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Abstract: Maize diseases have a great impact on agricultural productivity, making the classification
of maize diseases a popular research area. Despite notable advancements in maize disease classifi-
cation achieved via deep learning techniques, challenges such as low accuracy and identification
difficulties still persist. To address these issues, this study introduced a convolutional neural network
model named Sim-ConvNeXt, which incorporated a parameter-free SimAM attention module. The
integration of this attention mechanism enhanced the ability of the downsample module to extract
essential features of maize diseases, thereby improving classification accuracy. Moreover, transfer
learning was employed to expedite model training and improve the classification performance. To
evaluate the efficacy of the proposed model, a publicly accessible dataset with eight different types of
maize diseases was utilized. Through the application of data augmentation techniques, including
image resizing, hue, cropping, rotation, and edge padding, the dataset was expanded to comprise
17,670 images. Subsequently, a comparative analysis was conducted between the improved model
and other models, wherein the approach demonstrated an accuracy rate of 95.2%. Notably, this
performance represented a 1.2% enhancement over the ConvNeXt model and a 1.5% improvement
over the advanced Swin Transformer model. Furthermore, the precision, recall, and F1 scores of the
improved model demonstrated respective increases of 1.5% in each metric compared to the ConvNeXt
model. Notably, using the Flask framework, a website for maize disease classification was developed,
enabling accurate prediction of uploaded maize disease images.

Keywords: CNN; SimAM attention; transfer learning; data augmentation; maize disease classification

1. Introduction

With the rapid advancement of artificial intelligence technology, current research is
focused on addressing a critical issue: how to utilize deep learning techniques to rapidly
and accurately identify and classify maize diseases. These diseases have a direct impact on
maize yield and quality, making them crucial for agriculture and the food supply chain.
This study aims to provide an efficient solution to promote the sustainable development of
the maize industry.

Artificial intelligence is quickly becoming a major driving force shaping various facets
of modern life. It is increasingly being used in a variety of fields, including agriculture,
healthcare, and many other broad sectors, resulting in revolutionary advances [1]. In the
realm of agriculture, maize cultivation encompasses a vast global expanse, with maize
being recognized as one of the major crops and agricultural commodities. As a vital
staple food and industrial raw material, the stable and sustainable advancement of the
maize industry is crucial for ensuring food security, augmenting farmers’ income, and
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fostering national economic progress [2]. Nevertheless, the quality and yield of maize
are directly affected by various maize diseases, including dwarf leaf disease [3], gray leaf
spot [4], rust [5], and leaf spot [6]. When maize is affected by these diseases, its overall
physiological functions are significantly impaired, resulting in stunted plant growth and
an inability to attain optimal growth conditions. Consequently, this adversely affects both
yield and economic returns [7]. In this context, employing artificial intelligence and precise
classification techniques, particularly methods based on image classification, can enhance
the speedy diagnosis of maize diseases. This contributes to faster decisions in agricultural
production, mitigating the impact of diseases on crop yield and quality and achieving a
sustainable development of the maize industry [8].

Existing maize disease classification strategies suffer from certain limitations. Tradi-
tional classification methods exhibit low accuracy due to the diversity and large quantity
of disease types. They are also influenced by subjective factors, consuming significant
time and labor [9]. Additionally, many maize diseases share similar appearances, posing
challenges for differentiation and exacerbating the difficulty of classification. Furthermore,
the limitations of conventional image processing techniques make it difficult to identify
images with complex texture structures, color variations, and shape changes [10]. These
methods also require high-quality images to yield accurate results.

By optimizing feature extraction and classification algorithms, traditional machine
learning algorithms, such as Support Vector Machine (SVM) [11], decision trees [12], K-
Nearest Neighbors (KNN) [13], and random forests [14], have been utilized to achieve accu-
rate recognition and classification of maize diseases. Noola et al. [15] proposed an enhanced
KNN model aimed at distinguishing different categories of diseases. The model exhibited
excellent performance in terms of precision, recall, and F1 score. However, it had not ade-
quately considered its ability to generalize in complex environments. Kusumo et al. [16]
investigated various maize disease features based on image processing and employed
machine learning algorithms to assess the performance of these features. The findings
indicated that RGB features exhibited the highest accuracy in classification among most
classifiers. However, limitations persisted when confronted with the complex issue of
multiple concurrent diseases affecting maize plants.

