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Abstract: Rice is not only central to Thailand’s economy and dietary consumption but also plays a
significant role in global food security. Northeast Thailand, in particular, is a principal region for
rice cultivation. However, with the mounting concerns of climate change, it becomes paramount
to understand the interplay between regional weather patterns and rice yields, aiming to develop
effective adaptive agricultural strategies. The current study aimed to fill the research gap by investi-
gating an optimal copula for the spatial dependence of rice production and related meteorological
variables in this area. The objective of this study is to understand how rice production in different
areas relates to each other in order to improve farming practices and address challenges such as
suitable weather. To achieve this goal, we apply three families of copulas—elliptical, Archimedean,
and extreme—to analyze crop and meteorological variables across the watershed in the northeastern
region of Thailand. With a data foundation extending from 1981 to 2021 from the Regional Office
of Agricultural Economics Sector 4, Thailand, this study offers a comprehensive analysis of the
spatial dynamics driving rice production across twenty provinces in Northeast Thailand. Using a
piecewise linear model, we dissected rice yield trends, revealing distinct slopes in production and
yield across various periods. The analysis leaned on elliptical, Archimedean, and extreme copula fam-
ilies, using the maximum likelihood estimation to discern marginal distribution residuals. Through
rigorous bootstrap goodness-of-fit tests and cross-validation, the most appropriate copula for each
province was identified. Key findings demonstrate pronounced spatial interdependencies in rice
yields, with the Frank copula prominently capturing the product relationship between provinces
such as Maha Sarakham and Roi-Et. Conversely, the Clayton copula better characterized regions
such as Srisaket and Ubon Ratchathani. Moreover, the results underscore the considerable influence
of meteorological factors, notably rainfall and temperature, on rice production, especially in regions
like Ubon Ratchathani. In distilling these multifaceted relationships, the study charts a pathway for
crafting sustainable, localized agricultural strategies. As the world grapples with climate change’s
ramifications, the insights from this research stand crucial, offering direction for fostering resilience,
adaptation, and optimizing rice productivity across Thailand’s diverse agrarian landscapes.
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1. Introduction

By 2050, the world population is expected to increase to 10 billion people. Agricultural
countries around the world are waking up to the need to produce enough food to meet the
needs of the world’s population. Thailand is an agricultural country that has the oppor-
tunity to produce food for the world’s population [1], especially through rice production,
which is the main food and contributes to the food security of the world’s population [2].
In 2022, Thailand exported 7.69 million tonnes of rice with an export value of USD 3.971
billion [3]. The type of rice that Thailand exports in large quantities is white rice, followed
by Jasmine rice, Parboiled rice, Broken rice, Glutinous rice, and Brown rice [4]. In the
2020/2021 crop year, Thailand had a rice plantation area of 10.99 million hectares, and most
rice plantations are located in the northeastern, lower northern, and central regions [4].

In 2022, Thailand was ranked as one of the top three rice-exporting countries in the
world [3], but the yield of Thai rice is quite low when compared to the neighboring coun-
tries [5]. For example, rice yields per hectare in Vietnam are as high as 5.69 tons; at the
same time, Thailand’s rice production is only 3.01 tons per hectare [2]. In Thailand, rice
cultivation is generally carried out during the rainy season with a rain-fed system [6].
Factors affecting rice production in Thailand include climate change, soil fertility, soil
quality, high cost of farm chemicals, and rising labor costs [5–7]. One of the main prob-
lems facing Thai farmers is rising production costs, but rice productivity is still low [5].
The cost of rice cultivation is expected to increase from 9831 THB/ton/year in 2021 to
10,500–11,000 THB/ton/year in 2024 [4].

Northeast Thailand is the main area of rice cultivation in Thailand [8]. Eighty percent
of Northeast Thailand is an undulating plateau with extremely low soil fertility with a
sandy texture and low water-holding capacity in the soil [6,9] In addition, the soil in
the Northeast in some areas still faces the problem of saline soil which also affects rice
productivity [10]. About 1.84 Mha of Northeast Thailand are affected by saline soils,
including Nakhon Ratchasima, Khon Kaen, and Maha Sarakham province [11]. Saline
soil distribution in Northeast Thailand is expected to increase in the future due to climate
change [11,12]. All the problems mentioned above, combined with global climate change,
will have a greater impact on agriculture worldwide. Facing a long drought due to global
warming, Thai farmers need to adapt to farming that uses less water for sustainable
farming [5]. Rice farming is very important for Thailand, especially in the Northeast. The
current study aimed to fill the research gap by investigating an optimal copula for the
spatial dependence of rice production and related variables in this area. To the best of
our knowledge, rarely previous studies have been conducted on this specific type of data
in Northeast Thailand. The objective of this study is to understand how rice production
in different areas relates to each other in order to improve farming practices and address
challenges such as suitable weather. Although there is a substantial amount of data
available, a thorough investigation is still needed to comprehend how rice yields change
over time, particularly in the context of climate change issues. To achieve this goal, we
apply three families of copulas—elliptical, Archimedean, and extreme—to analyze crop
and meteorological variables across the watershed in the northeastern region of Thailand.

