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Abstract: The theory of compressive sampling (CS) has revolutionized data compression technology
by capitalizing on the inherent sparsity of a signal to enable signal recovery from significantly far fewer
samples than what is required by the Nyquist-Shannon sampling theorem. Recent advancement in
deep generative models, which can represent high-dimension data in a low-dimension latent space
efficiently when trained with big data, has been used to further reduce the sample size for image data
compressive sampling. However, compressive sampling for 1D time series data has not significantly
benefited from this technological progress. In this study, we investigate the application of different
architectures of deep neural networks suitable for time series data compression and propose an effi-
cient method to solve the compressive sampling problem on one-dimensional (1D) structural health
monitoring (SHM) data, based on block CS and the vector quantized—variational autoencoder model
with a naive multitask paradigm (VQ-VAE-M). The proposed method utilizes VQ-VAE-M to learn the
data characteristics of the signal, replaces the “hard constraint” of sparsity to realize the compressive
sampling signal reconstruction and thereby does not need to select the appropriate sparse basis for the
signal. A comparative analysis against various CS methods and other deep neural network models
was performed in both synthetic data and real-world data from two real bridges in China. The results
have demonstrated the superiority of the proposed method, with achieving the smallest reconstruc-
tion error of 0.038, 0.034 and 0.021, and the highest reconstruction accuracy of 0.882, 0.892 and 0.936
for compression ratios of 4.0, 2.66, and 2.0, respectively.

Keywords: compressive sampling; deep learning; deep generative models; vector
quantized—variational autoencoder; time series; structural health monitoring

1. Introduction

With the increasing number of large-scale public infrastructure, structural health
monitoring (SHM) technology has been more and more widely used in civil infrastructure
in recent years, such as outlier diagnosis [1,2], damage identification [3,4], response pre-
diction [5,6], and condition assessment [7,8], in order to reduce the risk of irreversible
structural damage by continuous tracking of structural condition. However, a typical
SHM system requires a large number of sensors to collect enough data for accurate infer-
ence of structural conditions. The need of collecting a massive amount of data leads to a
tradeoff between the limited storage and data transmission capacity of the SHM system
and the monitoring accuracy. Efficient data compression technology is the key to solve
this difficult problem. In 2006, the compressive sampling (CS) method was proposed by
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Candes et al. [9] and Donoho [10], which has revolutionized the field of signal processing
because of its ability to efficiently sense and compress signal simultaneously in band-
width-constrained scenarios like SHM. If a signal can be represented by a sparse vector
with a set of known basis functions, the CS method mathematically guarantees a high
probability of reconstructing a signal compressed at a rate far less than the Nyquist sam-
pling frequency. Its basic principle is to utilize the sparsity of a signal to constrain the ill-
posed linear inverse problem. In addition, research about the robustness to uncertainty
has always been a research priority in SHM due to environmental noise and insuffi-
cient data problems. For example, Zhao et al. [11] proposed a new paradigm of the
recursive modeling strategy of Bayesian multiple linear regression for bridge deflec-
tion to deal with the interference from the data time lag and abnormal signal. Zhang
et al. [12] presented a new modal parameter identification process based on the
Gaussian mixture model of the data envelope and bandpass filtering. Motived by this,
Bayesian probabilistic methods, which have been widely used in SHM data modeling
[5,6,13] have also been extensively investigated in CS signal reconstruction, in which the
confidence of the reconstructed signal can be quantified and the signal reconstruction ro-
bustness can be effectively enhanced [14,15].

In real-word applications, it is often difficult to find a sparse representation of many
SHM signals. For example, while many time series signals are sparse after wavelet trans-
form, this result does not apply to acceleration signals measured from some real structures
[15], limiting the application of the CS method in many SHM applications. In recent years,
many researchers have attempted to take advantage of the strong feature-learning ability
of deep neural networks (DNNs) [16-19] to relieve the signal sparsity constraint in con-
ventional CS, e.g., Bora et al. [20] proposed to use well-trained deep generative networks
that capture the high-dimension image signals in a low-dimension space as an implicit
regularizer for the ill-posed CS problem; Huang et al. [21] and Zhang et al. [22] success-
fully applied this idea to achieve high segmentation accuracy on building crack images
with a high compression ratio; Dave et al. [23] proposed to use the architecture of an un-
trained deep convolutional generative adversarial networks as a prior to solve any differ-
entiable linear inverse problem for image data, assuming such an architecture has already
provided enough constraints to capture the underlying distribution of natural images [24].

Deep-learning-based CS methods have been successfully applied to many practical
problems related to image or video signals [25-28], but 1D time series signals have not
benefited from these advancements in CS. Ni et al. [29] directly used neural networks for
compression and reconstruction of signals, which differs from the linear signal projection
setup in the CS problem. There are studies on data loss recovery in SHM [30,31] using
specially designed network structures that are not suitable for the general CS situation.
To the best of our knowledge, however, there are seldom reports on significant improve-
ment of CS for time series data based on deep learning. We speculate that the reason is the
lack of efficient feature capturing neural network structures for time series. For example,
the popular recurrent neural network (RNN) does not necessarily reduce the time series
input to a very low-dimensional space. In fact, there is exponentially less volume for com-
pression in 1D space than in higher dimensional spaces. Most of the successful time series
models focus on modeling correlation structure at different length scales, such as the tra-
ditional autoregressive models.

