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Abstract

:

Currently, the world is facing the problem of climate change and other environmental issues due to higher emissions of greenhouse gases. Saudi Arabia is not an exception due to the dependence of the Saudi economy on fossil fuels, which adds to the problem. However, due to the nonlinear pattern of pollution-creating gases, including nitrogen and sulfur dioxide, it is not effortless to rely on forecasting accuracy. Nevertheless, it is essential to denoise the data to extract the reliable outcomes used by different econometric approaches. Hence, the current paper introduces a hybrid model combining compressed sensor denoising (CSD) with traditional regression, machine learning, and deep learning techniques. Comparing different hybrid models and various denoising techniques revealed that CSD-GAN is the best model for accurately predicting NO2 and SO2, as compared with ARIMA, RLS, and SVR. Also, when the comparison is made between predicted and actual NO2 and SO2 levels, these are aligned, proving that CSD-GAN is superior in its level and direction of prediction. It can be concluded that the GAN model is the best hybrid model for predicting NO2 and SO2 emissions in Saudi Arabia. Hence, this model is recommended to policymakers for predicting environmental externalities and framing policies accordingly.
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1. Introduction


The need to increase awareness of environmental threats is essential, and people need to be more cautious about their actions relating to environmental issues in light of the recent increase in natural disasters, warming and cooling phases, and other weather patterns. Under the parameters of the present discussion, human civilization and globalization are the key contributors to the ongoing transformation of the global environment. There are many human-caused threats to the environment today. They include pollution, climate change, ozone depletion, acid rain, dwindling natural resources, population growth, improper garbage disposal, deforestation, and biodiversity loss. Unsustainable resource usage is the root cause of almost all of these operations. Large quantities of carbon dioxide and other greenhouse gases are released into the atmosphere when fossil fuels are used for energy in factories and vehicles. The environmental impact of these processes is substantial and adverse [1]. Consequences for the environment and human health on a global scale continue to be very unsettling. Unsafe water, insufficient sanitation and hygiene, air pollution, and global climate change are responsible for about ten percent of all worldwide deaths and disease loads.



Increasing industrial activity and motor vehicle usage in metropolitan areas are causing many health and environmental issues [2,3]. The impacts of air pollution on health are quite complicated since there are several causes, and their personal effects differ. “Nitrogen dioxide (NO2) and sulfur dioxide (SO2)” are the most common inorganic gas pollutants. The most significant atmospheric NO2 foundations are burning fossil fuels and vehicle exhausts [4,5]. Rising SO2 levels in the atmosphere are mainly caused by the use of sulfur-containing fuels such as coal for residential uses in metropolitan areas [6,7]. Inhaled air pollutants have an undesirable influence on human health by harming the lungs and respiratory system. They are also absorbed by the circulation and circulated throughout the body [8].



Nevertheless, the danger differs from one pollutant to another. “ecosystem” refers to a group working in the construction industry. Nitrogen oxides may render youngsters more vulnerable to respiratory ailments, especially during the winter. However, it is essential to predict the pollutant gasses so governments can take preemptive actions to counter these environmental issues.



Some previous studies used different artificial intelligence models to predict environmental externalities. For example, in order to forecast the values of a response variable used in modeling particulate matter, ref. [9] contrasted ANN with multiple linear regression (MLR), a statistical technique (PM10 and PM2.5). The effectiveness of ANNs and decision tree models for estimating PM10 concentrations was assessed by [10]. Similar to this, ref. [11] compared the Back-propagation neural network (BPNN) and Autoregressive integrated moving average (ARIMA), another statistical time-series forecasting tool, for forecasting carbon monoxide (CO), SPM (suspended particulate matter), and sulfur dioxide (SO2) in an industrial area. To forecast hourly PM2.5 concentrations, ref. [8] developed a new forecasting method based on random forest and ANN approaches. The author of [9] conducted a comparative review of the modeling methodologies for simulating PM10 pollution concentrations using “ANN, LASSO, SVR, RF, kNN, and xGBoost”. However, the forecasting of environmental pollutants is still lacking accuracy due to the high noise level in the data. Hence, we have attempted to input our valuable input into the existing literature.



To overcome the problems of single models, a few researchers also tried to build hybrid models. In this regard, to estimate PM and SO2 concentrations [6], a hybrid forecasting model was developed based on a meta-heuristic approach known as the gray wolf optimizer. In addition, ref. [11] developed a hybrid air pollution estimating model that projected NO2 and PM concentrations in China using fuzzy time series and uncertainty analysis. They also reported an application of SVM-based air pollution modeling. In this work, the authors situated two unique hybrid adaptive predicting models for one-step pollution prediction in Taiyuan, China. Their findings demonstrated that the combined “SVM and ANN” models performed better for air quality prediction than a single statistical learning model. In a similar line, ref. [12] created a unique hybrid-Garch strategy using SVM and ARIMA algorithms to estimate environmental externalities every hour for ten days.



However, initial air pollution data are erratic and noisy, like most time series. Forecasting these sounds and instability is pointless or harmful. Preprocessing the data and removing the interfering evidence from the original time series are required to increase predicting accuracy [13,14]. The denoising procedure has already been used in the forecast, and the results have proved its efficacy. For time-series analysis, ref. [7] developed a novel entropy-based wavelet denoising approach. To forecast the exchange rates, ref. [15] suggested a “Slantlet denoising-based least squares support vector regression (LSSVR)” model. The author of [16] suggested a neural network model based on exponential smoothing denoising for stock market forecasting. The author of [17] introduced a new model for exchange rate forecasting by integrating the “Markov switching” model with the Hodrick–Prescott filter. The author of [18] suggested a hybrid model for predicting water demand that combines the extended Kalman filter with genetic programming. The author of [19] implemented Fourier transform into a fuzzy time-series stock price predicting model. The author of [20] suggested a unique multivariate wavelet denoising-based method for assessing the portfolio value at risk (PVaR). The author of [21] suggested an enhanced wavelet modeling framework for eliminating noise in time-series forecasting.