In recent years, advancements in deep learning techniques and maize disease de-
tection have given rise to a prominent research area: deep learning-based maize disease
classification. Convolutional neural networks (CNN) [17,18] are commonly used models
in image classification tasks. Liu et al. [19] proposed a transfer learning-based fine-tuning
approach adapted from the EfficientNet model. The last layer of the EfficientNet classifier
was replaced with an 8-class softmax classifier, and validation was conducted using VGG16,
InceptionV3, and Resnet50 architectures. The results demonstrated that the optimized
model achieved significantly higher accuracy compared to other networks. It was worth
noting that a small-sample dataset had a certain impact on the generalization ability of the
model. Sun et al. [20] proposed a multi-scale feature fusion instance detection method for
maize leaf blight based on CNN. This method established a connection between fine-tuning
network and the detection module and replaced the loss function with Generalized Inter-
section over Union (GIoU) to achieve improved accuracy and detection speed. This method
primarily focused on detecting small target diseases, but it encountered challenges when
there were significant variations in target size and density. Haque et al. [21] employed
rotation augmentation and brightness enhancement techniques to address the issue of
class imbalance while utilizing a benchmark training approach to train the Inception-v3
network. The findings demonstrated that the optimized model outperformed several other
models in performance. Due to the small dataset, the generalization capability of the model
was limited.

Previous research encountered several challenges in the classification of maize diseases,
including limitations in model generalization performance and insufficient adaptability to
complex environments. To address these issues, this study designs and implements a maize
disease classification system and evaluates its classification performance. The improved
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ConvNeXt [22] model is employed for the classification of maize diseases, which incorpo-
rates a SimAM attention module after the downsample stage to enhance the model focus
on crucial information and improve its performance. Additionally, the ConvNeXt model is
implemented using the PyTorch framework, and model training is conducted using the
AdamW [23] optimizer. Transfer learning is employed to accelerate the model training
process. Furthermore, multiple data augmentation techniques are utilized to expand the
dataset, thereby improving the model generalization ability. Comparative experiments
are conducted on the ConvNeXt, ResNet34 [24], ResNeXt50 [25], DenseNet121 [26], Mo-
bileNetV2 [27], Vision Transformer [28], and Swin Transformer [29] models. The results
demonstrate the superior classification performance of the proposed model. Accurate and
timely maize disease classification is crucial for effective disease management and higher
crop productivity. The proposed system has the potential to significantly reduce crop losses
and enhance agricultural practices.

The primary contributions of this study are as follows:

1. This study employs the ConvNeXt model, a pure convolutional neural network, for the
extraction of features from maize disease images. To enhance the performance of the
downsample module, a parameter-free SimAM [30] attention module is introduced,
which improves the model’s ability to extract crucial features and reduces the risk of
overfitting, effectively enhancing maize diseases classification performance.

2. The incorporation of transfer learning into the ConvNeXt model enhances its applica-
bility for maize disease classification tasks. This approach leads to improvements in
accuracy, generalization performance, and training efficiency, thereby enhancing the
usability of the model in practical applications.

3. In response to the limitations encountered in practical applications of maize disease
classification, this study develops a website utilizing the Flask framework. The
website allows users to conveniently upload relevant disease images for efficient
classification, significantly lowering manual efforts and associated costs.

The structure of this study is as follows: Section 2 provides a detailed description of
the methods employed. Section 3 presents experiments and results. Section 4 discusses
the research findings, potential improvements, and future research directions. Section 5
summarizes the main contributions and their impact on the field of agriculture.

