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Abstract: Nowadays, recycling of construction and demolition waste (C&DW) is a challenging
opportunity for the management of such end-of-life (EOL) materials through alternative methods to
environmentally unsustainable methods (i.e., landfilling). In order to make recycling processes more
effective, quality control systems are needed. In this work, the possibility of developing a sensor-
based procedure to recognize different demolition waste materials from a recycling perspective was
explored. An automatic recognition of different predefined constituent classes of recyclables (i.e.,
concrete, mortar, natural stones, unbound aggregates, clay masonry units, bituminous materials)
and contaminants (i.e., glass, metals, wood, cardboard, and gypsum plaster), as established by an
European standard, was carried out using hyperspectral imaging (HSI) working in the short-wave
infrared (SWIR) range (1000–2500 nm). The implemented classification strategies, starting from the
collected hyperspectral images of the analyzed constituents, allowed for the identification of the
different material categories. Two main models were built for identifying contaminants in recyclable
materials and categorizing material groups based on technical specifications. The results showed
accurate category identification with Sensitivity and Specificity values over 0.9 in all models. The
possibility of performing a full detection of C&DW recycling products can dramatically contribute to
increasing the quality of the final marketable products and their commercial value, at the same time
reducing the amount of waste and the consumption of primary raw materials.

Keywords: construction and demolition waste; recycling; recyclable materials; hyperspectral imaging

1. Introduction

C&DW represents one of the largest waste streams produced globally. In Europe,
about 37% of the total generated waste was represented by C&DW in 2020 [1]. Construction
activities, on the other hand, consume large quantities of primary raw materials (i.e., 25%
of virgin wood and 40% of gravel and sand annually produced worldwide), resulting in
progressive resource depletion [2–4].

The fundamental goal to achieve in this context is the optimal management, mitigation,
and valorization of C&DW, with particular attention to material recovery. Such a goal is
defined by the new circular economy action plan framed in the European Green Deal, since
C&DW has been identified as one of the main waste categories of concern for the green
transition [5].

C&DW comes not only from the demolition of civil and/or industrial structures, but
also from renovation activities or the occurrence of natural calamities (i.e., earthquakes) [6].
In this latter instance, large amounts of rubble are formed in a relatively short period of
time, and hence, appropriate handling/processing strategies should be used to free up
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regions, in order to make structures safe and to perform reconstruction. Those activities
are usually associated with further demolition operations, thus producing other C&DW
materials to handle [7].

In terms of the characteristics of the originating sources, C&DW is typically composed
of many materials (e.g., concrete, bricks, excavated soil, metals, glass, gypsum, wood,
plastic, rubber, etc.), characterized by different physical-chemical properties and producing
a significant impact on both the setup of efficient recycling strategies and the possibility to
generate recovered mono-material flow streams with a low presence of contaminants. This
latter aspect is of dramatic importance, since contaminant materials negatively affect the
quality of the final products to recycle.

Three primary types of materials providing aggregates, according to existing criteria,
can be derived from C&DW: crushed concrete, crushed masonry, and mixed demolition
debris to be recycled [8]. Gypsum, metals, plastic, wood, and other pollutants have the
potential to weaken the strength of concrete produced with recycled aggregates [9]. Many
European countries have established regulations and procedures to encourage the reuse
of these materials in road building and in other construction applications, according to
their composition and characteristics [10–12]. A full classification based on individual
constituents (such as concrete, mortar, natural stone, masonry, bituminous materials, glass,
metals, wood, plastic, floating materials, etc.) of C&DW in a recycling perspective is thus
recommended by legislation in order to define materials suitable for structural concrete [13]
or for other applications [14,15].

The possibility of realizing a full separation of materials, also assessing their quality
in terms of single recovered flow stream purity (i.e., identification and quantification of
contaminants), could represent a big step forward, reducing the dumping of huge quantities
of potentially reusable and/or recyclable materials [16–18]. The adoption of processing
strategies able not only to separate the materials, but also to verify their quality in a simple,
robust, reliable, and cost-effective way is necessary in order to reach this goal. Moreover,
the economic aspect is of paramount importance mainly for two reasons:

• The relatively low values of the materials that are potentially recoverable from C&DW
flow streams. The development of low-cost processes is thus linked to the production
of large quantities of material per time unit, which must also be of high quality;

• The dimensions of the enterprises involved in this business. Usually, in fact, they are
of small or medium size, and normally, they want to perform the job as quickly and as
cheaply as possible, utilizing simple technologies and thus causing an important loss
of recoverable materials and a corresponding reduction in revenues [19].