Exponentially smoothing [22], as well as the Hodrick–Prescott (HP) filter [23], Kalman filter [24], “Fourier transform (FT), discrete cosine transform (DCT) [25], and wavelet transform” [26] are a few examples of denoising techniques that have been studied in the field of data processing. Unfortunately, the denoising techniques mentioned above all have a fatal flaw: they are susceptible to the values of the parameters that control them due to their fixed-basis construction. Recently, a denoising technique called compressed sensing-based denoising (CSD) has gained popularity since it is a more adaptable algorithm based on sparsity [27,28]. However, given an appropriate sparse transform basis, the CSD process may keep most of the information owing to sparsity. In contrast, most other denoising algorithms may lose some information due to their principles. Due to these two factors, this research’s unique hybrid forecasting strategy uses CSD as an efficient data-denoising tool.



The novelty of the research under discussion primarily revolves around its pioneering approach to predicting environmental pollutants in Saudi Arabia, specifically NO2 and SO2. While preceding studies made commendable attempts, the unique combination of multiple denoising methods with advanced artificial intelligence techniques sets this study apart. This research introduces innovative CSD-AI strategies, namely CSD-SVR and CSD-GAN, which focus on data denoising to extract pertinent information, consequently reducing forecasting errors. Another distinctive feature is the presentation of the CSD-GAN methodology, which fills a gap in previous academic pursuits. Additionally, rather than relying on a solitary algorithm, this study harnesses the potential of four diverse algorithms—ARIMA, RLS, SVR, and GAN—in isolation and hybrid configurations alongside denoising techniques. This multifaceted approach facilitates a holistic evaluation and paves the way for an integrated, sophisticated model for accurately forecasting environmental pollutants. Comparing various AI-based denoising models contributes to developing a critical integrated model for forecasting SO2 and NO2.



This study aims to accurately predict NO2 and SO2 by combining “compressed sensing-based denoising (CSD)” and artificial intelligence (AI) techniques. However, the comparison is also made between different denoising techniques and single and hybrid models. As far as the structure of the paper is concerned, it has five sections: Section 1 deals with an introduction leading to Section 2, which is a brief literature review of related studies. Section 3 is regarding the methodology and description of data, whereas Section 4 presents the primary analysis results. The last section is about the concluding remarks and policy recommendations.




2. Literature Review


National and international restrictions have grown in response to the recent decline in air quality caused by increased air pollution. The need to know in advance what the future air quality levels will be emphasizes the significance of taking action to avoid air pollution. On a busy highway area, ref. [29] observed the horizontal distributions of air pollutants. They emphasized a poor correlation between distance and the particle air pollutant concentrations. Using monitors close to downtown Shanghai, ref. [30] studied the air pollutants and highlighted the vertical profiles of traffic-emitted pollutants and bimodal distribution patterns. To vertically anticipate the periodic features of air pollutants in the vicinity of viaduct environments, ref. [31] developed a back-propagation neural network.



Using two years’ worth of observation data from the “Shanghai roadside station”, ref. [32] performed research to estimate the “NO, NO2, CO, and O3” air contaminants in the atmosphere. The study found that the air effluence beneath the raised road was worse than that caused by vehicles on the sides of the road. To determine the air quality, they suggested using an LSTM model. Four air pollutants were estimated in the proposed model with a minor estimation error [33]. To forecast surface-level PM concentrations and track the impacts of urban traffic on the air quality in Shanghai, Du et al. suggested a deep learning model named DeepAir [34]. In addition to observing the impacts of the COVID-19 epidemic on the air, ref. [35] forecasted the PM10 and SO2 air contaminants in Sakarya. For the prediction, they employed “recurrent artificial neural networks”. They attained correlation levels of 0.88 for SO2 and 0.67 for PM10. In China, ref. [30] employed the random forest (RM) technique to estimate SO2 emissions. They contrasted the RM algorithm’s performance with that of other machine learning techniques. The author of [36] used CNN to estimate PM10. To improve estimate accuracy, they adopted the Bagging model. According to them, the model’s accuracy, based on atmospheric variables, has reached 14.9469.



Using the AUSTAL 2000 model, [37] examined how a cement plant affected the values of air pollutants, including “CO, SO2, NOx, and PM10”. They established unique classifications for each era after collecting emission data for 19 years. In their investigation, Perez et al. employed a neural network and a linear model to forecast air pollutants in Coyhaique, Chile. The research demonstrated that the linear model performed worse than the neural network model. With the neural network model, they attained an estimated accuracy of 0.95 [38]. To study the air quality index in Chennai, India, Refs. [39,40] recommended an approach that integrated support vector regression with long short-term memory. Compared to previous methods, deep learning models provide a value for the AQI that is more precise and accurate. They suggested an innovative recurrent neural network deep-learning model to forecast air pollution concentrations over the next two days. They computed the procedure using a particle swarm optimization technique. Their work aims to forecast the levels of six air pollutants for air quality. The authors of [41] performed a review to observe the features and functions of smart buildings. They described the strategies for accomplishing the objectives of smart buildings. The nine categories of performance metrics that were identified also needed to be improved. To enhance the performance of smart buildings, they looked at nine sets of performance metrics.



A strategy to predict urban air quality was put out by [42]. Their model is run on a dataset of 15 locations in India. They compared the new method’s performance to other existing forecasting models. For the estimate of PM2.5 concentrations, Chiang et al. suggested a hybrid time-series model that combines the autoencoder, CNN, and GRU approaches. Ecosystem refers to a group working in the construction industry [43]. Du et al. proposed a novel attention encoder–decoder model for multivariate time-series estimation issues. The Bi-LSTM deep learning structure serves as the foundation for the suggested model. The suggested model was evaluated using five multivariate datasets, and it was discovered to accurately predict the outcomes [44]. Du et al. suggested a hybrid multimodal deep learning system that combines “1D CNN and GRU” algorithms on multimodal traffic data to predict short-term traffic flows. The model accurately forecasted a complicated traffic flow [45]. In a different study, ref. [46] suggested a deep learning model for PM that included “one-dimensional CNN and Bi-LSTM modules”. The model’s accuracy for PM prediction was good. The experimental findings supported the forecast of air pollution.