2. Methods
2.1. The Overall Design of SimAM-ConvNeXt Model

In this study, the aim is to enhance the effectiveness of the ConvNeXt model by
incorporating an attention mechanism. To identify the most suitable attention mechanism
for this purpose, a comprehensive comparison of several popular attention mechanisms
was conducted, including CBAM [31], NAM [32], SE, and SimAM. It found that the SimAM
attention mechanism yielded the best results. Figure 1 illustrates the architecture of the
proposed Sim-ConvNeXt model.

Next, a detailed explanation of different components of the model will be provided, pri-
marily encompassing the ConvNeXt module, attention module, and downsampling module.

2.2. ConvNeXt-T Model

In this study, we employed ConvNeXt-T, a lightweight version derived from Con-
vNeXt and designed exclusively for image classification tasks. The model demonstrates
outstanding feature extraction capabilities by capturing complex patterns and features
within images through a series of convolutional layers. Furthermore, it exhibits robust
generalization capabilities, allowing it to capture features at various image scales, thereby
enhancing its adaptability to images of different sizes and shapes. Built upon the ResNet50
architecture, ConvNeXt-T incorporates structural elements inspired by models such as
Swin Transformer, ResNeXt, and MobileNetV2. Table 1 presents the detailed architecture
of the ConvNeXt model.
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Figure 1. Design of Sim-ConvNeXt model.

Table 1. ConvNeXt-T structure information.

Layer ConvNeXt-T Input Output

conv1 k4, s4, dim = 96 224 × 224 × 3 56 × 56 × 96

conv2_x
 d7× 7, 96

1× 1, 384
1× 1, 96

× 3
56 × 56 × 96 56 × 56 × 96

conv3_x
Downsample d7× 7, 192
1× 1, 768
1× 1, 192

× 3
56 × 56 × 96 28 × 28 × 192

conv4_x
Downsample d7× 7, 384
1× 1, 1536
1× 1, 384

× 9
28 × 28 × 192 14 × 14 × 384

conv5_x
Downsample d7× 7, 768
1× 1, 3072
1× 1, 768

× 3
14 × 14 × 384 7 × 7 × 768

Global Avg Pooling
Layer Norm

Linear
7 × 7 × 768 1000

Blocks are stacked in the Swin Transformer’s four stages in the ratio of 1:1:3:1, with
Stage 3 having the most weight. To align with this structure, the block stacking ratio in
ConvNeXt is adjusted from 3:4:6:3 to 3:3:9:3. The Swin Transformer employs convolutional
layers with a 4 × 4 kernel size and a stride of 4, resulting in a downsampling factor of
4. The downsampling module in ConvNeXt is accordingly modified to accommodate
this structure.
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In addition, ConvNeXt incorporates a reverse bottleneck module, which primarily
draws inspiration from the MobileNetV2 model. Figure 2 shows the module construction,
which uses two convolutional kernels of varying sizes to widen the receptive field and
minimize the number of parameters.
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In Transformer models, the Gaussian Error Linear Unit (GELU) [33] activation function
is commonly used (as shown in Figure 3a), while in convolutional neural networks, the Rec-
tified Linear Unit (RELU) [34] activation function is often employed. The GELU activation
function demonstrates outstanding performance in a variety of natural language processing
tasks and image classification tasks. It possesses a smooth nonlinear characteristic that
enables the neural network to learn more intricate patterns. Compared to RELU, GELU
generates non-zero outputs for negative input values, allowing for better handling of nega-
tive inputs. To enhance the performance and efficiency of the ConvNeXt model, several
improvements were implemented. These include the adoption of GELU as the activation
function and a reduction in the number of activation functions used. Additionally, the
Batch Normalization (BN) [35] layer was replaced with the Layer Normalization (LN) [36]
layer (as shown in Figure 3b). Different from the BN layer, the LN layer normalizes each
feature within every sample’s data. By computing the mean and standard deviation of each
feature, the LN layer applies linear transformation and scaling to adjust the distribution of
features, rendering it better suited for normalizing sequence data and individual samples.
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2.3. SimAM Attention Mechanism

