XX ]

Task n Modeln —Output—

(a)

Task1 |—» || Model 1

Sample size Task 2 —>| Model 2 | ——Output—s

Taskn —> Model n

Figure 5. Single-Task vs. Multi-Task Learning Schematic. (a) Single-task learning. (b) Multi-task learning.
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Multi-task learning can be divided into two types of sharing mechanisms: hard sharing
and soft sharing [44]. In the hard sharing mechanism, the stronger the correlation between
subtasks, the better the training effect of the model. However, if there is poor correlation
among some subtasks, the training effect of the model will be unsatisfactory. The traditional
approach to multi-task learning usually adopts the hard sharing mechanism, which consists
of a parameter-sharing layer and subtask-learning layers. The parameter-sharing layer
receives all feature data extracted in the early stages and processes them in the sharing
layer. Then, the subtask layers selectively train corresponding feature data based on their
own requirements and finally output prediction results.

Traditional multi-task learning typically also adopts parameter sharing, where all
subtasks use the same feature extraction layer for feature extraction. However, such
methods overlook diversity among subtasks, thereby restricting the expressive capacity of
the model.

To address this issue, Google proposed the MMoE model [45] that possesses a different
core mechanism compared to the traditional hard sharing approach, which forces all
subtasks to share the same feature extraction layer. Instead, in MMOE, the feature extraction
layer is divided into multiple experts according to certain rules, and a gating mechanism
is introduced to control the weight of each expert for each subtask. Each subtask has
an independent gating network which allows each subtask to retain its own diversity
while sharing relevant information through training. For task k, the model is calculated
as follows:

Ym = H"(f"(x)) (6)

fr(x) =) 8" (%) filx). @)

=1

In Equations (6) and (7), n represents the number of expert networks, m represents the
number of subtasks, g™ (x); signifies the proportion of weight for the ith expert network in
the mth subtask, and f;(x) represents the output of the ith expert network.

3. Data Feature Preprocessing

To date, scholars have extensively researched and achieved substantial results in the
comprehensive energy system under conventional models [46—49]. However, most studies
focus primarily on model parameter design in the prediction model stage. Currently, there
is a lack of literature that conducts in-depth analysis and processing of historical data in
the feature preprocessing stage. Historically, there have been issues such as missing data
and transmission errors during the communication process, as well as deviations from
historical data trends due to special events. The anomalies and missing data resulting from
these issues undoubtedly have a significant impact on the accuracy of short-term load
forecasting models for integrated energy systems. Therefore, this study employs the iForest
and dynamic trajectory methods to analyze and eliminate the abnormal data, as shown
in Figure 6. Subsequently, the missing values are filled in for both the eliminated missing
data and the original missing data. The data feature preprocessing flowchart is depicted in
Figure 6, which illustrates the specific steps taken.

The first step involves constructing a high-dimensional data matrix. The separation
window technique is used to construct the matrix, incorporating n-dimensional features,
such as cooling load, heating load, electric load, and weather data.

In the second step, data standardization is applied. This procedure ensures consistent
measurement standards, eliminates biases and outliers, enhances data quality and reliability,
and improves the computational efficiency of the network.
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The high-dimensional data matrix was
constructed, and the sample
characteristics were selected to
determine the starting time, the ending
time and the width of
the sliding time window

v

| data standardization |

'

The state identification of the data was
carried out by iForest and dynamic orbit

—@

Outliers

Otherwise

Behavioral analysis on the
message side, extreme case?

Delete the node data and record
this data to the database

Figure 6. Data Feature Preprocessing.

Lastly, the identification and repair of data outliers in the high-dimensional data
matrix are performed using the iForest method and the dynamic trajectory method. Any
detected outliers trigger an analysis of behavioral patterns, helping to determine if they are
extreme events. If they are so identified, they are recorded in the database to assist in the
development of integrated prediction algorithms.

3.1. Construction of High-Dimensional Data Matrices

The first step in data feature preprocessing is to construct an appropriate high-
dimensional data matrix, denoted as Xr. In this study, the data elements of n-dimensional
nodes are sampled. At a specific sampling time ¢, the n-dimensional sampling nodes can be
arranged into a column vector, as shown in Equation (8):

T
]

®)

Xt = [xl,t X2t 0 XNt

As the sampling time increases, the number of column vector data also increases.
Therefore, a time series X can be constructed, as follows:

X=1[x1 x - x -] 9

To meet the requirements of real-time computation, the collected data are analyzed

by using a sliding time window. The width of the sliding time window is set as T,

which includes the data collected at time ¢t and the historical data from t-7 to t. The

high-dimensional data matrix Xt is then constructed using all the data within this time
window, as shown below:

Xr=[X—rq1 - xi (10)

where T represents the time window.
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The selection of the time window should meet the following criteria: it should be of
appropriate width to meet the needs of real-time detection while also including all the
measured data from each partition.