In this paper, instead of following the standard approach to compress a signal in a
single batch, we propose a new modeling approach based on block CS and VQ-VAE model
with a multitask learning paradigm (VQ-VAE-M) for the 1D CS problem, which leverages
the hierarchical structure of short-term and long-term correlations in time series. This
method uses the VQ-VAE-M to learn the data characteristics of the signal, and replaces
the “hard constraint” of sparsity to realize the compressive sampling signal reconstruc-
tion. Block CS has been studied by many researchers to speed up the reconstruction pro-
cess [32-35]. Here, we investigate the potential of improving the reconstruction accuracy
of the CS signal under high compression ratios by combining the idea of block CS and



Sustainability 2023, 15, 14868

3 of 20

projection of short time series on a discrete space. The combination preserves the spatial
position features between the elements in the signal effectively in the compression and
reconstruction stages.

The remainder of this paper is organized as follows: Section 2 provides a concise ex-
planation of conventional CS and block CS. The technical details of the proposed method
are elaborated in Section 3. Then, we demonstrate the effectiveness of different DNN’s ap-
plied to the 1D CS problem on both synthetic and real SHM data, including the basic mul-
tilayer perceptron (MLP) network, waveform transposed convolution neural network
(WTCNN) (see Appendix A), waveform generative adversarial network (WaveGAN) (see
Appendix B) [36], vector quantized—variational autoencoder (VQ-VAE) (see Appendix C)
[37,38], and the proposed method in Section 4. Finally, we remark some concluding results
and potential issues of our method in Section 5.

2. Compressive Sampling and Block Compressive Sampling

The conventional CS problem is basically solving the ill-posed inverse linear problem
with [; regularization. Let us consider a linear transformation of N-dimensional discrete
signal X = [X4,X;, ..., Xy]” to W, which has only K (<<N) non-zero coefficients w;, based
on a set of standard orthogonal basis vectors W = [y, Py, ..., Pyl

N
X = Pw; = PW @
=1

i
Next, we compress the signal X to y by a random projection matrix: ®, €
RMXN(M « N):

y = ®X=&,PW = OW 2)

where @ = ®,%¥ € R"™Vand y = [y, y,, ..,yn]T € RM*N  If @, satisfies the Restricted
Isometry Property (RIP) condition, Candes et al. showed that we can reconstruct X from
y with a high probability of success [9] by solving a non-linear optimization for X:

X=PYWs.t. W= min||W||;, 3)

®, is typically taken as a Gaussian matrix with independent and identically distrib-
uted elements [9], but N can be very large for image signals, causing potential issues on
the storage of the matrix and computation time of CS.

Gan et al. [39] studied a block CS method where the main idea is to divide X into P
short sequences x; of length b, and compress them into a sequence of short measure-
ments y; of length a by the same projection matrix @, of size a X b. The reconstruction
of X is achieved by concatenating the separately reconstructed X;:

X=%,W s.t. W= min||W||, ()
Mathematically, it is equivalent to solving the original CS problem by designing ®,
as
[® 0 L 0 0]
|0 @, L 0 0 |
o,=IlMm M 0 M M| ()
l oo L @ ol
loo L o ol

Recently, deep learning techniques have been applied on the block CS problem to
improve computational accuracy and efficiency [40].

The hardware of the projection matrix in Equation (5) can be easily constructed by
implementing a random 2D filter bank [39]. In the basic formulation of the block CS
method, we assume that the small measurements are independent of each other. As a re-
sult, block artifacts usually appear at the boundaries of separations caused by non-smooth
signal values as they are reconstructed separately. In our proposed method, we adopt the
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compression process of block CS to obtain smaller segments of time series signals. How-
ever, the reconstruction is not separated for each segment to avoid the block artifacts. Our
main goal of using the block CS compression step is not to reduce storage size. As ex-
plained in the next section, the small signal segments match well with the neural network
structure we picked to reconstruct the signals under a multitask framework.

3. Modified Block CS with VQ-VAE

The fundamental challenge of the CS problem is how to efficiently constrain the so-
lution space of the ill-posed linear inverse problem based on the distribution of data. DNN
can be seen as a tool to learn a representation of the underlying data distribution that can
constrain the solution space through a set of data samples. This idea is typically imple-
mented in two ways: (1) training a discriminative neural network that takes y as input and
x as output; (2) training a generative neural network that transforms a low-dimensional
distribution into the high-dimensional data distribution. In the former case, the trained
DNN can be directly used as the signal decompressor, assuming that the learned patterns
of decompressing signals from the data distribution are embedded in the trained network
parameters. In the latter case, the low-dimensional space of the generative network input
is optimized to decompress the signals, and the generative network is treated as an im-
plicit constraint, replacing the sparsity constraint in the conventional CS [17].