The attention mechanism is extensively employed in classification tasks as it effectively
leverages the information within input data, improving the performance of classification
models as well as providing interpretability and comprehension for the decision-making
process of the model. SimAM is a conceptually simple yet highly effective attention
mechanism module. It enhances feature extraction by focusing on crucial information in
the downsampling module. This attention mechanism minimizes the risk of overfitting
while effectively capturing discriminative features. The fundamental concept revolves
around the integration of a straightforward attention module into a CNN architecture
to replace additional learnable parameters. This approach enables seamless integration
while maintaining lightweight and efficient computations and minimizing memory usage.
Currently, most attention mechanisms primarily focus on channel attention and spatial
attention modules. Channel attention can be understood as guiding the neural network
to pay attention to specific positions, with SENet [37] being a representative method. It
employs a modeling approach to assess the relative significance of various feature channels
and subsequently applies channel enhancement or suppression techniques tailored to
specific tasks. In a convolutional network, each convolutional kernel corresponds to a
feature channel and focuses on allocating resources among them, as shown in Figure 4a.
Spatial attention, on the other hand, focuses on the most important parts of the network
without considering every part of the image. It can transform the spatial information of
the original image to another space while preserving key information. Representative
models include STN [38], as shown in Figure 4b. In contrast to the traditional spatial and
channel attention mechanisms, the SimAM attention module used in this study can directly
estimate 3D weights. It proposes an energy function based on neurons, where the weight
of attention is calculated by estimating the importance of individual neurons, as illustrated
in Figure 4c. The energy function for neurons is defined as follows:

et(wt, bt, y, xi) =
1

M− 1

M−1

∑
i=1

(−1− (wtxi + bt))
2 + (1− (wtt + bt))

2 + λwt
2 (1)

the wt and bt are the weights and biases of neuron transformation, y is a scalar quantity, t
and xi are the target neuron and other neurons of the input feature X, X ∈ RC×H×W, i is the
index of a neuron in a specific channel, M is the number of neurons on that channel, and
M = H×W, λ is the regularization coefficient.

2.4. Improved Downsample Module

The structure of the downsample module in the ConvNeXt model is depicted in
Figure 5a. It begins by normalizing the input using the LN technique, followed by feature
extraction and transformation through a convolutional layer. The enhanced downsample
module, as illustrated in Figure 5b, incorporated the Sigmoid activation function and the
SimAM attention mechanism.

2.5. Design of Maize Disease Classification System

Currently, relevant research exists on the classification of maize diseases; however,
practical applications in this domain remain relatively limited. In this study, we developed
a web-based application for the classification of maize diseases, as depicted in Figure 6.
Users could upload an image of a maize disease, and the system automatically recognized
and categorized it into different disease types. The application was built using the Flask
framework, allowing users to access the website through a web browser. The backend of
the application utilized improved ConvNeXt model weights for training and generated the
classification results.
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3. Experiments and Results

To evaluate the effectiveness of the proposed model in classifying maize diseases,
the model weights were first initialized by pretraining them on the ImageNet-1K dataset.
Subsequently, training was conducted on the maize disease dataset, comparing the en-
hanced ConvNeXt model against ResNet34, ResNeXt50, MobileNetV2, DenseNet121, Vision
Transformer, and Swin Transformer models. Comparative analysis of the experimental
results was performed to assess the performance of the ConvNeXt model. The main steps
of this experiment include data preprocessing, feature extraction, model training, and
model evaluation.

3.1. Dataset and Augmentation

A publicly available maize disease dataset was utilized, and detailed information is
presented in Table 2. There are eight different types of maize disease shown in the dataset,
including dwarf leaf, health, gray, severe gray, rust, severe rust, leaf spot, and severe leaf
spot, with a total of 3534 images.

Table 2. Dataset information.