3.2. Data Standardization

Construction of the high-dimensional data matrix Xt. All of the data undergo stan-
dardization processing, including dimensionless transformation and normalization [50].
After processing, different data will be transformed into the same measurement standard,
facilitating comparison and analysis. Standardization operations can eliminate bias and
outliers in the data, improve data quality and reliability, and reduce data dimensionality,
leading to a reduction in computation time and complexity.

3.3. Data Outlier Recognition and Correction

Due to fluctuations in load and other factors, the operational process of the integrated
energy system is inherently a dynamic and variable process. After obtaining a multidimen-
sional data matrix composed of cooling load, heating load, electric load, meteorological
data, and other data, the first step is to remove outliers in the data using the iForest al-
gorithm. Then, using the dynamic trajectory method, abnormal values within the time
series are removed and repaired. When an exceptional value exceeds the upper bound
of the dynamic trajectory, the corresponding value in the multidimensional data matrix
is assigned as the baseline value. When an exceptional value exceeds the lower bound of
the dynamic trajectory, the baseline value is assigned as the corresponding value in the
multidimensional data matrix. The dynamic trajectory acts as a highway, ensuring that
data operates within a normal range. Simultaneously, in the event of an abnormal alert,
the system triggers the behavioral analysis function of the message interface. The system
analyzes the activities within the system to determine whether the abnormality is due to a
sudden event, such as a large-scale activity or the deployment of new buildings and their
equipment. This analysis provides valuable experience for future production and daily life
and aids in the development of integrated prediction algorithms.

4. Construction of Input Feature Set and Multi-Load Prediction Model
4.1. Correlation Analysis of Multi-Loads

The integrated energy system is a complex system composed of the core components
of the cooling system, heating system, and electric energy system, as well as various
information systems including meteorological and economic systems. As an information-
intensive, immense, and dynamic system, it involves the mutual coupling and synergistic
complementarity of multiple energy sources. Furthermore, with the continuous expansion
and increasing complexity of the integrated energy system, detection and measurement
technologies have been continuously developing. Various measurement systems and
devices are being applied, leading to exponential growth in the related data [51].

Faced with the increasing temporal dimension of operational data in the integrated
energy system, a massive amount of data has been generated with both temporal and spatial
characteristics. Analyzing the collected high-dimensional feature data aids in gaining a
general understanding of the entire integrated energy system and provides qualitative
guidance for the construction of prediction models in terms of direction and scope.

4.1.1. Autoregressive System Analysis

In this study, an autoregressive model (AR model) [52,53] is employed to analyze the
temporal state characteristics of short-term time series and provide a basis for determining
the moving average period, 1, in the dynamic track method. The autoregressive model uses
its own past values as regression variables, describing the linear regression relationship of
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a random variable at a future moment based on a linear combination of its previous values.
Consider a time series { X; } that satisfies the following equation:

Xi=ay+aX;_1+---+ apXt—p + & (11)

where a9, a4, -, ap are coefficients, and ¢; represents the white noise value.

The temporal state characteristics of the load data are analyzed based on the autocorre-
lation coefficient function (ACF) and the partial autocorrelation coefficient function (PACF)
of the AR model. Due to the limitation of the length of the article, the cooling load data,
heating load data, and electric load data are taken as examples. As shown in Figure 7, the
cooling load autocorrelation coefficient analysis diagram and the partial autocorrelation
coefficient analysis diagram are shown. As shown in Figure 8, the heating load autocor-
relation coefficient analysis diagram and the partial autocorrelation coefficient analysis
diagram are shown. As shown in Figure 9, the electric load autocorrelation coefficient
analysis diagram and the partial autocorrelation coefficient analysis diagram are shown.

100 Cooling load 100 Cooling load

0.75

0.50

025

0.00 1 ! (]

PACF

-0.25

-0.50

-0.751 -0.75

-1.00 -1.00
0 25 50 75 100 125 150 175 200 0 2 4 6 8 10

Time/t Time/t

(a) (b)

Figure 7. Analysis Diagram of Cooling Load. (a) ACF. (b) PACFE.