Starting from these premises, the only possibility for performing better C&DW recycling
is through the increase of recovered product quantity and quality, the utilization of simple
technologies, and an increased market consciousness versus a larger material recovery.

To achieve the latter goal, various processing perspectives, based on C&DW con-
stituent material maximization recovery, must be adopted. Plastics and/or wood, or milled
brick flow streams, for example, have thus been regarded as resources to be recovered
rather than contaminants within recycled aggregates. Additionally, innovative and low-cost
analytical tools capable of performing continuous and comprehensive monitoring of the
various generated C&DW-based flow streams must be developed, implemented, set up,
and fully utilized.

The fulfillment of the previously mentioned targets represents the only way to fight
and cut down some of the actual existing barriers related to the utilization of recycled
aggregates, such as (i) a low quantity of C&DW-derived products; (ii) a not-clear perception
in the market of the advantages, both in environmental and economic terms, linked to the
utilization of more specific and focused C&DW processing practices; and (iii) a legislation
that does not favor their use, etc. All these facts negatively interact with each other, thus
enhancing the suspicion associated with the use of recycled C&DW products.

In the last decade, different studies were carried out to explore the possibilities offered
by novel mechanical recycling systems and procedures to obtain high-grade recycled
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aggregates [18–21]. To provide one example, the European C2CA project looked into a
combination of smart demolition, grinding crushed concrete in an autogenous mill to
improve the liberation of cement mortar from the surface of aggregates, and a unique
dry classifying technique called Advanced Dry Recovery (ADR) to remove the smaller
particles [18]. Gebremariam et al. [20] discussed the development of the Heating-Air
classification System (HAS) together with the ADR. These industrial-scale technologies
are designed to recycle end-of-life (EOL) concrete into coarse, fine, and ultrafine particles.
Therefore, ADR serves the purpose of separating clean coarse aggregates, whereas the HAS
is employed to create pristine fine aggregates through the heating and separation of the
ultrafine hydrated cement constituents. Moreover, in order to create a more environmentally
friendly and sustainable system, Ferrández et al. [21] suggested adding two new steps of
processing, demonstrating that they dramatically lower the impurity content and water
absorption of recycled aggregates, resulting in a superior end product (cement mortar)
for constructions.

In this perspective, this work aimed to show the possibilities offered by an innovative
optical sensing technology aided by machine learning to improve and to speed up C&DW
recycling in the characterization, sorting, and quality control stages. In more detail, the
developed approach is based on hyperspectral imaging (HSI). This technology could
successfully contribute to filling the existing gap between C&DW recovered products and
their full characterization and certification.

An HSI procedure in the short-wave infraRed (SWIR) range (1000–2500 nm) was im-
plemented to detect recyclables (i.e., concrete, mortar, natural stones, unbound aggregates,
clay masonry units, and bituminous materials) and contaminants (i.e., glass, metals, wood,
cardboard, and gypsum plaster) as defined by the European standard EN 933-11:2009 [22].
SWIR-HSI enables the identification of different materials on a properly energized sample
surface based on their reflectance spectra [23,24], according to the presence of specific chem-
ical bonds (i.e., O-H, N-H, C-H, S-H, . . .) that are obviously linked to their composition.
The HSI technique allows for the acquisition, collection, and management of spectra of a
properly energized surface sample [23,24]. The collected spatial and spectral information is
arranged in a 3D dataset, the so-called hypercube, characterized by two spatial dimensions
and one spectral dimension. Starting from the information constituting the “hypercube”,
material characteristics and assessment, in the investigated flow stream, can be thus deter-
mined. Spectral features are linked to samples’ physical-chemical attributes, thus allowing
for full sample characterization, classification, and quality control.

In the last few years, HSI has become more prevalent in the solid waste industry, and
its use in the DW recycling sector has begun to take hold [25–28].

HSI-based techniques are cost-effective, reliable, simple to apply, and easy to imple-
ment both at the stationary and mobile plant scales. An HSI-based approach can allow for
the continuous monitoring of C&DW-derived products, which can result in the subsequent
certification of the processed materials.