Classes Before After Train Val Test

Dwarf leaf 931 4655 2793 931 931
Healthy 430 2150 1290 430 430

Gray 191 955 573 191 191
Severe gray 218 1090 654 218 218

Rust 552 2760 1656 552 552
Severe rust 406 2030 1218 406 406
Leaf spot 237 1185 711 237 237

Severe leaf spot 569 2845 1707 569 569
Total 3534 17,670 10,602 3534 3534

The dataset was enriched using five data augmentation techniques, including re-
sizing, hue, cropping, rotation, and edge padding, resulting in 17,670 images. Figure 7
demonstrates the effect of data augmentation. After data preprocessing, the dataset was
partitioned into training, validation, and testing sets with a ratio of 6:2:2. Additionally, the
image size was adjusted to 224 × 224 to accommodate the structure of the model.
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3.2. Experimental Environment

The experimental configuration used the PyTorch deep learning framework and was
run on an Ubuntu computer. The experiments were carried out using an NVIDIA RTX3090
GPU. To ensure the validity of the experimental outcomes, each model was configured with
identical hyperparameters, including a fixed number of epochs (200) and a batch size of 64.

3.3. Feature Extraction

Firstly, the ConvNeXt model extracted image features through a series of convolutional
layers. These convolutional layers used different kernels to capture various features in
the input image, including edges, textures, and higher-level semantic information. In this
way, the model gradually built an abstract representation of the image. Next, during the
stacking process of feature maps, the model progressively extracted and combined these
features, making the feature maps more abstract and advanced. This meant that the model
started focusing on more abstract image features, not just simple edges and textures. Then,
through a downsampling module, the model reduced the spatial size of the feature maps
while still retaining important feature information. This reduction in spatial dimensions
contributed to reduced computational complexity, making the model more suitable for
handling input images of varying sizes. Finally, the ConvNeXt model utilized the SimAM
attention mechanism to enhance its focus on key information in images of corn diseases.

ConvNeXt extracted features through a series of convolutional layers, incorporating
attention mechanisms like the SimAM attention module to enhance feature extraction.
The network gradually processed the input image, captured features at different scales,
and aggregated them to form high-level feature representations. These representations
were then used to make predictions in various image classification tasks. This architecture
allowed ConvNeXt to efficiently learn and represent complex patterns in images, making it
suitable for tasks like maize disease classification.

3.4. Model Training

After extracting features from maize disease images, the ConvNeXt model underwent
training. In order to evaluate the performance and generalization capability of the models,
a comparative analysis was conducted on the validation accuracies of different models.
Figure 8 depicts the trend of validation accuracy of the model as the number of training
epochs changes. According to the figure, the proposed model achieved an accuracy of
95.7%, followed by ConvNeXt with an accuracy of 95.0%, while MobileNetV2 exhibited
the lowest accuracy, at only 82.5%. It is evident from the figure that the proposed model
achieved a high validation accuracy, indicating its strong performance.
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3.5. Model Evaluation

By training the models to obtain optimal weights for each model, this study proceeded
to conduct testing and analysis on the designated test set. In the context of this investigation
on maize disease classification, common model evaluation metrics comprise accuracy, recall,
precision, and F1 score. Additionally, the utilization of a confusion matrix allows for further
analysis of the model’s classification performance and misclassifications. The four elements
in the confusion matrix are defined as follows in the context of the study: True Positive
(TP), False Positive (FP), False Negative (FN), and True Negative (TN).

Accuracy, in the context of model evaluation, refers to the proportion of correctly
classified samples out of the total number of samples. In the case of multi-classification
problems, it is common to assess performance using macro-averaged accuracy and micro-
averaged accuracy. It helps us understand how the model performs in classification.
Precision, also known as positive predictive value, quantifies the proportion of true positive
samples identified by a model out of all samples identified as positive by the model. A
higher precision indicates that the model identification of positive samples is more accurate,
thereby exhibiting superior accuracy. It can minimize false-positive predictions, thus
reducing unnecessary actions. The recall rate is a metric that quantifies the proportion of
true positive samples identified by a model out of all the true samples. A higher recall rate
indicates that the model is capable of accurately identifying true positive samples, thereby
demonstrating superior discriminatory ability. It helps us understand the ability of the
model to capture all maize disease cases, ensuring that the model doesn’t miss any potential
disease instances. The F1 score is a metric that comprehensively evaluates the balance
between model accuracy and recall. A higher F1 score indicates that the model has achieved
a better balance between accuracy and recall. It ensures that the model performs well in
accurately identifying diseases and capturing all instances. The formulas for calculating
these metrics are as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2)