Heating load Heating load
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Figure 8. Analysis Diagram of Heating Load. (a) ACF. (b) PACF.
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Figure 9. Analysis Diagram of Electric Load. (a) ACF. (b) PACE.

According to Figures 7-9, the blue regions represent the confidence intervals of the
correlation coefficient plots. In this study, we chose a confidence level of 95% and a time
granularity of 15 min. From the autocorrelation coefficient plot of the cooling load, we
can observe a strong coupling relationship between the load sequences in shorter time
intervals. Specifically, at a lag time of 13 intervals, the positive autocorrelation coefficients
of the cooling load remain above 0.5. Similar analyses of the autocorrelation coefficients
of the heating load and electric load reveal that the positive autocorrelation coefficients of
the heating load decrease below 0.5 after the fourth value, and the positive autocorrelation
coefficients of the electric load also decrease below 0.5 after the fourth value. This indicates
that the mutual coupling effect between cooling loads is stronger as compared to that of
the heating and electric loads.

Furthermore, by observing the autocorrelation coefficients of the cooling load, heating
load, and electric load, we find that each exhibits certain periodic variations. Moreover,
compared to the electric load, the cyclic variations of the cooling load and heating load are
more pronounced and organized. By examining the partial autocorrelation coefficients of
the cooling load, heating load, and electric load, we can conclude that there exists a direct
and strong coupling relationship between the loads within the first three time intervals.

4.1.2. Maximal Information Coefficient Analysis

Pearson correlation coefficient or Spearman correlation coefficient can be effectively
used to measure the linear correlation between data, and even to determine the mathe-
matical formulas for linear or simple nonlinear relationships through regression analysis.
However, in integrated energy systems, the coupling relationships between multiple sys-
tems are complex, and there exists not only linear relationships but also a significant
number of nonlinear relationships between the data. Nonlinear relationships cannot be
simply expressed using mathematical formulas.

The maximal information coefficient (MIC) method [54,55] can measure the strength of
both linear and nonlinear associations between data, allowing for the discovery of diverse
types of relationships among different types of load data. Therefore, in this study, the MIC
is used to analyze the spatiotemporal characteristics of multiple systems and to construct a
high-dimensional feature matrix for model inputs. Figure 10 presents the MIC heatmaps
for various systems, including the electric energy system, cooling system, heating system,
and weather system.
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Figure 10. MIC Heat Map of Characteristic Sequence.

The legend on the right side of Figure 10 represents the correlation levels between
the major features, with values ranging from 0 to 1. A value below 0.3 indicates weak
correlation between the two features, while a value above 0.7 indicates strong correlation
between them.

As shown in the figure, the cooling system, heating system, and electric system serve
as the three major foundational systems in integrated energy systems. The correlation
coefficient between the cooling load and heating load is 0.57, indicating a strong correlation
and a close coupling relationship between the cooling and heating systems. The correlation
coefficient between the cooling load and electric load is 0.7, suggesting a particularly tight
connection between the cooling and electric systems in the production and daily life of
integrated energy systems.

The correlation coefficient between the heating system and the electric system is
0.48, indicating a coupling relationship between the two in the integrated energy system,
although it is relatively weaker than the cooling-electric system relationship. In addition, it
can be observed that the cooling, heating, and electric systems also exhibit a close correlation
with temperature and dew point. Furthermore, there is a strong correlation between the
building usage of each system and its respective systems.

4.2. Construction of Input Feature Set

Based on the analysis of MIC data, this study selects eight characteristic variables as
inputs in order to construct the input feature set, which include cooling load, heating load,
electric load, temperature, dew point, and the number of buildings using cooling, heating,
and electric loads. The specific list of these variables is presented in Table 1.
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Table 1. Input List of Feature Sets.

Parameter Specification
Cooling load The power value of the cooling load
Heating load The power value of the heating load
Electric load The power value of the electric load
Input feature Temperature Temperature of the record
Dew point Dew point of the record
Cooling houses Number of buildings using cooling load
Heating houses Number of buildings using heating load
Electric houses Number of buildings using electric load

4.3. Multi-Load Prediction Model
4.3.1. Model Framework

In this study, a multi-task learning framework called the TCN-MMoL (referred to as
the CMMoL model) is utilized to establish a multi-load prediction model, as illustrated
in Figure 11. First, when the network model receives the input high-dimensional feature
matrix, the TCN network is employed to explore and extract the temporal and spatiotem-
poral characteristics of the high-dimensional data features. Subsequently, the TCN network
feeds the learned feature information into the preceding LSTM network in the expert layer,
further refining the feature matrix. The unique memory capability of the LSTM units is
utilized to extract temporal dependencies within the feature matrix. Lastly, the processed
data features are input into the multi-gate network model, where the expert network layer
and its distinct gating mechanism predict and output power values for cooling load, heating
load, and electric load.
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Figure 11. Model Framework.