In the next section, we demonstrate the unsatisfactory performance of these ap-
proaches on synthetic and real SHM data. We hypothesize that the state-of-the-art DNN
architectures are not suitable for the 1D CS problem because it is difficult to find the com-
pact representation of time series data in a low-dimension space. Therefore, instead of
searching for a compact representation of the high dimension time series data directly, we
try to take advantage of the hierarchical structure of short-term and long-term correlations
in time series. Our proposed method is motivated by two main ideas: (1) using the block
CS compression step to compress signal information within a short length scale, and (2)
training a neural network that can assemble learned hidden features in the compressed
signal segments to reconstruct the complete signal taking into account of the correlations
across the short length scale segments. In particular, we implement the latter idea using a
VQ-VAE model, which is originally designed as a generative model that projects a high
dimension distribution into a discrete space. Different from the convention, our VQ-VAE
model encodes the compressed data y into a discrete space and decodes them back into
the original signal segment x directly.

3.1. VQ-VAE Model with a Naive Multitask Implementation

A vector quantized-variational autoencoder (VQ-VAE) [37,38] is basically a varia-
tional autoencoder (VAE) model with a discrete hidden space. The embedding space in a
VQ-VAE model can be seen as a dictionary or codebook for the signals to be encoded.
Once the model is trained, signals can be collected by drawing samples from the hidden
space and passing them through the decoder part of the model. Here, we apply this model
to decompress y back to x directly, i.e., a compressed signal y is fed into the encoder and
decoder sequentially and the output is expected to be the decompressed signal x. This
method is similar to the idea of designing over-complete dictionaries to solve the conven-
tional CS problem [41-44], except that the codebooks in VQ-VAE are learned by training
a DNN. However, applying VQ-VAE directly to CS does not lead to satisfactory results,
as shown in the next section. Instead, we use block CS to compress a time series and input
the concatenated vector y = [y, ..., ¥;, ..., ¥a] of the compressed short data segments to
VQ-VAE. This design is based on our speculation that it is easier to learn the decompres-
sion pattern if the short- and long-length scale correlations are separated. If we consider
the decompression of each short segment y; as a single CS task, the concatenation of y;
can be seen as using a naive multitask learning approach to solve the block CS problem,
allowing us to avoid the block artifact issue. At the same time, long-term correlation in the
time series is less likely to be destructed during the compression step of block CS, i.e.,
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implicitly separating the short-term and long-term correlation. We call our model VQ-
VAE-M in this paper.

We adopt a 2-level VQ-VAE structure in this study according to the suggestions of
Razavi et al. [38] (see Figure 1). First, the concatenated vector y is encoded into the top
and bottom latent representations Z¢; and Z, by two encoders. Then, vector quantiza-
tion is carried out according to the top codebook E; and bottom codebook Ej, respec-
tively, to obtain the top latent discrete representations Zg, and the bottom latent discrete
representations Zg, (the quantization process of Zy, is guided by Zg; as well). Finally,
Zy and Zg, are passed to the decoder to reconstruct the original signal x. The vector
quantization step simply replaces each value in Z¢; and Z,, by the nearest neighbor
value in the corresponding codebook E; and E, to form Zg and Zg,. We employ con-
volutional layers in the encoder and decoder. Figure 2 shows the detailed structure and
tensor sizes of the network, where B is the batch size of input, L. is the length of a single
compressed signal in the input batch, L, is the coding length of the bottom latent space,
Le¢ is the coding length of the top latent space, C, is the number of latent coding channels,
Crp is the number of residual block channels, L, is the top latent discrete coding length,
Lgp is the bottom latent discrete coding length, C, is the number of latent discrete coding
channels, and L is the original signal length. We note that our encoder and decoder are
not symmetrical because the input and output are not in the same size. In order to extract
deeper signal features and accelerate convergence, residual blocks and skip connections
are used in both the encoder and the decoder.

Top A N
Level @ ........... L\J_ﬂ [
Encoderﬁ Decoderﬁ
Zeb VQ qu
e = = (FEFETTY

Level
Encodcrﬁ Decoderﬂ R
y X

Compression Reconstruction

(a)

Vector Quantisation, VQ

creses Embedding Space N

O 0O

Z

L]

(b)

Figure 1. (a) Structure diagram of VQ-VAE (discriminant). (b) Schematic diagram of vector quanti-
zation process (VQ) in VQ-VAE.
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Figure 2. (a) Schematic diagram of the encoder in our VQ-VAE model. (b) Schematic diagram of the
decoder in our VQ-VAE model.