3. Methodology and Data Setting


3.1. Denoising Methods


In 2004, Donoho first presented the concept of compressed sensing (CS). It provides a new approach to signal sampling that goes against Shannon’s theorem. Using convex optimization, CS seeks to recover a sparse signal from a limited set of non-adaptive, linear data [47]. Among the various potential uses of compressed sensing (CS), the CSD method for signal denoising has been proposed [28]. To help with understanding, a sparse depiction is offered first. When signals are represented sparsely, they may be stated concisely in terms of a sound basis, such as the Fourier or wavelet basis. What follows is the corresponding mathematical expression:



  W ϵ  R n   , and its orthonormal form is   ω =  [   ϣ 1   ϣ 2  … .  ϣ n   ]  :  


  W =   ∑   i = 1  n   S i   ϣ i   



(1)







In Equation (1),      i    is the ith coefficient of  W :


   S i  =  (  W ,  ϣ i   )   



(2)







As a result,    W   may be expressed as  s , representing the matrix   n × n  , whose columns are    ϣ 1  …  ϣ n   . Since coefficient s is sparse in this situation, Equation (1) obtains the spare form of  W .



The CSD process has the following three steps:



	
The sparse or approximation sparse representation for the signal  W  may be written as   s =  ω T  W   if the signal   W   ϵ  R n    is sparse under an orthogonal basis.



	
We created an   m × n ,   ( m < n )   dimensional observation matrix to quantify the sparse coefficients s and produced an observation vector,   Z =  φ s   . The transformed basis is unaffected by this observation matrix  φ . The whole sensing procedure is as follows:


  Z = φ  ω T  W  



(3)







	
After receiving the compressed sensed signal  Z , the recovery of  W  from  Z  is carried out as follows:


  m i n   ‖  ω T  W ‖  0  ,   s . t = φ  ω T  W .  



(4)










The following formula may be used to resolve the NP-hard issue in the equation above:


  m i n   ‖  ω T  W ‖  1  ,   s . t = φ  ω T  W .  



(5)







For the noise pollution in  W , the minimization problem has to be adjusted as follows:


  m i n   ‖  ω T  W ‖  1  ,   s . t =   ‖ φ  ω T  W − Z ‖  2  ≤ ε .  



(6)







Equation (6) could be resolved using the “orthogonal matching pursuit (OMP)” technique, a popular and effective strategy for assuring the success of recovery. It could reconstruct the signal  W  extremely precisely using the compressed detected signal  Z  due to the potential of the sparse encoding of the signal  W  in certain transform domains.



CSD provides more flexible parameter settings than the standard denoising methods, such as “Fourier filter and wavelet denoising”. The frequency and amplitude thresholds in the frequency domain must be specified for the Fourier filter. Additionally, this strategy may result in information loss. Similarly, the disadvantage of the wavelet denoising method is that it requires frequency thresholds to be defined for different time scales when processing massive volumes of data. In contrast, based on CS theory, CSD may produce a suitable denoising result by choosing an appropriate sparse transform basis and sampling rate.




3.2. Artificial Intelligence (AI)


3.2.1. Least Squares Support Vector Regression


Ref. [48] was the one who initially suggested the Support Vector Machine (SVM). The fundamental concept behind support vector regression (SVR) is to transfer the original data into a high-dimensional feature space, where linear regression is performed. The following formulation represents the regression function:


  f  ( x )  =   ∑   t = 1  T   w t  K  (  x ,  x t   )  + b  



(7)







When    w t    and b are the weights arrived at by minimizing the regularized risk function,   K  (  x ,    x t   )    is the mapping function,   and   f  ( x )    is the prediction estimate. As a result, the optimization problem that results from Equation (7) is as follows:


  m i n    1 2   w T  w + γ   ∑   t − 1  T   (   ξ t  +  ξ t *   )   










  s . t    w T  φ  (   x t   )  + b −  y t  ≤ ε +  ξ t *  ,  (  i = 1 , 2 , … . T  )   



(8)






   y t  −  (   w T  φ (  x t  + b  )  ≤ ε +  ξ t  ,  (  i = 1 , 2 , … . T  )   








where the nonnegative variables    ξ t    and    ξ t *    are the slack variables, which indicate the distance between the actual values and the corresponding border values of the   ε − t u b e  , and  γ  is the penalty parameter. The network structure of the relevant algorithm of SVM is reported in Figure 1.




3.2.2. Generative Adversarial Network (GAN)


Utilizing generative adversarial networks (GANs) in time-series forecasting has reshaped predictive modeling perspectives. GANs operate with two deeply intertwined neural networks: a generator that crafts sequences, and a discriminator that discerns genuine sequences from the generated ones. To effectively harness GANs for forecasting, one must preprocess time-series data to ensure consistent intervals and normalization, optimizing the neural architectures’ performance. Sequence prediction is facilitated by introducing lagged versions of the series as input. Within this framework, the generator, when fed with random noise, aims to replicate the dynamics of genuine data. Simultaneously, the discriminator refines its skill in differentiating actual future sequences from the generator’s concoctions. Their adversarial interplay iteratively refines the quality of the generator’s output. When forecasting, the generator’s refined output, grounded in recent observations, is employed, tapping into GANs’ prowess at modeling complex data distributions, capturing potential nonlinearities, and intricate patterns for enhanced predictive accuracy. The network structure of the relevant algorithm of SVM is reported in Figure 2.



Gated recurrent units (GRUs) and generative adversarial networks (GANs) hail from different facets of deep learning, yet their integration offers promising avenues in various applications. GRUs, a variant of recurrent neural networks, excel in sequence-based tasks, capturing temporal dependencies through specialized gating mechanisms. On the other hand, GANs consist of a duet of networks—a generator and a discriminator—collaborating in an adversarial setting to produce high-fidelity data mimics. Incorporating GRUs within the GAN architecture can enhance sequential data modeling. Specifically, when GANs target sequence generation tasks, a GRU-based generator or discriminator can be pivotal. The temporal dynamics grasped by GRUs ensure that the generated sequences are plausible regarding individual data points and their sequential structure. Conversely, a GRU-infused discriminator becomes adept at identifying discrepancies in the temporal patterns of generated sequences. This symbiosis marries the generative prowess of GANs with the sequence-savvy nature of GRUs, advancing the state-of-the-art in sequential data generation.