4.3.2. Evaluation Metrics

In this study, the mean absolute percentage error (MAPE) is adopted as the primary
evaluation metric for the predictive performance of each model, with the mean absolute
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error (MAE) selected as a secondary evaluation metric. The calculation formulas for MAPE
and MAE are as follows:

1\ lye — ]

MAPE = — ~ (12)
n 2;; yt
1M

MAE = — Z|yt —yt|. (13)
i3

In Equations (12) and (13), y; represents the actual power load data, §; represents the
predicted power load data, and n represents the sample size of the power load data.

5. Experiment Analysis
5.1. Experiment Description

In this paper, experiments are carried out on the hardware platform of Xeon4213R
CPU and NVIDIA RTX 3080 GPU. The TensorFlow and Keras deep learning frameworks
are built and implemented in the Python programming language.

The load data of the example are derived from the IES cooling, heating, and electric
load data and other characteristic data of the Tempe campus of Arizona State University
from 1 January 2022 to 1 May 2023. The sampling granularity is 15 min. The load data
are derived from the project network database of the campus. The campus has 288 build-
ings and more than 50,000 teachers and students. It also has CCHP (Combined Cooling,
Heating, and Power), electric boilers, gas boilers, and power-to-gas P2G (Power-to-Gas)
and other energy conversion equipment. The meteorological data comes from the public
meteorological data for the corresponding time period on the meteorological website. In
the division of the dataset, 75% is taken as the training set, 15% as the verification set, and
10% as the test set.

5.2. Analysis of the Necessity of Global Use of the iForest Algorithm

Among the instance data selected in this paper, there are 22 statistical features and
more than 46,000 running data. In the face of massive experimental data, this paper uses
the iForest algorithm to process global data. The algorithm has the characteristics of high
processing accuracy and fast calculation speed and is suitable for dealing with outliers in big
data [56]. At the same time, the processed data are more conducive to the implementation
of the dynamic orbit method.

Due to the limited space, only the electric load data are taken as an example to show
the processing process and analyze the necessity. Figure 12 shows the historical data
running diagram of the electric load before processing.

1e36

Power/kW
ES

-6+

2022-01  2022-03 2022-05 2022-07 2022-09 2022-11 2023-01 2023-03 2023-05
Time

Figure 12. Electric Load Running Diagram Before Processing.
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Through observation, extreme value points are found in the data, which makes the
dynamic power load data present as a straight line; there is also an order of magnitude
difference between the extreme value points and the normal data.

In order to express this order-of-magnitude relationship more clearly, the contour
distribution map of the electric load is drawn. As shown in Figure 13, the white points in
the figure are normal values and are distributed in the contour distribution cluster of the
blue area. The closer to the center, the darker the color; the more inclined to the outside
of the contour, the lighter the color. The black dots in the figure are outliers, which are
scattered in the dark green area.

10.0

o inliers
e outliers

-10.0 T T T
-10.0 -7.5 -5.0 225 0.0 25 . . 10.0

Figure 13. Electric Load iForest Contour Map.

By detecting and eliminating the abnormal points, the actual operation data of the
power load after elimination are shown in Figure 14. By comparing the operation charts
before and after the power load preprocessing, it can be seen that the outliers in the data
have been eliminated, and the power load operation data show a trend and regularity,
indicating that the method can efficiently process the outliers in the data.

Electric load running diagram after processing

30,000 4

25,000

20,000 1

Power/kW

15,000 -

10,000 1

5,000 A

202‘2—01 202‘2-03 202‘2—05 202‘2-07 202’2-09 202‘2-1 1 202‘3-01 2025-03 2025')-05
Time

Figure 14. Electric Load Running Diagram After Processing.

5.3. Super Parameter Settings

In the data feature preprocessing and network model, there are hyperparameters in the
upper and lower margin values of dynamic orbits, the TCN network layer, and the MMoL
network layer. According to the learning effect of model training, the control variable
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method is used to determine the hyperparameters in the model. After several parameter

adjustments, the final optimized parameters are shown in Table 2.

Table 2. Hyperparameter Settings of the Model.