The rest of this paper is organized as follows: Section 2 introduces the geographical
region of interest for this research along with the data we have employed. An extensive
overview of the materials and techniques utilized for this research is provided in Section 3.
In Section 4, we discuss the outcomes of our research, with a particular emphasis on the
spatial aspects and the performance of the copula models. Section 5 is devoted to an in-
depth discussion of these findings, offers our conclusions and suggests recommendations
based on our research.

2. Materials and Methods
2.1. Study Area

Northeast Thailand, located on the Khorat Plateau between the Phetchabun Range and
the Mekong River, has varied terraces susceptible to droughts and floods, impacting their
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farming potential [13]. Typically, these lands are categorized into high, middle, and low ter-
races, each with distinct vulnerabilities to droughts and floods, affecting their suitability for
cultivating rice and other field crops [14]. The majority of the plateau’s cultivable soils are
sandy, acidic, and nutrient-poor, predominantly composed of quartz and kaolinite resulting
from extensively weathered source materials. Additionally, regions, especially towards the
west, face significant salt challenges, affecting agricultural productivity. Figure 1 shows
land use map of the northeast region of Thailand as below;

Figure 1. Land use map of the northeastern region of Thailand.

2.2. Data

Thailand experiences three distinct seasons: the hot season (March to June), the rainy
season (July to October), and the winter season (November to February). Each of these
seasons can affect agricultural activities in Thailand, especially agriculture. For instance,
rice farming is significantly influenced by the rainy season, which provides the necessary
water for paddy fields, especially rain-fed paddy fields. In addition, the elevated nature
of high terraces makes them more prone to droughts as water drains off quickly; middle
terraces with their mid-level elevation have a mixed susceptibility to both droughts and
occasional floods, while the low terraces, being closer to water sources, often grapple with
frequent flooding and waterlogging [15].

In the Northeast, similar to other parts of the region, rice cultivation takes place in two
primary seasons: the wet (WS) and dry (DS) seasons. The majority of the rice fields depend
on rainwater, primarily produced during the WS, which spans from May to October. The
DS spans from November to February. The disparity between these seasons is notably
more pronounced in Northeast Thailand compared to other regions in mainland Southeast
Asia [16]. Although rainfall during the WS can be unpredictable, it is often so abundant
and frequent that it leads to localized flooding. Representing 46% of Thailand’s agricultural
holdings and 47% of its farmable land, the Northeast boasts an average holding size of
3.2 hectare [17]. This research further delves into the attribute types, notation, and predictor
variables, which are elaborated on in Table 1. For a detailed breakdown of cultivated and
harvested areas, productivity, and yield rates for both the WS and DS in the Northeast from
1991–2021, see Table 2.
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Table 1. Attribute types, notation, and predictor variables.

Attribute Type Attribute Unit Notation

Crops cultivated area hectare (ha) CA
harvested area hectare (ha) HA
Productivity ton Product
yield per rai Kilogram (kg) Yield

Meteorological variables Average rainfall mm. Ave_rain
Cumulative rainfall Millimeter (mm) sum_rain

Average temperature ◦C Ave_tem
Average relative humidity % Ave_rh

Note: Observational data from the Regional Office of Agricultural Economics 4 and the Thai Meteorological
Department.

Table 2. Average (with Standard Deviation) of cultivated area (1000 ha), harvested area (1000 ha),
productivity (1000 ton), and yield per ha (1000 kg) for both wet (WS) and dry seasons (DS) in
northeastern regions: data from selected years (1991–2021).