3.3. AI Forecasted Models Integrated with Compressed Sensing-Based Denoising (CSD-AI)


Based on the previously discussed methodologies, a novel hybrid model, the “CSD-AI” learning paradigm for SO2 and NO2 forecasting, is developed, and multi-step-ahead prediction is used. There are numerous techniques for doing this, according to [49]; however, the direct forecasting approach is used in this study. Based on the time series    x t     (  t = 1 , 2 , … T  )   , the following equation is utilized to obtain an m-step forward forecast for    x  t + m    .


    X ^   t + m   = f (  X t  ,  X  t − 1   , … ,    X  t −  (  l − 1  )    )  



(9)







    X ^  t    is the period’s forecast value,    X t    is the actual value, and l is the lag order. In CSD-AI, there are two steps:



	
The original data  X  comprises a trend  T , and noise  X  is first represented by an appropriate transform basis; in our instance, a wavelet basis. The sparse coefficients are then sampled using a Gaussian white noise sampling matrix. Ultimately, the cleaned data  T  may be obtained via the OMP recovery process for more research.



	
After data denoising, a powerful AI approach, such as an SVM or ANN, is used to model the cleaned data     T   and make predictions for the original  X .







3.4. Data Description


The data related to NO2 and SO2 were extracted from the King Abdullah Petroleum Studies and Research Center (KAPSARC) from 1 August 2019 to 15 July 2020, from which the training data are from 1 August 2019 to 28 May 2020, and the testing data are from 29 May 2020 to 15 July 2020. The training data are around a third-fourth, and the testing data are about one-fourth of the complete data. In addition, we have used the data from 16 July to 30 August for out-of-sample forecasting. Our emphasis is on the daily frequency data; however, a few of the observations are missing in the daily data, which is simulated by using the Markov chain Monte Carlo (MCMC) algorithm. The units for NO2 and SO2 are parts per billion (ppb).



Table 1 reports the data description of the variables, where the skewness is above 0, and kurtosis is above 3, which indicates that the distribution is nonnormal. The findings of the Jarque–Bera statistics are significant and also reject the null hypothesis of normality. For conditional heteroscedasticity, we employed the ARCH-LM test that confirms the presence of conditional heteroscedasticity. In section B, the results of BDS are reported, which are used to confirm the existence of nonlinearity in the data series [50]. The null hypothesis of BDS presents the series as linearly dependent. In our case, all the values of BDS are significant at 1 percent, meaning that the series have nonlinearly dependence. However, in the presence of nonnormality and conditional heteroscedasticity, we have multiple machine learning options that are useful for forecasting, such as SVM and neural networks, which are capable of handling the nonnormality and conditional heteroscedasticity issues and present robust results [51].




3.5. Performance Evaluation Criteria


The mean absolute percentage error is calculated by taking the average of all of the observed values’ absolute deviation values. The value of the arithmetic mean, which is defined as the set of differences that are not cancelled out by one another, is given as a percentage. The chart illustrates the actual predicted inaccuracy in an accurate manner and accurately indicates the extent of data dispersion.


  M A P E =   100  n    ∑   i = 1  n   |     T i  −  X i     T i     |   



(10)







MSE represents the variation between estimators. A lower number indicates a more accurate prognosis. The MSE measures how dispersed the data collection is.


  M S E =  1 n    ∑   i = 1  n     (   T i  −  X i   )   2   



(11)







The average difference between the values that were anticipated and those that were actually observed may be more properly expressed using a statistic called the root mean square error, which is sometimes referred to as the standard error. When the anticipated and actual values are in perfect agreement with one another, this error is equal to zero. The author of [52] recommends MSE and RMSE as important criteria for comparisons.


  R M S E =    1 n    ∑   i = 1  n     (   T i  −  X i   )   2     



(12)







Since positive and negative variance values do not cancel out, the mean absolute deviation accurately represents the expected error.    T i    is the actual values,    X i    is the predicted values, and  n  is the total number of predicted values.


  M A D =  1 n    ∑   i = 1  n   |   T i  −  X i   |   



(13)








3.6. Benchmark Models


The CSD technique’s ability to improve forecast correctness is evaluated first. For this reason, a set of hybrid models is developed by combining CSD with well-known forecasting techniques, such as the most traditional method of robust least squares (RLS) [53] and the most widely used AIs of SVR [54] and GAN [55], and then, by contrasting these hybrid models (CSD-ARIMA, CSD-RLS, CSD-SVR, and CSD-GAN). Two viewpoints may be used to outline the primary justifications for adopting ARIMA, RLS, SVR, and GAN as forecasting models in hybrid model development. On the one hand, RLS is the most common linear regression model, and it has long been employed as a standard in prediction research. On the other hand, SVR and GAN have been widely used as the most common AI approaches, notably for predicting SO2 and NO2 [56,57]. Despite their distinct strengths, they can only partially be shown to be superior to each other. As a result, the suggested hybrid framework implements both potent intelligence models (SVR and GAN) as forecasting models.



The benefits of the CSD-AI learning paradigm that was proposed are investigated in the second step. As a consequence of this, in order to produce a set of hybrid benchmarks, an additional five well-known denoising techniques, including exponential smoothing (ES) [58], the Hodrick–Prescott (HP) filter [59], Kalman filter (KF) [60], and wavelet denoising (WD) [61], have been included as preprocessors for the original data. In general, for the proposed CSD-AI models (i.e., CSD-ANN and CSD-RNN), three single benchmarks (i.e., ARIMA, RNN, and ANN), one CSD-based ARIMA hybrid benchmark (i.e., CSD-ARIMA), and a set of hybrid models with an additional five denoising techniques are constructed for comparison. These benchmarks are used to evaluate the performance of the proposed CSD-AI models. The sequence of study is mentioned in Figure 3, which proposes us to focus on ARIMA, RLS, SVR, and GAN.