3.2. DNN-Based CS Algorithm

In the proposed algorithm, we use the block CS compression step to linearly project
a 1D signal x to y based on the matrix in Equation (5), and use VQ-VAE-M to reconstruct
the original signal by feeding y into the input of VQ-VAE-M and taking the output as the
reconstructed signal x directly. To train the VQ-VAE-M model, pairs of the original signal
x and compressed signal y are collected to form a set of training data. In the case of SHM,
time series data x from the sensors on a structure are collected and compressed into y.
Following the typical neural network training scheme, the training dataset is separated
into multiple batches, each of size B. During the backpropagation training phase, all
batches of data are sequentially applied to a VQ-VAE-M model with randomly initialized
parameters in a random order. The procedure of training with all batches is repeated N,
times (denoted as N,, epochs), until the parameter values converge. We adopt the same
loss function as the original VQ-VAE model [38] in the backpropagation step:

Loss(x,D(e)) = llx — D(e)lI3 + lIsg[E()] — ell3 + Blisgle] — EII3 (6)

where e denotes the quantized code of y, E denotes the encoder function, D denotes the
decoder function, and sg refers to a stop-gradient operation.

In addition to the usual DNN hyperparameters, such as learning rate, batch size, and
number of epochs, number of blocks in block CS (or the length of each data segment) is
also an important hyperparameter in our algorithm, which controls the maximum length
scale of information being compressed into y. The shorter the length of each data segment,
the less expected amount of pattern we can observe from the data. As a result, it is easier
for VQ-VAE-M to find a good representation in the discrete hidden space for the signal
reconstruction task. However, the data compression space is also less, i.e., the minimum
compression ratio is higher. As shown in the next section, our model favors shorter data
segments for better reconstruction accuracy. Therefore, we choose the shortest possible
segment length based on the desired compression ratio CR = N/M in most of our tests.
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4. Results

In order to verify the reconstruction performance of the VQ-VAE-M method on CS
signals, we test it on a set of synthetic times series constructed by superimposing sinusoi-
dal signals and real acceleration time series obtained from SHM sensors on two real
bridges in China (Tianjin Yonghe Bridge and Hangzhou Bay Bridge). Using the real bridge
data, we compare our method with five conventional CS algorithms and four deep-learn-
ing-based CS algorithms to demonstrate the important contributions of block CS and
DNN in the 1D CS problem. The five conventional CS algorithms based on sparse con-
straints are Basis Pursuit (BP) [9], Compressive sampling matching pursuit (CoSaMP) [45],
Gradient Projection for Sparse Reconstruction (GPSR) [46], Bayesian compressive sensing
(BCS) [47] and Bayesian compressive sensing integration over the prediction—error preci-
sion parameter (BCS-IPE) [14]. Among them, CoSaMP is a Greedy iterative algorithm, and
BP and GPSR are two Convex optimization algorithms, all of which are well known and
classic deterministic CS methods. BCS and BCS-IPE are two Bayesian probabilistic meth-
ods, which utilize sparse Bayesian learning to quantify the posterior uncertainty of the
signal model and so can improve the signal reconstruction robustness. The four deep-
learning-based CS algorithms are MLP, WTCNN, WaveGAN [36] and VQ-VAE [37,38].
The first two are discriminative-model-based methods, in which the MLP method is
known to be simple and fast in calculation, and the WTCNN model has the advantages of
fast training speed. WaveGAN and VQ-VAE are two most popular generative-model-
based methods, as explained in the previous section. All four models are from our original
design because of the lack of publicly available pretrained models for time series data
using a deep-learning-based CS algorithm. The details of the structures and training pro-
cedures and advantages of these DNNs are shown in Appendixes A-C. During the train-
ing procedure, early stopping [48] is employed to avoid overfitting and to select the net-
work hyperparameters. In addition, data normalization and the two-tier network struc-
ture, which can improve the depth of the network structure and help to capture more
characteristic information, are also employed to avoid underfitting.

4.1. Performance Metric

To evaluate the performance of signal reconstruction evaluation, the reconstruction
error of a given signal is defined as follows:

= 2
_ X —xI;

=42 7)
T IXIE

where X is the original signal and X is the corresponding reconstructed signal. If the re-
construction error E, is less than or equal to a certain threshold &, the reconstruction of
the single signal is considered successful; otherwise, the reconstruction is considered
failed. The ratio of the number of successfully reconstructed signals Ls(8) to the total
number of signals L is used to quantify the reconstruction quality, which is called the
reconstruction success rate:

S, = (8)

Various indicators are employed in the following tests and their results will be tabu-
lated in Tables 1-9. Emean is the average reconstruction error of all test signals; E1 and E2
refer to the reconstruction success rate Srfor § = 0.1 and & = 0.2, respectively; in addi-
tion, the average reconstruction time f of each signal and the training time tuain for deep-
learning-based methods are introduced; for cutting time series in the compression stage,
the two cases of cutting sequence data into different blocks and no cutting are denoted as
Multi-Blocks and Block, respectively. Among these indicators, we employ Emean to quan-
tify the overall signal reconstruction accuracy at a certain compression ratio; E1 and E: are
used to measure how many signals can be reconstructed successfully. We also quantify
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the efficiency of the method by the indicators of average reconstruction time t and training

time fain.

Table 1. Performance of different CS methods under compression ratio of N/M = 8.0.