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1-Score =
2× (Precision× Recall)
(Precision + Recall)

(5)

3.5.1. Utilization of Transfer Learning

Transfer learning can expedite model training and enhance prediction accuracy. It
involves initially pretraining the model on a large-scale image classification task and then
applying the learned features and weights to a specific task. This approach leverages exist-
ing knowledge, avoiding the need to train the model from scratch, thereby improving both
efficiency and performance. To investigate the impact of transfer learning on classification
outcomes, a classification experiment was conducted comparing the performance of the
ConvNeXt model with and without the application of transfer learning. The experimental
results, presented in Table 3, demonstrate that the employment of transfer learning yields a
notable increase in accuracy, reaching 94.0%, compared to 87.0% achieved without transfer
learning. Furthermore, precision, recall, and F1 score also exhibit significant improvements,
indicating that the utilization of transfer learning enhances classification performance
and effectiveness.
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Table 3. The impact of transfer learning on classification results.

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Non-Use 87.0 83.2 82.5 82.8
Use 94.0 92.4 91.8 92.1

3.5.2. Performance Comparison of Different Attention Modules

In order to investigate the impact of various attention modules on classification out-
comes, CBAM, SE, NAM, and SimAM modules were incorporated into the ConvNeXt
model, which underwent transfer learning. The experimental findings, as presented in
Table 4, demonstrate that the inclusion of the SimAM module yielded the most favorable
results, with an accuracy rate of 95.2%. Furthermore, this module exhibited superior
performance across other metrics compared to the alternative modules.

Table 4. The impact of different attention modules on classification results.

Attention
Module Accuracy (%) Precision (%) Recall (%) F1 Score (%)

+CBAM 93.4 91.4 90.6 91.0
+SE 93.9 92.5 91.3 91.9

+NAM 94.4 93.0 92.2 92.6
+SimAM(Ours) 95.2 93.9 93.3 93.6

3.5.3. Performance Comparison of Different Models

After training the improved ConvNeXt model, the evaluation of classification perfor-
mance was conducted using a test set consisting of 3534 images consisting of 8 disease
categories. A comparison was made between the enhanced ConvNeXt model and the
ResNet34, ResNeXt50, MobileNetV2, DenseNet121, ViT, and Swin-T models. Table 5
presents the results, indicating that the model achieved an accuracy of 95.2%, a precision of
93.9%, a recall of 93.3%, and an F1 score of 93.6%.

Table 5. Classification performance of different models.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

ResNet34 92.0 89.7 89.0 89.3
ResNeXt50 92.8 90.9 90.2 90.5

MobileNetV2 81.4 76.0 72.9 74.4
DenseNet121 91.4 89.0 88.1 88.5

VIT 89.3 85.9 85.4 85.6
Swin-T 93.7 92.0 91.2 91.6

ConvNeXt-T 94.0 92.4 91.8 92.1
Sim-ConvNeXt 95.2 93.9 93.3 93.6

Figure 9 shows that the model exceled in all evaluation metrics, while MobileNetV2
exhibited a comparatively weaker performance in these metrics. These results demonstrate
the superior performance of the proposed model compared to the other models and the
unimproved ConvNeXt model.