2. Materials and Methods
2.1. Selected Samples

The Federation of Recycling Construction Waste (FEREDECO) in Wallonia (Belgium)
provided mixed demolition waste samples to the Centre Terre et Pierre (CTP, Tournai,
Belgium), a certified research center, which performed tests at a pilot plant scale in order to
simulate a separation line for inert materials from C&DW. A first screening step was carried
out to remove the finest particles (−15.00 mm) and the particles with a size of +15.00 mm
were then crushed. A new screening step was then carried out on +15.00 mm particles, and
three size classes were obtained (i.e., +60 mm, −60.00 +30.00 mm, and −30.00 mm classes).
Crushed particles with a size of −30 mm were then wet-sieved to remove the −4.00 mm
fraction, which was too fine to be visually characterized. The −30 mm +4.00 mm fraction
was then immersed in water and slightly stirred to separate floating from sinking particles.
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The floating materials (i.e., autoclaved aerated concrete particles), constituting the Fl
category, were recovered and dried. The sinking materials were dried in a ventilated oven
at 60◦ for 24 h, and then they were classified into the six categories defined by the European
standard EN 933-11:2009 [22], which are as follows:

• Rc: Concrete, concrete products, mortar, and concrete masonry units;
• Ru: Unbound aggregates, natural stones, and hydraulically bound aggregates;
• Rb: Clay masonry units (i.e., brick and tiles), calcium silicate masonry units, and

aerated non-floating concrete;
• Ra: Bituminous materials;
• Rg: Glass;
• X: Other cohesive materials (i.e., clay and soil) and miscellaneous materials, such as

metals (ferrous and non-ferrous metals), non-floating wood, plastic and rubber, and
gypsum plaster.

Class X was then subdivided into four classes:

• X1: Metals (ferrous and non-ferrous);
• X2: Non-floating wood;
• X3: Cardboard;
• X4: Parget and gypsum plaster.

The categories Rc, Ru, Rb, and Ra were considered recyclable materials in accordance
with the legislation, while classes Fl, Rg, X1, X2, X3, and X4 were considered contaminants
with respect to the main applications of C&DW products (i.e., road foundations, material
production as aggregates for concrete, etc.).

The list of the 10 different categories of materials is summarized in Table 1.

Table 1. Adopted identification and description of the sinking and floating materials as resulting
from hydraulic separation.

Identification Code Condition Description

Recyclables

Rc Non-floating Concrete and mortar

Ru Non-floating Natural stones and
aggregates

Rb Non-floating Masonry (i.e., bricks,
tiles, ceramics, etc.)

Ra Non-floating Hydrocarbons

Contaminants

Rg Non-floating Glass

X1 Non-floating Metals (ferrous and
non-ferrous)

X2 Non-floating Non-floating wood
X3 Non-floating Cardboard

X4 Non-floating Parget, gypsum
plaster

Fl Floating Autoclaved aerated
concrete

From each of the 10 categories, particles were selected, and HSI-based classifications
were performed, adopting two different acquisition set-ups as described in the following:

• 1st set-up. A training image to be utilized for the classification stage was generated
(Figure 1a). More specifically, a set of 20 particles clearly identified as floating materials
(4 particles), wood (2 particles), masonry (2 particles), paperboard (1 particle), concrete
(2 particles), aggregates (3 particles), hydrocarbons (1 particle), parget (2 particles),
glass (1 particle), and metals (2 particles) were used in order to build the classification
model.

• 2nd set-up. A validation image, constituted by particles of the same materials but
different from those utilized for training, was then created to perform the validation
(Figure 1b).
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Figure 1. Digital images of the training (a) and validation set (b). The analyzed categories are
concrete (Rc), aggregates (Ru), masonry (Rb), hydrocarbons (Ra), floating materials (autoclaved
aerated concrete) (Fl), glass (Rg), metals (X1), wood (X2), cardboard (X3), and parget (X4).

2.2. Hyperspectral Imaging System

Hyperspectral imaging acquisitions were carried out at the Raw Materials Laboratory
(RawMaLab) of the Department of Chemical Engineering, Materials and Environment
(Sapienza—University of Rome, Rome, Italy).

The analyses were performed in a controlled environment, imitating the operative
conditions of a similar sensing unit in a real processing plant. However, the push-broom
acquisition logic of the HSI system (e.g., the sensor remains stationary while the object
being observed is moved) simulates a conveyor belt setup that can be employed in a
processing facility.