Methods Emean Ex E: t(s) tirain (Min)
VQ-VAE-M 0.003 1.0 1.0 0.038 2.967
WaveGAN 0.155 0.0938 0.8516 4.743 56.15

VQ-VAE 0.02 1.0 1.0 0.329 2.333

Table 2. Influence of the length of each signal segment Dy on reconstruction performance of VQ-
VAE-M under compression ratio of N/M = 4.0.

Ds Emean E1 E> t(s)
8 0.039 0.882 0.985 0.014
16 0.100 0.641 0.849 0.014
32 0.110 0.662 0.818 0.013
64 0.116 0.613 0.803 0.014
128 0.306 0.156 0.344 0.013
256 0.580 0.072 0.162 0.013
512 0.768 0.056 0.133 0.013

Table 3. Influence of the number of blocks Ny on the reconstruction performance of VQ-VAE-M
under compression ratio of N/M = 4.0.

N Emean E1
B Multi-Blocks Block Multi-Blocks Block
1 0.136 0.136 0.699 0.699
2 0.129 0.096 0.653 0.737
4 0.066 0.076 0.791 0.766
8 0.066 0.068 0.790 0.786
16 0.058 0.064 0.821 0.800
32 0.053 0.062 0.831 0.800
64 0.040 0.060 0.882 0.815

Table 4. Ablation experiments of three models under compression ratio of N/M = 4.0.

Methods Emean E1 Ex t(s) ttrain (Min)
VQ-VAE-M 0.038 0.882 0.987 0.013 18.501
(VOQ-VAE-M)e 0.043 0.867 0.964 0.011 20.362
(VQ-VAE-M)p 0.049 0.838 0.956 0.011 21.034

Table 5. Ablation experiments of three models under compression ratio of N/M = 2.66.

Methods Emean Ex Ex t (s) tirain (Min)
VQ-VAE-M 0.034 0.892 0.977 0.013 14.312
(VQ-VAE-M)e 0.038 0.877 0.946 0.011 16.031
(VQ-VAE-M)p 0.043 0.862 0.941 0.011 16.647

Table 6. Ablation experiments of three models under compression ratio of N/M = 2.0.

Methods Emean Ex Ex t (s) tirain (Min)
VQ-VAE-M 0.021 0.936 1.000 0.013 12.148
(VQ-VAE-M)e 0.025 0.911 0.972 0.011 14.025
(VQ-VAE-M)p 0.029 0.895 0.964 0.011 14.507
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Table 7. Performance indexes of each model under compression ratio of N/M = 4.0.

Methods Emean E1 E: t(s)
BP 0.475 0 0 0.172
CoSaMP 3.501 0 0 0.191
GPSR 0.437 0 0.020 0.042
BCS 0.499 0 0.050 0.067
BCS-IPE 0.466 0.010 0.060 1.251
MLP 0.051 0.854 0.944 0.016
WTCNN 0.050 0.862 0.964 0.012
VQ-VAE-M 0.038 0.882 0.987 0.013
WaveGAN 0.553 0.110 0.190 4.732
VQ-VAE 0.453 0.569 0.685 2.574

Table 8. Performance indexes of each model under compression ratio of N/M = 2.66.

Methods Emean E1 Ex t(s)
BP 0.364 0 0 0.178
CoSaMP 0.417 0.020 0.170 0.250
GPSR 0.310 0 0.250 0.022
BCS 0.338 0.040 0.290 0.095
BCS-IPE 0.325 0.060 0.330 1.504
MLP 0.048 0.859 0.913 0.017
WTCNN 0.043 0.874 0.956 0.011
VQ-VAE-M 0.034 0.892 0.977 0.013
WaveGAN 0.434 0.170 0.210 6.722
VQ-VAE 0.460 0.149 0.526 2.586

Table 9. Performance indexes of each model under compression ratio of N/M = 2.0.

Methods Emean E1 E: t(s)
BP 0.304 0 0.060 0.190
CoSaMP 0.293 0.070 0.360 0.301
GPSR 0.250 0.020 0.390 0.013
BCS 0.268 0.150 0.390 0.097
BCS-IPE 0.266 0.150 0.410 2.000
MLP 0.032 0.895 0.979 0.016
WTCNN 0.023 0.918 0.997 0.011
VQ-VAE-M 0.021 0.936 1.000 0.013
WaveGAN 0.365 0.180 0.210 7.005
VQ-VAE 0.194 0.595 0.733 2.623

For conventional CS methods, the selection of sparse basis is often a necessary step.
In this study, we try both cosine and wavelet bases for each method, and select the better
result for comparison in order to demonstrate an advantage of the conventional methods.

4.2. Test on Synthetic Data
We synthesized a total of 27,300 superimposed sinusoidal signals x of length 512 by

10
X = Z A; sin(w;t + @;) 9)
i=1

where 4;, w; and ¢; were sampled from U(0.1,0.5), U(1,20), U(—m,m),respectively
and U(a, b) denotes a uniform distribution between the interval of a and b. These signals
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were compressed to y by block CS with a compression ratio CR of N/M = 8.0. We ran-
domly selected 23,400 pairs of the x and y data to train the DNN models and tested them
on the remaining signals along with various CS algorithms. Figure 3 shows a comparison
of a synthetic signal and its reconstruction based on our proposed method. It can be seen
that the two signals are consistent with each other very well, demonstrating the effective-
ness of the method.