Furthermore, a confusion matrix was employed to further evaluate the classification
performance of the model. Figure 10 illustrates the confusion matrix results of the proposed
model in comparison to seven other models. The proposed model exhibited better classifi-
cation performance in five categories: healthy, gray, severe gray, severe rust, and severe
leaf spot. However, the model demonstrated slightly lower effectiveness in classifying
general symptoms of rust disease and leaf spot disease when compared to the Swin-T
model. Although the model did not produce the best results across all categories, the
overall classification performance was still impressive.
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3.6. Maize Disease Classification System

The model was installed on a web-based platform built with the Flask framework
to make it more suitable for actual applications. This system enables rapid and accurate
identification of maize diseases, thereby improving the efficiency and precision of disease
recognition. This efficient recognition capability aids in the reduction of pesticide overuse,
reducing negative impacts on the environment and ecosystems while also achieving the
goals of sustainable agriculture. The website has been successfully deployed on a server,
primarily implementing the functionality of uploading and classifying disease images.
Users can access the website directly by visiting http://www.maize.love:4997/ (accessed
on 5 August 2023). Figure 11 illustrates the user interface, displaying the predicted results
of the maize disease system. Users upload the image requiring identification and then
select the “predict” option to obtain the disease classification. The classification results can
be obtained in around 260 ms. In Figure 11, the result “Rust” is displayed with a probability
of 1.
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This web-based platform allows farmers to identify diseases within seconds and
receive classification results promptly. Compared to manual methods, the website enables
faster classification and reduces the impact of subjective human judgments. It assists
farmers in promptly addressing diseases. This real-time capability and convenience assist
farmers in making faster agricultural production decisions, thus lowering the impact of
diseases on crop yield and quality, achieving a more sustainable agricultural development.
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4. Discussion

Although the Sim-ConvNeXt model has achieved good performance in the classifi-
cation of maize diseases by introducing the SimAM attention mechanism, there is still
room for improvement. On one hand, optimizing data augmentation methods and model
architecture will make the model more robust and adaptive to various data scenarios,
thereby providing more accurate diagnostic tools for agricultural production. On the other
hand, expanding the application scope of the model to other image classification tasks, such
as plant disease classification [39] and medical image classification [40], will further elevate
its technological proficiency in these domains, contributing to the sustainable development
of agriculture and the medical industry.

Apart from the Sim-ConvNeXt model itself, the web-based classification system also
needs improvements. Currently, it provides classification of several maize disease types,
necessitating retraining and optimization for expanding its applicability to other disease
types. This will assist farmers in better identifying and managing diverse disease types,
decreasing pesticide use and minimizing resource waste. There is a need to improve the
user experience and interaction modes, facilitating a more convenient and speedy usage of
the system for classification and diagnosis. Extensive research also needs to be conducted
to explore treatment methods, preventive strategies, and specific diseases.

This will not only provide farmers with more valuable information but also foster
knowledge sharing and collaboration, offering more comprehensive support for the sustain-
able development of agriculture. These improvements and research efforts are expected to
lead to a more sustainable growth in the agricultural sector, leading to increased economic,
social, and environmental benefits.

5. Conclusions

This study focused on the classification system of maize diseases and proposed a
convolutional neural network model called Sim-ConvNeXt. The SimAM attention modules
were integrated after each downsampling module; transfer learning was employed to
expedite the model training process and mitigate overfitting. By incorporating the SimAM
attention mechanism and transfer learning, the Sim-ConvNeXt model demonstrated im-
proved accuracy in maize disease identification, enhancing both classification precision
and performance.

Due to the limited size of the original dataset, multiple data augmentation tech-
niques were employed to expand the dataset, resulting in a total of 17,670 disease images.
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Subsequently, the enhanced ConvNeXt model was experimentally compared with seven
other models. The results demonstrated the superior classification performance of the
proposed model, with accuracy, precision, recall, and F1 score reaching 95.2%, 93.9%,
93.3%, and 93.6%, respectively. These values indicated improvements of 1.2%, 1.5%, 1.5%,
and 1.5% compared to the original model. Additionally, the performance of the model
across different disease categories was analyzed using a confusion matrix, confirming its
superior efficacy. Furthermore, a user-friendly website for maize disease recognition was
constructed using the Flask framework, enabling the classification of uploaded disease
images. The proposed maize disease classification system holds significant importance
because it has the potential to enhance disease management and increase crop yields. This
system can rapidly and accurately identify diseases, reducing crop damage and improving
agricultural efficiency, thereby reducing costs and enhancing agricultural decision-making.
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