A SisuCHEMA XL Chemical Imaging Workstation (Specim Spectral Imaging Oy
Ltd., Oulu, Finland), equipped with an ImSpector N25E imaging spectrograph (Specim
Spectral Imaging Oy Ltd., Oulu, Finland) and working in the SWIR range (1000–2500 nm),
was used. More in detail, a 31 mm lens with a field of view of 100 mm was adopted,
and 256 wavelengths were collected. To acquire, collect, and manage hyperspectral data,
ChemaDAQ software (Ver. 3.62; Specim Spectral Imaging Oy Ltd., Oulu, Finland) was
used. Spectral data were analyzed using PLS_Toolbox (Ver. 8.2; Eigenvector Research,
Inc., Wenatchee, WA, USA) and MIA_Toolbox (Ver. 3.1.0; Eigenvector Research, Inc.,
Wenatchee, WA, USA) working in a MATLAB (Ver. 8.6; The Mathworks, Inc., Natick, MA,
USA) environment.

2.3. The Developed HSI Procedures

Starting from the same training data set, two different strategies were adopted in order
to discriminate Rc, Ru, Rb, Ra, Fl, Rg, X1, X2, X3, and X4, as described in the following:

1. Two-classes model. In the first strategy, a two-classes model was built to identify
recyclable (Class 1: Rc, Ru, Rb, and Ra) and contaminant (Class 2: Fl, Rg, X1, X2, X3,
and X4) materials. Two classification models were then developed to recognize the
single materials of Class 1 (4-classes model) and of Class 2 (5-classes model), assuming
that the X1 class was removed during a metal removal step (i.e., magnetic separation).

2. Nine-classes model. In the second strategy, a metal removal step (i.e., magnetic sepa-
ration of X1) was firstly assumed, and then the remaining 9 categories of materials
(i.e., Rc, Ru, Rb, Ra, Fl, Rg, X2, X3, and X4) were classified individually by a single
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model. Since Rc (i.e., concrete) is sometimes misclassified with Fl (i.e., floating materi-
als/autoclaved aerated concrete), a 2-classes model to discriminate only these two
concrete categories was built.

Starting from the 2nd set-up, for each classification purpose, a subset of particles was
picked up and arranged in order to build the corresponding validation dataset.

A simplified scheme showing the adopted procedures is reported in Figure 2.
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Figure 2. Block diagram showing the strategies followed to define the different classification models.
For the “model a”, regions of interest (ROIs) were selected to set the classes from the training image,
while for the “model b”, training dataset was obtained by selecting pixels belonging to each different
investigated category on PCA score plot.

For the 2-classes model (i.e., “recyclable materials” and “contaminant materials”)
classification strategy, due to the huge variability of spectra, regions of interest (ROIs) were
selected on the training image in order to set the classes to be recognized in the validation
image. In the other cases, a training dataset for the following classification purposes was
obtained by selecting pixels belonging to each different investigated category based on
principal component analysis (PCA) score plot. Spectra preprocessing was applied in each
experimental setup in order to highlight the differences between the considered classes.
Preprocessed spectra extracted from ROIs or PCA scores clusters were used to train the
partial least-squares–discriminant analysis (PLS-DA) classification models. Classifications
and model validations were finally defined using test sets.

2.3.1. Spectra Preprocessing

Spectral data were preprocessed to enhance sample spectral features and to reduce
the impact of possible external sources of variability [29]. Preprocessing was carried out
utilizing the sequential application of different algorithms such as mean center (MC),
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Savitzky–Golay derivative, detrend, standard normal variate (SNV), and generalized least-
squares weighting (GLSW).

MC is one of the most common preprocessing methods, and it is useful to remove
constant offsets not significant for the data variance interpretation [30]. Derivative is a
useful method for removing baseline signal from samples, the detrend algorithm was
applied to remove constant, linear, or curved offset, while SNV is a weighted normalization
used to solve scaling or gain effects, due to path length effects, scattering effects, source
or detector variations, or other general instrumental sensitivity effects [31]. The GLSW
algorithm calculates a filter matrix based on the differences between pairs or groups of
samples that should be similar [32]. The filter matrix aims to reduce the weight of these
variations, which are regarded as interferences.

2.3.2. Principal Component Analysis (PCA)

PCA is an unsupervised method for reducing data dimensionality by projecting the
samples into a low-dimensional subspace where the axes are called principal components
(PCs) [33]. The PCs point in the direction of maximum variance.

Usually, the first principal component (PC1) accounts for the most variance in data,
with significant variations indicated by the separation between points along PC1 and PC2.

The sample grouping into clusters in the PC space is an indicator of their similarity.
The PCA scores plot can be used to visualize and understand existing relationships and/or
patterns within the hyperspectral image or dataset. In the PCA scores plot, each data point
(i.e., pixel or spectrum) from the original dataset is represented as a point.