Reconstruction error:0.0063

Synthetic signal

Signal sampling point number

Figure 3. Reconstruction performance of VQ-VAE-M on superimposed sinusoidal signal.

To investigate the robustness of the method, we repeated the experiment on each test
signal 100 times and recorded the mean values of the performance metrics for three deep
generative model-based methods VQ-VAE-M, WaveGAN and VQ-VAE. Table 1 lists the
performance results of different CS methods. In terms of reconstruction quality, as ex-
pected, the reconstruction results of VQ-VAE-model-based algorithms are good because
of their ability to learn from the data. The average reconstruction errors (Emean) of the two
algorithms are significantly smaller compared with WaveGAN, where the error of VQ-
VAE-M is only 0.003; in addition, the reconstruction success rates of both VQ-VAE-M and
VQ-VAE methods are close to 1.

In terms of reconstruction speed, the VQ-VAE-M and VQ-VAE algorithms are fast on
average. For the best performing model, VQ-VAE-}, it takes 0.038 s on average to recon-
struct each signal and less than 3 min to train the model.

4.3. Test on Real SHM Data

In practical SHM applications, sensor signals often exhibit complex data characteris-
tics, such as non-periodicity or contain various interference components due to environ-
mental excitation, human disturbance, etc. Using two sets of real acceleration signals from
Tianjin Yonghe Bridge and Hangzhou Bay Bridge, we inspected the performance of the
proposed method and its sensitivity to the hyperparameters in block CS, noise contami-
nation, and residual blocks and skip connections. Figure 4 shows the acceleration signals
from the two bridges. We divided each time series into subsequences of length 512, yield-
ing a total of 23,400 pieces of signals, and chose 23,010 pieces of signals as the training
data set. Here, we judge whether the training data is sufficient based on the convergence
of the loss function. In order to ensure that the model performs stably and reliably, the
remaining signals were used as the validation data set. The validation data set should be
selected randomly but cannot contain data from the training dataset [49]. Figure 5 shows
a sample of signal from Tianjin Yonghe Bridge in different bases. We note that the signal
is not very sparse in either cosine or wavelet basis, illustrating the difficulty of selecting a
suitable basis for a conventional CS algorithm.
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Figure 4. (a) Acceleration signal of Tianjin Yonghe Bridge. (b) Acceleration signal of Hangzhou Bay
Bridge.
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Figure 5. One piece of acceleration signal of Tianjin Yonghe Bridge after division: (a) time domain;
(b) cosine basis; (c) wavelet basis.

4.3.1. Sensitivity to Hyperparameters in Block CS

To understand the impact of the number of blocks N and the length of each signal
segment Dp in block CS on the reconstruction performance, we compared the perfor-
mance of VQ-VAE-M models with different Dy and Nj. The results in Tables 2 and 3 show
that a lower Dy or higher Ny is always preferred. This may indicate that finding a good
representation of a long time series for solving the CS problem is difficult. Convolutional
layers in DNNs (including VQ-VAE) are probably more effective for vectors with spatial
correlation. Block CS with a high Np or low Dp implies that most of the correlations in
the time series are likely to be conserved. However, Dj is the highest possible compres-
sion ratio in this case. Therefore, we suggest choosing the lowest possible Dp correspond-
ing to the desired compression ratio of a CS application in the applications.

4.3.2. Sensitivity to Noise Contamination

Noise contamination is a common issue in SHM signals. Sensitivity to noise is also
related to the robustness of VQ-VAE-M and the possible overfitting problem. Here, we
tested our method on the acceleration signal of Hangzhou Bay Bridge with a small signal-
to-noise ratio. With a compression ratio of N/M = 4.0, Figure 6 demonstrates the distri-
bution of reconstruction errors as a function of §. In general, the performance is not very
satisfactory. Although the model cannot reconstruct complex signals completely, the low
frequency components of complex signals can be reconstructed accurately. As shown in
Figure 7, the reconstruction quality of signals in the time domain is poor and some peak
values are not well reconstructed; however, in the frequency domain, the reconstruction
quality of the low-frequency part is relatively good, while the reconstruction quality of
the high-frequency part is relatively poor. This is because the neural network will pay
more attention to the low-frequency components during the training phase, as has been
previous suggested that the network fits low frequency before high frequency [50]. In fact,



Sustainability 2023, 15, 14868

13 of 20

the natural frequency of bridge structure is generally low, as the high-frequency compo-
nents are usually environmental noise. Therefore, even the proposed method cannot com-
pletely reconstruct the signal under particularly complex environmental excitation, it also
has certain application potential in the field of SHM.
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Figure 6. Distribution of signal reconstruction error of Hangzhou Bay Bridge with compression ratio
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Figure 7. Reconstruction effect of acceleration signal of Hangzhou Bay Bridge: (a) time domain; (b)
frequency domain.