3.7. Parameter Settings


Research [22,23] on the issue is combined with trial and error to identify the parameters of the denoising approach to be used. CSD uses a Symlet-6 sparse transform basis, a sample size of 500, and 125 iterations of the OMP algorithm. A smoothing factor of 0.2 has been used in ES. In the HP filter, the smoothing value is set to 100. In KF, we achieved a covariance between measurements of 0.25 and a process covariance of 0.0004. Within DCT, 100 is used as the cutoff for the lowest frequency. The frequency thresholds in WD are determined using the soft threshold method, Symlet 6 as the wavelet basis, and 8 decomposition iterations [62].



The optimal ARIMA model for each training sample is chosen by minimizing the Schwarz criterion (SC) in order to create forecasting models [63]. This investigation employs a feed-forward neural network (FNN)    (  I − H − O  )    [64] in ANN, with seven hidden nodes, one output neuron, and I input neurons, where I is the lag order decided upon using autocorrelation and partial correlation tests and is ultimately set at 6. There are 10,000 iterations of each ANN model conducted on the training data. All of the models have been coded in the computer application Matlab R2019a, and all of the programmers have been run on a HP laptop i7.





4. Results and Discussion


The initial stage in the CSD-AI-based learning paradigm that has been presented is to use CSD to denoise the data gathered on the NO2 concentration, and the related outcome can be shown in Figure 4. The second phase is to make projections based on the cleansed data using a specific and very accurate forecasting program (e.g., SVE and GAN). In addition, a set of benchmark models, which may include single or hybrid forecasting models, is executed to make comparisons.



First, we discuss how CSD helps with better predicting. Figure 5, Figure 6, Figure 7 and Figure 8 compare the prediction accuracy (in terms of MAPE, MSE, RMSE, and MAD) of CSD-based hybrid learning paradigms to the accuracy of their benchmarks that do not use CSD. Also, the results of the Diebold–Mariano (DM) tests were conducted on CSD-based hybrid models as well as single models.



4.1. Implementation of CSD-Based Models in Forecasting (Effectiveness of CSD in Forecasting)


The comparison in terms of MAPE for single as well as hybrid CSD models is reported in Figure 5. It can be noted that the CSD hybrid models show better performance as compared to single models. The MAPE value of the hybrid models is lower than the MAPE of single models. In one-step-ahead prediction, the MAPEs of the CSD-based SVR and GAN hybrid models are lower than those of the CSD-based traditional models, such as ARIMA and RLS. The performance of CSD-SVR and CSD-GAN in one-step-ahead prediction is the same. However, in six-step-ahead prediction, CSD-SVR and CSD-GAN outperform the traditional model with lower MAPE values. However, the performance of CSD-GAN is more prominent, with the lowest MAPE value. This indicates that the directional prediction capability of the hybrid models is superior to the traditional model in both one-step- and six-step-ahead prediction.



To check the performance of the single and hybrid CSD models (CSD-SVR and CSD-GAN), MSE is also used, and the results are reported in Figure 6. In one-step-ahead prediction, the MSE values of CSD-SVR and CSD-GAN are lower than the traditional CSD-RLS and CSD-ARIMA models. Likewise, single AI models (SVR and GAN) also show better performance with lower MSE values than the MSE value of RLS. Similarly, in six-step-ahead prediction, the AI models perform better than the traditional model in both the single (SVR, GAN) and CSD-based models (CSD-SVR, CSD-GAN). The MSE values of SVR and GAN are lower than RLS. Also, CSD-SVR and CSD-GAN show lower MSE values than CSD-RLS. This proves the superiority of the hybrid models for directional prediction. A comparison of CSD-SVR’s and CSD-GAN’s performance validates the superiority of the CSD-GAN model with the most negligible MSE value.



Aside from MAPE and MSE, RMSERMSE is the third measure to compare the performance of single (ARIMA, RLS, SVR, and GAN) and hybrid (CSD-ARIMA, CSD-RLS, CSD-SVR, and CSD-GAN) models. Figure 7 shows the outcomes when SVR and GAN perform better than RLS with a lower RMSERMSE value in one-step-ahead prediction. Furthermore, in the case of the hybrid models, CSD-SVR and CSD-GAN have lower RMSERMSE values than CSD-RLS. This means that the AI models are better than single or hybrid models in one-step-ahead prediction. However, CSD-GAN is the best because it has the most negligible RMSE value.



Additionally, in six-step-ahead prediction, the AI models outperform traditional models, either single or hybrid. The RMSE values of SVR and GAN are lower than the RMSE values of RLS and ARIMA. Likewise, the RMSE values of CSD-SVR and CSD-GAN are also lower than the RMSE value of CSD-RLS. This proved that the prediction levels are much better with hybrid AI models. However, CSD-GAN is superior to CSD-SVR.



The last condition for the performance comparison of single and CSD-based hybrid models is MAD, and Figure 8 presents the outcomes. In the case of one-step prediction, the AI models are better than the traditional models with lower MSE values. Also, the CSD-based hybrid models (CSD-SVR and CSD-GAN) have superior performance with lower MAD values. Single models (SVR, GAN) have a lower MAD than RLS in one-step-ahead prediction. Also, CSD-SVR and CSD-GAN show lower MAD values compared to CSD-RLS. The same applies to six-step-ahead prediction, where the AI models perform better with lower MAD values. However, it is worth noting that the CSD-based hybrid model (CSD-SVR and CSD-GAN) outperforms the single and traditional models. Nevertheless, CSD-GAN has the lowest MAPE, showing its superiority in the direction and level of prediction.



Some significant conclusions can be drawn from the results regarding the MAPE, MSE, RMSE, and MAD. The first and most prominent conclusion is regarding the superiority of the CSD-based AI models (CSD-ARIMA, CSD-RLS, CSD-SVR, and CSD-GAN) in terms of prediction regarding their level and direction. This means novel hybrid techniques are best when it comes to prediction. Also, CSD-GAN proved to be the best prediction model in one-step and six-step predictions. The reason behind the superior performance of CSD is its ability to lower the noise significantly in NO2 data, which results in better performances of SVR and GAN.