2.3.3. Partial Least-Squares–Discriminant Analysis (PLS-DA)

Machine learning (ML) and deep learning (DL) algorithms are capable of analyzing
hyperspectral data and autonomously label materials based on their different spectral
patterns [34,35]. These algorithms allow us to precisely identify and classify materials after
being trained with large databases of spectral fingerprints.

DL is a particular form of ML, which is inspired by the structure and function of
the brain, attempting to replicate how the human brain learns. Artificial neural networks
(ANNs)-based architectures are usually utilized to reach this goal. PLS-DA, ANN, con-
volutional neural network (CNN), naïve Bayes, decision trees (DT), k-nearest neighbor
(k-NN), k-means clustering, classification and regression tree (CART), boosted regression
tree (BRT), random forest (RF), and support vector machines (SVM) are among the most
popular techniques used to manage multivariate datasets [34–37]. Image recognition and
classification are the most common applications of ML and DL.

In this context, PLS-DA is considered one of the most suitable ML techniques for HSI
analysis due to several key advantages. This multivariate approach is, in fact, a supervised
classification method combining the properties of partial least-squares (PLS) regression
analysis with the distinguishing ability of a classification technique [38]. This method is
used to predict known classes in an unknown image, and it requires prior data knowledge
(i.e., known samples are used to build the classification model). In more detail, PLS-DA
aims to maximize the separation between different classes or groups in the data, providing
interpretable results.

Classification models were trained by using preprocessed spectra extracted from ROIs
or PCA score clusters. Venetian blinds (VBs) was chosen as cross-validation algorithm in
order to assess the optimal complexity of the PLS-DA model [37]. PLS-DA classification
performance is usually assessed using statistical parameters calculated from the confusion
matrix of the classifier [39]. In this work, PLS-DA performance is reported in terms of
Sensitivity and Specificity in calibration and cross-validation. The metric that evaluates a
model’s ability to predict true positives in each available category is called Sensitivity, while
Specificity measures a model’s ability to predict true negatives in each available category.
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3. Experimental Results
3.1. Recyclable and Contaminant Materials Recognition (First Classification Strategy)

In order to set classes, ROIs were selected for the two-classes model (i.e., recyclable
materials and contaminant materials) on the training image (Figure 3).
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(i.e., recyclable and contaminants recognition).

Preprocessing was applied to the ROIs’ collected spectra. The averaged raw and
preprocessed spectra, obtained using the GLSW preprocessing algorithm, are reported in
Figure 4. The selected preprocessing highlighted the spectral behavior of the two classes,
allowing for an excellent PLS-DA classification in terms of prediction map, as shown in
Figure 5.
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The prediction results of the classification are very promising. It is easy to understand
the correspondence existing between every object in the image and one of the two classes.
Some pixel misclassifications are probably due to light scattering problems or the presence
of fine particles (i.e., dust) on the particle surface. In Table 2, the Sensitivity and Specificity
of the classification model are reported.

Table 2. Sensitivity and Specificity values of PLS-DA model built to recognize recyclable and
contaminant materials.

Contaminant
Materials

Recyclable
Materials

Sensitivity
Calibration 0.964 0.974

Cross-validation 0.942 0.962

Specificity
Calibration 0.974 0.964

Cross-validation 0.962 0.942

In order to perform the recognition of the four recyclable material classes and the
identification of the five contaminant material classes individually, two different PLS-DA
models were built.

3.1.1. Recyclable Materials Four-Classes Model

Starting from the training image, a subset of particles belonging to recyclable materials
(i.e., Rc, Ru, Rb, and Ra) was selected. In order to correctly extract the significant spectral
features, this new hyperspectral image was preprocessed, applying a sequential combi-
nation of three algorithms: derivative, SNV, and MC. The average raw and preprocessed
spectra of concrete (Rc), aggregates (Ru), masonry (Rb), and hydrocarbon (Ra) are reported
in Figure 6.

The absorption features, detectable around 1400 nm and 1900 nm in the spectra, are
due to the O-H stretching and H-O-H bending vibrations in the water molecules [40]. Other
absorption features in the Ru spectral signature around 2180–2220 nm can be related to
Al-O-H, while 2250–2380 nm features in all the investigated spectra can be linked to Fe-O-H
and/or Mg-O-H combination bands.