4.3.3. Sensitivity to Residual Blocks and Skip Connections

In order to extract signal features and accelerate convergence effectively, residual
blocks and skip connections are used in both the encoder and decoder, as stated previ-
ously. We designed and performed ablation experiments on the acceleration signals from
Tianjin Yonghe Bridge to demonstrate the effectiveness of these two modules. The com-
pressive sampling signals were reconstructed at the compression ratios of 4.0, 2.66, 2.0,
and the experiments were repeated 390 times for each compression ratio. The performance
metric results of three methods were recorded in Tables 4-6, in which (VQ-VAE-M)e and
(VQ-VAE-M)p show that residual blocks and skip connections are only used in the en-
coder or decoder, respectively.

From the results, it is concluded that the residual blocks and skip connections in both
the encoder and decoder are conducive to reducing the reconstruction error and improv-
ing the reconstruction accuracy. Meanwhile, the residual blocks and skip connections in
both the encoder and decoder can accelerate the model training convergence.

4.3.4. Comparison of Different CS Algorithms

As stated previously, we compared our proposed method with five conventional CS
algorithms and four deep-learning-based CS algorithms on the acceleration signals of
Tianjin Yonghe Bridge, which have a higher signal-to-noise ratio than those of Hangzhou
Bay Bridge. At the compression ratios of 4.0, 2.66, 2.0, the compressive sampling signals
were reconstructed by running the algorithms, and the experiments were repeated 390
times for each compression ratio. Tables 7-9 recorded the performance metrics of all 10
algorithms.

In terms of reconstruction quality, the deep-learning-based algorithms generally
have better reconstruction results at the three compression ratios, showing that the com-
pression patterns of the test data are successfully learnable from the training data. The
Emean of MLP, WTCNN and VQ-VAE-M are all very small, where VQ-VAE-M has the
smallest errors of 0.038, 0.034 and 0.021 at all three compression ratios, while the Emean of
the traditional compressive sampling algorithms are larger than 0.2, which are relatively
high. In terms of E1 and E, the indices values of deep-learning-based algorithms are also
much higher than traditional methods. Among them, VQ-VAE-M algorithm has the high-
est E1 accuracy of more than 0.88 when the compression ratio N/M is 4.0, while the high-
est E1 accuracy of traditional algorithm is 0.10. The situation is similar in Ez, where the
VQ-VAE-M algorithm obtains the highest E accuracy of more than 0.98. Similar conclu-
sion can be observed in Tables 7-9 when the compression ratios N/M are 2.66 and 2.0,
respectively.

In terms of signal reconstruction speed, the three deep-learning-based algorithms
MLP, WTCNN and VQ-VAE-M are much faster on average. For the best performing
model, VQ-VAE-M, it takes only 0.013 s on average to reconstruct each signal, which is
much faster than WaveGAN and VQ-VAE, and most traditional methods.

In the application, if E1 or E2 equals to 1.0, we consider the signal reconstruction is
successful. The results in Tables 7-9 show that the maximum compression ratio of our
method is around 2.0 for the acceleration signals from Tianjin Yonghe Bridge. It is also
observed that the traditional compressive sampling methods and other deep-learning-
based compressive sampling methods fail to reconstruct all signals successfully at this
compression ratio. Therefore, our method achieves the highest compression ratio com-
pared to other methods.

It is concluded that compared with the traditional compressive sampling methods
based on sparse constraint, the compressive sampling signal reconstruction method based
on VQ-VAE-M significantly improves the reconstruction quality and the reconstruction



Sustainability 2023, 15, 14868

15 of 20

speed, while being able to achieve a high-quality reconstruction of one-dimensional SHM
compressive sampling signal at a high compression ratio (Figure 8).

Reconstruction error:0.0058
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Figure 8. Reconstruction effect of acceleration signal of Tianjin Yonghe Bridge based on VQ-VAE-M
model.

5. Conclusions

The traditional compressive sampling methods require the signal to satisfy the “hard
constraint” of sparsity in a certain transform domain. However, the civil structural re-
sponse is not only related to the sparsity of modes, but also affected by the structural ex-
citation. The sparsity is sometimes difficult to be satisfied in the case of complex environ-
mental interference. In this paper, based on block CS and the vector quantized—variational
autoencoder model with a naive multitask paradigm (VQ-VAE-M), a data driven-based
compressive sampling signal reconstruction method for one-dimensional time series sig-
nals in SHM is studied. The main contents can be summarized as follows:

(1) Based on the vector quantized—variational autoencoder model with a naive multitask
paradigm (VQ-VAE-M), a one-dimensional compressive sampling signal reconstruc-
tion method is established. This method uses VQ-VAE-M to learn the data character-
istics of the signal, replaces the “hard constraint” of sparsity to realize the compres-
sive sampling signal reconstruction and so eliminate the need to select the appropri-
ate sparse basis for the signal. VQ-VAE-M embeds and maintains one or more code-
books in the latent space to reconstruct signal. The unique bottleneck structure im-
proves the depth of the network, and the two-tier network structure enriches the de-
tails of the reconstructed signal. In addition, the model combined with the block ran-
dom Gaussian projection matrix can preserve the spatial position features between
the elements in the signal as much as possible in both the compression and recon-
struction stages, which greatly reduces the difficulty of decoupling in decompression
and reconstruction, and ensures the quality and speed of signal reconstruction.