Additionally, the CSD-based hybrid models proved to be better in their level and direction of prediction when compared to their single models, which also shows the significance of the CSD approach. In addition, both AI models (SVR and GAN) perform better than RLS, which is a traditional model, proving that the CSD-based AI models are the best forecasting tools. The reason for the superiority of CSD-AIs is simple: the pattern of NO2 concentration is not linear, which means modeling this data cannot be done with traditional models, and AI techniques can better model this nonlinear data.




4.2. Performance of CSD-Based Denoising Methods


Verifying CSD’s superiority over other denoising techniques is vital before moving on to accurate forecasting. Figure 9 displays the results of using several denoising methods for evaluation. These approaches include ES, HP, and WD. Comparing the MAPEs of ARIMA, CSD-ARIMA, ES-ARIMA, HP-ARIMA, and WD-ARIMA, we have affirmed the minimum error value of MAPE in the case of the CSD-based ARIMA. In the case of robust least squares, CSD-RLS has a lower MAPE for the training and testing data. However, CSD-RLS outperforms the other denoising methods. Regarding the MAPEs of SVR, CSD-SVR, ES-SVR, HP-SVR, and WD-SVR, HP-SVR has a lower MAPE for the training and testing data. However, CSD-SVR outperforms the other denoising methods. The third model is GAN, and it can be noted that, based on the MAPEs of GAN, CSD-GAN, ES-GAN, HP-GAN, and WD-GAN, CSD-GAN has a lower MAPE for the training and testing data. However, CSD-GAN outperforms the other denoising methods. Hence, it is not wrong to say that among the CSD-RLS, CSD-SVR, and CSD-GAN, the CSD-GAN has the lower MAPE; however, according to the MAPE, the CSD-GAN outperforms the other hybrid models, proving the superiority of this model.



Aside from the MAPE, MSE is also used to compare the performance of various denoising techniques, and the results are presented in Figure 10. In a comparison of the MSE of ARIMA and denoised-based ARIMA models, we have reported the lowest MSE for CSD-ARIMA. Meanwhile, RLS, CSD-RLS, ES-RLS, HP-RLS, and WD-RLS show that CSD-RLS has a lower MSE for the training and testing data. However, CSD-RLS outperforms the other denoising methods. The comparison regarding the MSEs of SVR, CSD-SVR, ES-SVR, HP-SVR, and WD-SVR clearly shows that the CSD-SVR has a lower MSE for the training and testing data. However, CSD-SVR outperforms the other denoising methods. The same is true for the MSE because the comparison of MSEs among GAN, CSD-GAN, ES-GAN, HP-GAN, and WD-GAN indicates that CSD-GAN has a lower MSE for the training and testing data. However, CSD-GAN outperforms the other denoising methods. The MSE comparison of all denoising techniques confirms that the CSD-RLS, CSD-SVR, and CSD-GAN have the lower MSEs; however, according to the MSE, CSD-GAN outperforms because the least MSE value is related to this model.



RMSE is also used to compare the performance of denoising techniques, and the results of the RMSE are shown in Figure 11. Here, with the comparison of the RMSEs of ARIMA, CSD-ARIMA, ES-ARIMA, HP-ARIMA and WD-ARIMA, we have concluded the lowest error for CSD-ARIMA. In the case of the RLS and denoised RLS models, CSD-RLS has a lower RMSE for the training and testing data. However, CSD-RLS outperforms the other denoising methods. In the same way, a comparison of the RMSEs of SVR, CSD-SVR, ES-SVR, HP-SVR, and WD-SVR suggests that CSD-SVR has a lower RMSE for the training and testing data. However, CSD-SVR outperforms the other denoising methods. Additionally, comparing the RMSEs of GAN, CSD-GAN, ES-GAN, HP-GAN, and WD-GAN shows that CSD-GAN has a lower RMSE for the training and testing data. However, CSD-GAN outperforms the other denoising methods. Hence, among the CSD-ARIMA, CSD-RLS, CSD-SVR, and CSD-GAN, the CSD-GAN has the lower RMSE; however, according to the RMSE, the CSD-GAN outperforms the other denoising techniques.



The last criterion is MAD, which is used to compare the denoising techniques, and the results are presented in Figure 12. In the comparison of the MAD values of traditional regression and denoised-based models, we presented that CSD-ARIMA and CSD-RLS have lower MADs for the training and testing data. However, the CSD-based traditional models outperform other denoising methods. When the MAD of the SVR model is consulted, it is noted that (from the MAD of SVR, CSD-SVR, ES-SVR, HP-SVR, and WD-SVR), CSD-SVR has a lower MAD for the training and testing data. However, CSD-GAN outperforms the other denoising methods. Additionally, a comparison of the MADs of GAN, CSD-GAN, ES-GAN, HP-GAN, and WD-GAN validates that CSD-GAN has a lower MAD for the training and testing data. However, CSD-GAN outperforms the other denoising methods. From these results, it is clear that among the CSD-ARIMA, CSD-RLS, CSD-SVR, and CSD-GAN, the CSD-GAN has the lower MAD; however, according to the MAD, the CSD-SVR outperforms.



The results regarding comparing different denoising techniques confirm a few concluding points. It is confirmed that of CSD-GAN, ES-GAN, HP-GAN, and WD-GAN, CSD-GAN proved to be the best model in all cases. CSD-GAN has the lowest MAPE, MSE, RMSE, and MAD in one-step- and six-step-ahead predictions. This means CSD-GAN is the best hybrid model to forecast NO2. This result can also be confirmed through Table 2, where the MAPE, MSE, RMSE, and MAD of CSD-GAN are the lowest compared to all other AI and traditional models. Hence, in the current study, the forecasting of NO2 is achieved based on CSD-GAN.