Description of Parameters Hyperparameters Numerical Values/Types
) . M1 15%
Dynamic Orbit
M2 15%
Filters 43
Kernel size 4
TCN layer Stacks 1
Dilation rate [1,2,4,8,16]
Dropout rate 0.2
Filters 32
LSTM1 Dropout 0.02
Return sequences True
Filters 26
LSTM2 Dropout 0.02
MMolL layer Return sequences True
Filters 16
LSTM3 Dropout 0.02
Return sequences /
Hidden units 43
Expert 5
MMoE Task 3
Output network Dense
Loss function MAE
L Epoch 100
Optlmlzatlon parameters Optimizer Adam
Batch size 256
Early Stopping /
Callbacks Model Checkpoint /

5.4. Performance Analysis of Different Prediction Models

The method proposed in this paper differs from the traditional multi-task method in
terms of data preprocessing and model structure. In order to further comprehensively eval-
uate the correctness and effectiveness of the iForest and dynamic orbit method proposed in
this paper in the multi-load forecasting of integrated energy system, this section objectively

designs three sets of experimental models, which are as follows:

1.  Based on iForest-TCN-MMoL multiple load forecasting model (ITMMoL model).
2. Based on iForest-Dynamic Orbit-CNN-LSTM multivariate load forecasting model

(IDCLSTM model).

3. Based on iForest-Dynamic Orbit-TCN-MMoL multiple load forecasting model (IDTM-

MoL model).

In order to ensure the fairness of the experiment, all models used the same dataset
allocation ratio to divide the training set, verification set, and test set. In addition, in order
to ensure the training effect of the comparison model, the network layer was set with the
optimal configuration, and the MAPE and MAE indexes of various models on the test set

were calculated, as shown in Table 3.
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Table 3. Prediction model error comparison.

Cooling Load Heating Load Electric Load
Model Ma;pe M/ae Ma;pe M/ae Mipe M/ae
% (Ton/h) % (mmBTU/h*1000) % kW
ITMMoL 6.37 432.08 5.54 350 3.29 356.02
IDCLSTM 6.98 472.61 6.35 390 3.79 428.7
IDTMMoL 3.80 404.74 5.43 330 2.80 324.71

It can be seen from Table 3 that the IDTMMoL model proposed in this paper has been
upgraded in the data preprocessing link and model optimization link. Compared with the
ITMMoL model and the traditional multi-task IDCLSTM model, the prediction errors of
the cooling load and electric load are significantly reduced. Compared with the traditional
learning method, the effect is remarkable [57,58]. The following is the effectiveness analysis
from the data preprocessing link and the model optimization strategy link.

5.4.1. Validity Analysis of Data Preprocessing

In order to verify that the IDTMMoL model proposed in this paper can effectively
eliminate outliers and improve the accuracy of load forecasting after adding the dynamic
orbit module in the data preprocessing link, this paper sets up the control ITMMoL model.
The comparison model only uses iForest for data preprocessing.

As shown in Figure 15, the prediction error results of the IDTMMoL model and the
ITMMoL model proposed in this paper show that the MAPE index of the cooling load,
heating load, and electric load are reduced by 2.57%, 0.11%, and 0.49%, respectively. The
MAE error value of the cooling load, heating load, and electric load are also reduced to a
certain extent. It can be seen that after adding the dynamic orbit module, the prediction
errors of the cooling load and electric load are significantly reduced. The reason is that
the dynamic orbit method can effectively eliminate the outliers hidden in the time series
sequence, thus reducing the interference of outliers with the neural network and improving
the prediction accuracy. Therefore, our proposed model has a better prediction effect.

MAE MAPE
7.0+

404.74

32471

\“‘w\o

(a (b)
Figure 15. Error-Stacking Diagram of ITMMoL Model and IDTMMoL Model. (a) MAE. (b) MAPE.

5.4.2. Analysis of the Effectiveness of the Model Optimization Strategy

In order to verify the effectiveness of our IDTMMoL model in the network layer
structure TMMoL module, this paper sets up the control IDCLSTM model. The compar-
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ison model is a traditional multi-task load forecasting model based on parameter hard
sharing. The traditional multi-task learning mechanism uses the LSTM layer as the shar-
ing layer and then connects the fully-connected layer as the prediction output to achieve
multi-load forecasting.