After preprocessing, an exploratory data analysis, based on PCA, was carried out.
By analyzing the score plot of Figure 7, it is possible to distinguish, according to their
grouping, different classes of products: PC2 and PC3 explaining 25.06% and 10.17% of the
variance, respectively. Pixel grouping is an indicator of spectral similarity and can therefore
reveal the variation in the chemical make-up of the samples even if they belong to the
same set category. For instance, Ru (i.e., aggregate) shows more than one “pixel cloud”
on the score plot, since particles belonging to Ru are probably not identical in terms of
chemical composition.
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Figure 7. PC2-PC3 score plot showing the data point clustering of 4 classes of materials (i.e., Rc, Ru,
Rb, and Ra).
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The results achieved after the application of the PLS-DA model are shown in Figure 8.
Satisfactory classification results were obtained, with excellent recognition of all four classes.
Occurring pixel misclassifications are probably related to the particle edge effect and light
scattering or due to the presence of extraneous inclusions in the particles. The Sensitivity
and the Specificity parameters related to the developed model are reported in Table 3.
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Figure 8. Digital image (a) and corresponding prediction map (b) resulting from the application of
the 4-classes PLS-DA model for recyclable materials. The 4 classes are “Rc” (dark red), “Ra” (yellow),
“Ru” (cyan), and “Rb” (dark blue).

Table 3. Sensitivity and Specificity values of PLS-DA model built to recognize Rc, Ru, Rb, and Ra
classes of materials.

Rc Ru Rb Ra

Sensitivity
Calibration 0.974 0.982 1.000 1.000

Cross-validation 0.973 0.981 1.000 1.000

Specificity
Calibration 0.986 0.994 1.000 0.981

Cross-validation 0.985 0.995 1.000 0.981
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3.1.2. Contaminant Materials Five-Classes Model

Another subset of particles belonging to contaminant materials (i.e., Fl, Rg, X2, X3, and
X4) was selected from the training image. The collected spectra were preprocessed using
derivative and MC algorithms. In Figure 9, raw and preprocessed spectra are reported.
Even in this case, preprocessing highlights spectral features. In addition to the spectra
absorption related to the water presence (around 1400 nm and 1900 nm), other absorptions
are related, in the cases of X2 and X3 samples, to the presence of lignin and cellulose [41].
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Figure 9. Raw (a) and preprocessed (b) spectra of Fl (i.e., floating materials), Rg (i.e., glass), X2 (i.e., 
wood), X3 (i.e., cardboard), and X4 (i.e., parget). 
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Figure 9. Raw (a) and preprocessed (b) spectra of Fl (i.e., floating materials), Rg (i.e., glass), X2 (i.e.,
wood), X3 (i.e., cardboard), and X4 (i.e., parget).

Since not much information is available about the chemical composition of the other
samples, it is not possible to associate all the spectra absorptions with a unique molecular
bond. However, the SWIR range allows us to investigate material characteristics and status
according to the presence of specific groups such as OH, NH, CH, SH, and CO.

PCA was applied, as explorative data analysis, after spectra preprocessing (Figure 10),
and some pixels were selected onto the score plot in order to build the training dataset for
the definition and the setup of the classification model. The best sample grouping was
obtained by plotting PC1 and PC4 components: the first PC explains 67.29% of the data
variance, while the fourth PC explains 3.37%.
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Figure 10. PC1-PC4 score plot showing the data point clustering of 5 classes of materials (i.e., Fl, Rg,
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The prediction image resulting from the application of the contaminant material model
is reported in Figure 11. The classification results are satisfactory. Slight misclassifications
occur along the particle boundaries, probably due to ragged particle edges. The Specificity
and Sensitivity parameters of the PLS-DA model built to classify Fl, Rg, X2, X3 and X4 are
reported in Table 4.
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Figure 11. Source digital image set (a) and corresponding prediction map (b) resulting from the
application of the 5-classes PLS-DA model for contaminant materials. The 5 classes are “Fl” (green),
“Rg” (dark red), “X2” (dark cyan), “X3” (dark blue), and “X4” (orange).

Table 4. Sensitivity and Specificity values of PLS-DA model built to recognize Fl, Rg, X2, X3, and X4
sample.

Fl Rg X2 X3 X4

Sensitivity
Calibration 1.000 1.000 0.999 1.000 1.000

Cross-validation 1.000 1.000 0.999 1.000 1.000

Specificity
Calibration 1.000 1.000 0.993 1.000 0.997

Cross-validation 1.000 1.000 0.992 1.000 0.997

3.2. Single Material Classes Recognition (Second Classification Strategy)

After the removal of metal particles, the training image was used to define the nine-
classes model able to identify Rc, Ru, Rb, Ra, Fl, Rg, X2, X3, and X4 at the same time. The
original and the preprocessed average spectra obtained after the sequential application of
the SNV, detrend, and MC algorithms are reported in Figure 12.