4.3. Diebold–Mariano (DM) Forecast Accuracy Test


The findings of different error methods lead to confirming the higher predictive performance of the CSD-GAN model. To reconfirm the findings, we have used another forecasting accuracy test, which is proposed by [65]. This technique accounts for the non-Gaussian and nonzero-mean, serially correlated for the errors [65]. As the error comparison presented the outperformance of CSD-GAN, we used this as a base and compared it with the ARIMA, RLS, SVR, GAN, CSD-ARIMA, CSD-RLS and CSD-SVR. Where the null hypothesis    H 0    indicates that there is no difference between CSD-GAN and the comparative models,    H 1    proposes that the output power of CSD-GAN is better.    H 2    is about the higher output power of the comparative models, as compared with CSD-GAN. According to [66,67], we have to adopt the MSE for the model comparison estimations, whereas    S 0    represents the statistics of the Diebold–Mariano test and    p 0    is the p-value. We have used the 95% confidence level, which indicates that the p > 0.05 leads towards the non-rejection of the null hypothesis. In the case of a p < 0.05, we have to choose    H 1    or    H 2   . If the    S 0    statistics are negative, we have to accept the    H 1   ; otherwise,    H 2    will be accepted.



The results of the Diebold–Mariano test are reported in Table 3, which confirms that the p-value is less than 0.05 for all the comparative models (ARIMA, RLS, SVR, GAN, CSD-ARIMA, CSD-RLS, and CSD-SVR). However, the null hypothesis is rejected. In such a scenario, we have to focus on the Diebold–Mariano statistics (   S 0   ). The statistics are negative for all the comparative models, which affirm the higher predictive power of CSD-GAN.




4.4. CSD-GAN-Based Out-of Sample Forecasting of NO2 and SO2


After confirmation regarding the superiority of the CSD-GAN model, the original data for NO2 and SO2 are used to confirm the validity of the result; we used the chosen technique to forecast the data. In Figure 13, forecasting for NO2 was achieved where the observed data is presented in blue, and the CSD-GAN-based prediction data is presented in red. The yellow line shows the forecasted data from 16 July to 30 August. It can be seen that the observed and CSD-GAN-based values are very close, showing that CSD-GAN correctly calculated the NO2. Also, after checking the superiority of CSD-GAN, the forecasting for NO2 was conducted from July 2020 to August 2020. In July, NO2 is lower; however, right from the start of August, the concentration of NO2 rose sharply. Figure 14 demonstrates the forecasting of SO2 where the black line is observed, the green is the CSD-GAN-based prediction, and the yellow line highlights the forecasted value.




4.5. Discussion and Summarizations


The analysis regarding the different AI techniques combined with various denoising methods led to various vital points. The first reason that CSD is the superior approach for denoising is that, compared to single models, it has a much-improved capacity to predict future SO2 and NO2 concentrations. Second, hybrid models that are based on CSD coupled with AI tools, such as CSD-SVR and CSD-GAN, have a superior performance compared to CSD-RLS, which indicates that AI may successfully describe nonlinear patterns of SO2 and NO2. The third and last finding compares several denoising techniques, which demonstrates that CSD is the most effective way for data processing and denoising. These techniques include CSD-GAN, ES-GAN, HP-GAN, and WD-GAN. The fourth and last finding is that CSD-AI models may be the best for making level and directional predictions with different sample sets. This is evidence of their application and consistency. The fifth and last set of results concerns the CSD-based AI learning paradigm’s performance in accurately predicting NO2 and SO2. When calculating GHG emissions, there is no discrepancy between the observed values and those estimated using CSD-GAN, suggesting that it can adequately anticipate any gas concentration or emission. The findings of higher predictions for denoising-based hybrid models are consistent with [20,68]. Moreover, [43] also confirmed the outperformance of machine learning models in the case of environmental gasses.





5. Conclusions


This study’s major purpose is to construct a hybrid model capable of effectively lowering the amount of noise that occurs prior to predictions in order to increase the accuracy of the predictions for SO2 and NO2. Combining compressed sensing-based denoising (CSD) with a specialized artificial intelligence (AI) forecasting tool may provide a unique hybrid learning paradigm. CSD is utilized as a preprocessor in this model to obtain clean data from the original NO2 data by data denoising. To model the clean data and provide the final prediction result, a specialized and potent AI model is applied. SVR and GAN are two examples of these kinds of models. Using NO2 emission data as sample data, the empirical study reveals that the CSD technique may considerably enhance the forecasting performance of single AI models when utilizing CSD. CSD-AI models surpassed their solo benchmarks in terms of both level and directional predictions, indicating that the CSD technique has the potential to considerably enhance the forecasting performance of single AI models. In terms of both level and directional accuracy, the proposed CSD-GAN outperforms past hybrid models that used more conventional forecasting techniques or other denoising techniques. These models were used to provide forecasts. In addition, the proposed CSD-AI models perform well for SO2, proving the resilience and generalizability of the novel learning paradigm. This study also reveals that the proposed hybrid CSD-AI model performs very well in predicting NO2 emissions, a challenging and noisy time series.



This study’s results have some practical implications for policymakers concerning atmospheric pollution. First of all, it helps in making an exact prediction of NO2 and SO2, which assists in revising the existing policies towards developing proper methods to capture the increased gas emissions. Also, effective measures can be introduced to reduce emissions if the forecast shows that they will increase. In this regard, efficient vehicles can be introduced because gasoline burning is the primary source of NO2. Additionally, policymakers can forecast other GHG emissions, including CO2, through this hybrid model. The “hybrid model” is a legitimate choice for policymakers looking to establish air quality and initial warning systems due to its higher performance and prediction capabilities. Also, policymakers can revise the policies regarding control over the usage of fossil fuels by introducing renewable energy sources when they know exactly what the pattern of emissions will be in the future. Through these steps, the harmful impact of these gasses on human health can be controlled.



Similar to previous research, our study encountered limitations that limited our scope. The absence of specific environmental data for Saudi Arabia was a notable constraint. The limited dataset prevented us from employing a wider range of machine learning tests. The data of different regions of Saudi Arabia is unavailable, which restricts us from cross-regional analysis. These cross-regional analyses are useful for confirming the prediction and forecasting of employed analysis. In the future, we suggest exploring alternative environmental variables for prediction and forecasting. In addition, conducting cross-comparisons with other regions, such as the Gulf Council of Countries (GCC) or other oil-exporting nations, may be beneficial. In addition, future research could contemplate incorporating advanced denoising techniques, especially those based on GARCH (generalized autoregressive conditional heteroskedasticity), in conjunction with machine learning methods.
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Figure 1. Network structure diagram of SVM. 