As shown in Figure 16, we show the performance comparison of the IDCLSTM model
and the IDTMMoL model on the test set for a certain period of time for cooling, heating, and
electric loads. It can be seen that in the prediction effect of the electric load, the proposed
IDTMMoL model and the traditional multi-task IDCLSTM model can achieve a better
prediction effect, and the prediction curve has a higher degree of fit to the real curve. The
IDTMMoL model shows a better prediction effect than the IDCLSTM model. However,
through the comparison of some details, the IDTMMoL model can still maintain a good
fitting effect in the part where the curve fluctuates violently and the predicted value is
closer to the real value, while the prediction error of the IDCLSTM model is improved, and
the fit is not good.
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Figure 16. Comparison of Prediction Effects. (a) Cooling load. (b) Heating load. (c) Electric load.

In addition, since the fluctuation of the cooling load and heating load is more severe
than that of the electric load, the training of the model is more difficult and prone to
over-fitting or under-fitting. It can be seen from Figure 16 that the IDCLSTM model is
more conservative in the prediction of cooling and heating loads, and the fluctuation of the
prediction curve is gentle in the face of large fluctuations in cooling and heating loads. As
can be seen in Table 3, the MAPE percentage of the cooling load in the IDCLSTM model is
6.98%, while the IDTMMoL model still maintains a good predictive ability, and its MAPE
index percentage is 3.8%, which is 3.18 percentage points lower than that of the IDCLSTM
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428.70
Electric load

model. The reason for this is that using LSTM as the hard sharing layer cannot consider the
correlation difference between multiple loads, resulting in providing the same weight value
for the subtask layer, which affects the performance of the model. In contrast, the proposed
IDTMMoL model achieves feature information sharing between multi-tasks by setting up
multiple expert subnets. At the same time, the setting of the gating layer also avoids the
interference of weak correlation information on subtasks. In addition, according to the
fluctuation characteristics of subtasks and the correlation differences between multiple
loads, the IDTMMoL model also sets different loss functions. Therefore, the IDTMMoL
model achieves better prediction results.

The error comparison diagram of the two comparison models is presented by Figure 17.
It can be seen here that our proposed IDTMMoL model performs better than the IDCLSTM
model in the test set’s cooling, heating, and electric loads, and the MAPE error percentage
and MAE error value are reduced. This also shows that the TCN layer in the IDTMMoL
model can obtain the feature information of the long time series more than the CNN layer
of the IDCLSTM model and mine the data. When the feature information is introduced
into the LSTM layer, the LSTM unit layer in the IDTMMoL model can better refine these
temporal and spatial features. Therefore, the prediction effect of our IDTMMoL model
is better.

Cooling load Cooling load
472, 61 6. 98
404. 4 6
5
A3.8
2.80
3.79 \43
324.71 330
390 6.35
Heating load Electric load Heating load
IDCLSTM @ IDTMMoL IDCLSTM [ IDTMMoL

(a) (b)

Figure 17. Error-Stacking Diagram of IDCLSTM Model and IDTMMoL Model. (a) MAE error.
(b) MAPE error.

6. Conclusions

In order to address the multi-load forecasting problem of integrated energy systems,
this paper designs the data feature preprocessing link and model selection link and pro-
poses a multi-load forecasting method for an integrated energy system based on the iForest
algorithm and dynamic orbit method. Through the example analysis, the following conclu-
sions are obtained.

1. The Lonely Forest algorithm can deal with the outlier problem in high-dimensional big
data and has the characteristics of high processing accuracy and fast calculation speed.

2. The dynamic orbit method can effectively eliminate the hidden outliers in the time
series, and the cleaning effect is good, which provides a good foundation for the
neural network prediction model.

3. The coupling relationship between load data in the integrated energy system is
complex. The AR method can analyze the time series characteristics of the load, and
the MIC method can mine the spatial characteristics between the loads and construct
a high-dimensional feature matrix with strong correlation, which lays a foundation
for improving the accuracy of the prediction model.



Sustainability 2023, 15, 15029 21 of 23

4. Through the reasonable design of the TCN-MMoL network structure, the coupling
characteristics of historical data are better learned from the three aspects of data feature
capture, learning, and multi-task allocation, and the prediction accuracy is improved,
which proves the effectiveness of the algorithm in the time series feature sequence.

The research results of this paper provide a new solution and method for the multi-
load forecasting problem of integrated energy systems, which is of great significance to
promote the intelligence and efficiency of an integrated energy system.

Based on the findings of this study, our future research direction can be extended to
more application scenarios, such as wind power and photovoltaic power forecasting and
electricity price forecasting for integrated energy systems.
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