(2) The superimposed sinusoidal synthetic signal (sparse enough in the frequency do-
main) and Yonghe Bridge acceleration signal (not sparse enough on both the cosine
basis and wavelet basis) are used to verify the performance of the proposed method,
which is compared with the other compressive sampling methods. The results show
that the proposed method obviously has better performance, that is, higher recon-
struction quality, faster reconstruction speed, enabling to reconstruct signal at a
higher compression ratio, and no need to select the appropriate sparse basis for the
signal.

(3) The characteristics and advantages of the block random Gaussian projection matrix
are analyzed. The matrix can preserve the spatial features between the elements in
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the signal, which is not only conducive to decoupling, but also to extracting the over-
all characteristics of adjacent signals. In addition, the reconstruction performance of
this method in complex environment is also investigated. Even if the environment
excitation is more complex, the method can still reconstruct the information of the
low-frequency components of the signal effectively.

This method also has some limitations: a large number of data are required to train
the neural network model aiming at different compressive sampling signal types, and the
reconstruction performance of complex and high-dimensional signals can be further im-
proved. In future study, it will be useful to combine the proposed method with a Trans-
fomer model and Bayesian probabilistic method to address these issues.
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Appendix A. Waveform Transposed Convolution Neural Networks

The idea of Waveform Transposed Convolution Neural Networks (WTCNN) is derived
from WaveGAN, which mainly consists of one-dimensional transposed convolution layers
with larger receptive field, and has the advantages of less parameters and fast training.

When reconstructing the signal based on the WTCNN, the constructed network is
shown in Figure Al. In order to increase the receptive field, the size of the transposed
convolution kernel is taken as 25 and the step size is taken as 2. The selected loss function
is shown in Equation (Al):

1 o 2
E = —Z X—-X Al
L3z - x? (a1)
WTCNN
J
, Fe Deconv] Deconv2 Deconv3 Deconv4 ’//Deconvs
'/ Reshape & & & /& g & /4
/" Relu | Relu Relu | Relu /" Relu / Reshape //

(n,64) (n,16,16m) (n,32.8m) (n,64,4m) (n,128,2m) (n256,m) (0512)

Figure A1. Structure diagram of WTCNN.

Appendix B. WaveGAN

WaveGAN is a generative adversarial model specially designed for a one-dimen-
sional signal, which mainly includes the following features: using one-dimensional con-
volution instead of two-dimensional convolution to process one-dimensional signal; us-
ing larger convolution kernel and step size to increase receptive field; and using a WGAN-
GP training mechanism to improve training stability and reduce the disadvantage of gen-
erative adversarial model that it is difficult to converge. WaveGAN can also be used to
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reconstruct compressive sampling signal, which consists of two steps: (1) constructing
generative network with the ability of generating quasi-realistic signals; and (2) selecting
the most possible reconstructed signal by optimizing the compressed projection.

Here, signal reconstruction is carried out based on WaveGAN, and the constructed
network is shown in Figure A2. The network consists of generator ¢ and discriminator
D arranged symmetrically. The selected loss function is shown in Equation (A2):

- . 2
E(2) = Exp, [D®)] ~ Exop, [DO] + g, [((IV:0®) - 1)7]  (A2)

The selected optimization function is shown in Equation (A3):
E(z) = |®G(2) —yli3 (A3)

where @ is the projection matrix, y is the compressed projection and z is the hidden
variable. By minimizing the objective function, we can find the optimal hidden variable Z
corresponding to X, and then input itinto G to reconstruct the signal X = G(Z).

WaveGAN

Real signal////
Py ///
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(1x25 Convld)
) .
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Generator s // : :
| (1x25 Tconvld) s : :

v

a
Noise : Update parameters - Keep gradient
--------------------------------------------------------------------------- in (-k,k)
(@
Generator
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> — — R — R —
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(b)
Figure A2. (a) Structure diagram of WaveGAN. (b) Generator and discriminator of WaveGAN.

Appendix C. Vector Quantized—Variational AutoEncoder

VQ-VAE has been introduced in the previous paper, and the network structure and
loss function are basically the same. The VQ-VAE model has the advantage of generating
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results comparable to the current state-of-the-art generative models without encountering
the posteriori collapse problem. The reconstruction of compressive sampling signal can
also be realized by using VQ-VAE, and the selected optimization function is shown in
Equation (A4):

ER") = [|®D.(E, (X)) —y*lIZ + B'IIZ.(R*) — sgle]ll3 (A4)

where R° is the reconstructed signal, y* is the compressed projection and B’ is the
weight hyperparameter. By minimizing the objective function, the optimal reconstructed
signal & can be found.
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