Figure 1. Network structure diagram of SVM.
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Figure 2. Network structure diagram of GAN. 
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Figure 3. Structure and steps of study. 
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Figure 4. CSD−based denoising series of NO2 and SO2 for training. 
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Figure 5. MAPE comparison for single benchmark and CSD-based hybrid models. 
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Figure 6. MSE comparison for single benchmark and CSD-based hybrid models. 
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Figure 7. RMSE comparison for single benchmark and CSD-based hybrid models. 
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Figure 8. MAD comparison for single benchmark and CSD-based hybrid models. 
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Figure 9. Comparing the MAPE of single and denoised models. 
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Figure 10. Comparing the MSE of single and denoised models. 
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Figure 11. Comparing the RMSE of single and denoised models. 






Figure 11. Comparing the RMSE of single and denoised models.



[image: Sustainability 15 14957 g011]







[image: Sustainability 15 14957 g012] 





Figure 12. Comparing the MAD of single and denoised models. 
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Figure 13. Out-of-sample forecasting of NO2 by using CSD-GAN. 
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Figure 14. Out-of-sample forecasting of SO2 by using CSD-GAN. 
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Table 1. Data description.
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	Section A: Descriptive
	NO2
	SO2



	Mean
	3.974
	1.528



	Maximum
	6.370
	4.190



	Minimum
	0.200
	0.190



	Std. Dev.
	0.388
	0.635



	Skewness
	1.640
	1.181



	Kurtosis
	10.070
	5.218



	Jarque–Bera
	519.074
	70.012



	Probability
	0.000
	0.000



	ARCH-LM
	89.261 ***
	210.674 ***



	Section B: BDS
	
	



	2
	0.352 ***
	0.140 ***



	3
	0.394 ***
	0.189 ***



	4
	0.410 ***
	0.200 ***



	5
	0.573 ***
	0.342 ***



	6
	0.499 ***
	0.418 ***







Notes: *** represents the level of significance at 1%.













 





Table 2. MAPE, MSE, RMSE and MAD for single and hybrid models.
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	ARIMA
	CSD-ARIMA
	ES-ARIMA
	HP-ARIMA
	WD-ARIMA





	MAPE
	Training data
	3.535
	3.019
	3.442
	3.310
	3.007



	
	Testing data
	3.902
	3.254
	3.753
	3.572
	3.439



	MSE
	Training data
	3.613
	3.281
	3.418
	3.406
	3.401



	
	Testing data
	3.902
	3.337
	3.622
	3.593
	3.575



	RMSE
	Training data
	3.284
	3.105
	3.279
	3.261
	3.595



	
	Testing data
	3.119
	2.910
	3.104
	3.063
	3.008



	MAD
	Training data
	0.562
	0.528
	0.559
	0.547
	0.530



	
	Testing data
	0.497
	0.463
	0.482
	0.474
	0.469



	
	
	RLS
	CSD-RLS
	ES-RLS
	HP-RLS
	WD-RLS



	MAPE
	Training data
	2.917
	1.924
	2.583
	2.491
	2.335



	
	Testing data
	3.613
	2.906
	3.554
	3.591
	3.427



	MSE
	Training data
	3.085
	2.964
	2.993
	2.971
	2.980



	
	Testing data
	4.428
	3.798
	4.126
	4.010
	3.893



	RMSE
	Training data
	3.116
	3.099
	3.109
	3.112
	3.097



	
	Testing data
	3.085
	3.053
	3.063
	3.057
	3.051



	MAD
	Training data
	0.573
	0.471
	0.495
	0.524
	0.462



	
	Testing data
	0.482
	0.468
	0.481
	0.478
	0.463



	
	
	SVR
	CSD-SVR
	ES-SVR
	HP-SVR
	WD-SVR



	MAPE
	Training data
	2.230
	2.151
	2.193
	2.201
	2.164



	
	Testing data
	2.249
	2.176
	2.231
	2.235
	2.197



	MSE
	Training data
	2.817
	2.799
	2.806
	2.799
	2.803



	
	Testing data
	2.839
	2.803
	2.833
	2.831
	2.805



	RMSE
	Training data
	2.758
	2.731
	2.749
	2.750
	2.743



	
	Testing data
	2.673
	2.661
	2.669
	2.671
	2.667



	MAD
	Training data
	0.569
	0.525
	0.537
	0.561
	0.553



	
	Testing data
	0.548
	0.479
	0.482
	0.513
	0.480



	
	
	GAN
	CSD-GAN
	ES-GAN
	HP-GAN
	WD-GAN



	MAPE
	Training data
	1.918
	1.872
	1.899
	1.909
	1.884



	
	Testing data
	1.925
	1.887
	1.895
	1.921
	1.891



	MSE
	Training data
	2.525
	2.504
	2.513
	2.520
	2.515



	
	Testing data
	2.610
	2.585
	2.590
	2.589
	2.591



	RMSE
	Training data
	1.923
	1.916
	1.920
	1.919
	1.922



	
	Testing data
	1.917
	1.915
	1.916
	1.921
	1.920



	MAD
	Training data
	0.375
	0.356
	0.362
	0.371
	0.359



	
	Testing data
	0.298
	0.275
	0.287
	0.283
	0.279










 





Table 3. Diebold–Mariano forecast accuracy test.
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MSE

	
ARIMA

	
RLS

	
SVR

	
GAN

	
CSD-ARIMA

	
CSD-RLS

	
CSD-SVR






	
S0

	
−71.102

	
−63.824

	
−21.453

	
−49.822

	
−57.285

	
−44.101

	
−75.086




	
P0

	
0.000

	
0.000

	
0.000

	
0.000

	
0.000

	
0.000

	
0.000




	
Result

	

	
Reject H0; Accept H1

	

	

	

	








Notes:    H 0    indicates that there is no difference between CSD-GAN and comparative models.    H 1    proposes that the output power of CSD-GAN is better.    H 2    is about the higher output power of comparative models, as compared with CSD-GAN.
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