Even if it is quite difficult to perform a careful interpretation of acquired spectra
behavior, the association of the main absorption bands to C-H, O-H, and N-H stretching
vibrations is possible. In more detail, as mentioned before, the absorption features visible
around 1400 nm and 1900 nm are due to the O-H stretching and H-O-H bending vibrations
in the water molecules; meanwhile, the absorption around 2350 nm could be attributable
to the calcite presence, which is one of the cement mortar constituents in the form of
limestone and other forms of calcium carbonate [42]. Other absorption features in the
spectral signatures around 2200–2400 nm can be related to the O-H combination bands.
The preprocessing step can highlight the spectral behavior of the investigated samples.
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Figure 12. Raw (a) and preprocessed (b) spectra of Rc, Ru, Rb, Ra, Fl, Rg, X2, X3, and X4 samples. 
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Figure 12. Raw (a) and preprocessed (b) spectra of Rc, Ru, Rb, Ra, Fl, Rg, X2, X3, and X4 samples.

PCA was applied after spectra preprocessing, and the different PC combinations
obtained are reported in Figure 13. PC1 accounts for 55.63% of the variance, followed by
PC2 (15.64%), PC3 (8.54%), PC4 (6.11%), and PC5 (3.54%). Starting from the analysis of the
grouping of the different classes of materials on the score plots, the nine classes were set,
and the training dataset for PLS-DA classification was built.

The results achieved after the nine-classes model application in terms of the prediction
image are shown in Figure 14. The corresponding Specificity and Sensitivity parameters
are reported in Table 5.
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Table 5. Sensitivity and Specificity values of PLS-DA model built to recognize Rc, Ru, Rb, Ra, Fl, Rg,
X2, X3, and X4 samples.

Rc Ru Rb Ra Fl Rg X2 X3 X4

Sensitivity
Calibration 0.983 0.997 0.994 1.000 0.986 0.998 0.999 0.975 0.995

Cross-validation 0.983 0.997 0.992 1.000 0.986 0.998 0.999 0.975 0.995

Specificity
Calibration 0.997 0.988 0.996 1.000 0.995 0.999 0.989 0.975 0.994

Cross-validation 0.997 0.988 0.996 1.000 0.995 0.999 0.989 0.975 0.994
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The classification produces good results with the exception of particles belonging to 
concrete (Rc class), which are confused with floating materials (Fl class), which are the 
autoclaved aerated concrete samples. Since Rc is a recyclable material, and Fl is a contam-
inant material, an adequate discrimination between these two classes is required; thus, a 
new PLS-DA model was built to achieve this goal.  
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Figure 13. Different combinations of PC score plots showing the spatial position of the different
classes of materials after the application of preprocessing algorithms and the identification of pixels
belonging to each class: PC1-PC2 (a), PC1-PC3 (b), PC1-PC4 (c), PC2-PC3 (d), PC2-PC4 (e), and
PC2-PC5 (f).
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Figure 14. Source digital image set (a) and corresponding prediction map (b) resulting from the
application of the 9-classes PLS-DA model for contaminant materials. The 9 classes are “Rc” (orange),
“Ru” (blue), “Rb” (yellow), “Ra” (dark blue), “Fl” (dark cyan), “Rg” (dark red), “X2” (green), “X3”
(cyan), and “X4” (red).

The classification produces good results with the exception of particles belonging
to concrete (Rc class), which are confused with floating materials (Fl class), which are
the autoclaved aerated concrete samples. Since Rc is a recyclable material, and Fl is a
contaminant material, an adequate discrimination between these two classes is required;
thus, a new PLS-DA model was built to achieve this goal.

Concrete and Floating Materials Model

Starting from the training image data set, particles belonging to Rc and Fl were cut,
and a new training image was realized. Collected spectra were preliminarily preprocessed
sequentially applying SNV, derivative and MC. In Figure 15, the raw and preprocessed
spectra are reported.

PCA was applied after spectra preprocessing (Figure 16), and the two classes (i.e., Fl
and Ru) are clustered in two groups on the PC1-PC4 score plot. The PC1 explains 52.78%
of the data variance, while the PC4 explains the 5.31%.



Sustainability 2023, 15, 15009 18 of 22Sustainability 2023, 15, x FOR PEER REVIEW 19 of 23 

Re
fle

ct
an

ce
 

Wavelengths (nm) 
(a) 

Re
fle

ct
an

ce
 

Wavelengths (nm) 
(b) 
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Figure 15. Raw (a) and preprocessed (b) spectra of Rc and Fl samples.
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After the application of the built PLS-DA onto the validation image constituted by
Ru and Fl particles, a good classification was obtained (Figure 17). Statistical parameters
relating to the efficiency of the built classification model (i.e., Sensitivity and Specificity)
are reported in Table 6.
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Table 6. Sensitivity and Specificity values of PLS-DA model built to recognize Rc and Fl.

Rc Fl

Sensitivity
Calibration 0.999 0.997

Cross-validation 0.999 0.997

Specificity
Calibration 0.997 0.999

Cross-validation 0.997 0.999

3.3. Results Comparison with Previous Benchmark Studies

The present findings obtained through two ad hoc classification strategies are in line
with recent studies carried out by different authors, dealing with different C&DW materials.
In a previous study [43], a PLS-DA classification strategy, adopting near-infrared (NIR)—
HSI, was applied to C&DW materials. In more detail, a Sensitivity of 0.99, 1.00, 1.00, 1.00,
0.98, and 1.00 was reached for aggregates, brick, gypsum, plastic, wood, and foam classes,
respectively.

Xiao et al. [26] designed an automatic sorting robot based on NIR hyperspectral
images that was able to identify four different categories (i.e., wood, rubber, brick, concrete)
adopting two different machine learning techniques. In more detail, they used extreme
learning machine (ELM) and random forest (RF). Using ELM, a Sensitivity of 0.85, 0.96,
0.97, and 0.99 was obtained for wood, rubber, brick, and concrete, respectively, while using
RF, a Sensitivity of 0.98, 0.94, 0.96, and 0.98 was obtained for wood, rubber, brick, and
concrete, respectively.

Trotta et al. [28] obtained a PLS-DA Sensitivity ranging from 0.93 to 0.98 for the tile
and cement mortar classes coming from post-earthquake building waste using SWIR-HSI.

4. Conclusions

A procedure based on HSI in the SWIR range (1000–2500 nm) was developed and
different experimental set-ups were defined and implemented in order to recognize and
classify different materials constituting DW.

Two different goals were achieved: (i) the recognition of contaminants in recyclable
materials and (ii) the classification of each material category individually according to the
technical specification EN 933-11:2009 [22]. In more detail, the goals were reached through
two strategies:
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• Samples were first classified as recyclable (Class 1: Rc, Ru, Rb, and Ra) and contam-
inant (Class 2: Fl, Rg, X1, X2, X3, and X4) materials. Then, in a cascade detection
perspective, the Rc, Ru, Rb, and Ra categories were correctly identified in the recyclable
set and Fl, Rg, X1, X2, X3, and X4 were recognized in the contaminant material group.

• All the samples (i.e., nine categories) were involved in the same classification model.
Since some pixel misclassifications occur between concrete and floating materials, a
two-classes model was built to recognize them.

Chemometric methods have been adopted to recognize the different classes of materi-
als. PCA was applied to explore the data and set the classes, while PLS-DA was used to
build classification models. The obtained results show that the applied techniques allow
us to correctly identify the investigated categories in both the followed approaches, with
Sensitivity and Specificity higher than 0.9 in all the built models.

As shown by the present findings, SWIR-HSI can be profitably utilized to discriminate
different materials (i.e., recyclables and contaminants). Using this method, data may be
acquired quickly, allowing for a significantly shorter analytical time and more effective and
high-throughput analysis of samples. Moreover, such a non-destructive technique provides
detailed spatial information, enabling the identification and recognition of the different
materials in the C&DW stream. On the other hand, the limitations of SWIR-HSI for C&DW
materials detection are mainly connected to sample conditions (i.e., sample overlapping can
cause a blending of spectral fingerprints or the undetectability of the overlapped materials,
making it difficult to identify separate components exactly) and instrumentation resolution
(i.e., a limit on object size). Moreover, black or dark materials are difficult to identify via
SWIR-his, since their spectral features may rely on subtle scattering effects.

Additionally, future studies should be conducted to attain a comprehensive characteri-
zation, encompassing both chemical and mechanical aspects, since it can be beneficial to
ascertain the ultimate characteristics of the examined recyclable categories. In this context,
efforts should be made to provide a thorough chemical characterization of the recycled
materials by using X-ray fluorescence analysis.

The suggested strategy can be viewed as a methodological process to be applied
consistently at the scale of recycling plants. In fact, the recycling process might be effec-
tively automated by using these analytical techniques, supplementing or replacing human
operations and sorting steps. This would result in a large cost decrease by improving and
speeding up the recycling process.
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