Province Cultivated Area (1000 ha) Harvested Area (1000 ha) Productivities (1000 ton) Rice Yield (1000 kg/ha)

WS DS WS DS WS DS WS DS

Loei 63.03 (8.59) 0.26 (0.20) 59.44 (9.14) 0.26 (0.20) 145.70 (23.87) 0.75 (0.62) 2.46 (0.42) 2.78 (0.29)
Nong Bua Lamphu 131.70 (15.93) 2.58 (2.29) 122.22 (15.93) 2.53 (2.24) 245.06 (36.95) 8.16 (7.75) 2.01 (0.48) 3.01 (0.18)
Udon Thani 343.60 (62.40) 5.74 (4.68) 323.83 (61.37) 5.65 (4.69) 594.18 (113.77) 16.32 (14.03) 1.89 (0.36) 2.77 (0.40)
Nong Khai 149.39 (41.40) 8.77 (5.61) 135.80 (36.55) 8.58 (5.58) 254.84 (60.16) 26.87 (19.19) 1.93 (0.40) 2.94 (0.29)
Beung Kan 80.06 (4.64) 1.89 (0.43) 72.96 (4.01) 1.85 (0.43) 144.78 (11.62) 5.89 (1.38) 1.99 (0.05) 3.18 (0.15)
Nakhon Phanom 177.07 (31.95) 5.74 (4.56) 161.75 (35.81) 5.58 (4.59) 305.63 (118.50) 15.97 (14.46) 1.84 (0.43) 2.61 (0.36)
Sakon Nakhon 285.71 (39.87) 5.74 (4.79) 266.95 (43.40) 5.61 (4.77) 498.75 (143.50) 16.25 (15.53) 1.84 (0.47) 2.56 (0.31)
Mukdahan 61.71 (11.46) 0.13 (0.11) 58.69 (11.58) 0.12 (0.11) 119.83 (40.91) 0.33 (0.30) 2.00 (0.48) 2.56 (0.35)
Amnat Charoen 153.29 (9.53) 0.47 (0.41) 146.66 (9.57) 0.46 (0.41) 290.51 (44.58) 1.32 (1.29) 1.98 (0.51) 2.58 (0.23)

Khon Kaen 337.23 (50.20) 17.57 (11.84) 301.86 (46.92) 17.17 (11.70) 574.82 (145.96) 57.69 (43.00) 1.88 (0.39) 3.24 (0.26)
Maha Sarakham 287.09 (46.29) 17.06 (12.05) 261.66 (43.39) 16.81 (11.88) 514.93 (165.13) 62.15 (46.16) 1.93 (0.29) 3.58 (0.39)
Roi Et 427.01 (51.46) 18.75 (16.54) 390.71 (44.30) 18.44 (16.26) 758.48 (215.67) 65.04 (58.38) 1.92 (0.43) 3.37 (0.41)
Kalasin 202.17 (32.47) 30.58 (16.42) 190.60 (30.67) 30.33 (16.41) 403.76 (102.12) 111.26 (65.00) 2.09 (0.42) 3.54 (0.28)
Yasothon 178.88 (23.82) 6.65 (7.48) 166.99 (20.81) 6.57 (7.35) 312.01 (93.54) 21.35 (24.29) 1.84 (0.39) 3.04 (0.38)

Chaiyaphum 215.43 (43.61) 8.09 (10.14) 188.72 (37.26) 7.99 (10.10) 381.36 (119.24) 26.64 (33.48) 1.98 (0.46) 3.13 (0.33)
Nakhon Ratchasima 499.14 (73.48) 18.95 (21.81) 446.72 (65.86) 18.60 (21.27) 851.80 (241.23) 69.48 (81.89) 1.88 (0.51) 3.44 (0.34)
Buriram 437.58 (36.53) 3.12 (4.74) 408.58 (39.62) 3.08 (4.67) 806.89 (180.42) 9.30 (14.46) 1.96 (0.49) 2.68 (0.34)
Surin 445.30 (60.76) 3.91 (5.25) 421.33 (57.23) 3.86 (5.19) 860.70 (229.94) 10.72 (15.07) 2.03 (0.41) 2.59 (0.38)
Sisaket 398.81 (62.36) 6.31 (6.12) 380.56 (62.19) 6.16 (5.93) 769.45 (235.29) 18.27 (18.86) 1.99 (0.48) 2.64 (0.38)
Ubon Ratchathani 567.08 (62.66) 14.49 (9.13) 541.65 (65.74) 14.38 (9.12) 959.87 (270.57) 37.69 (29.25) 1.76 (0.48) 2.37 (0.36)

For the WS, as observed in Table 2, Ubon Ratchathani, Nakhon Ratchasima, Surin,
Burirum, and Roi-Et province rank in the top five in terms of cultivated area (1000 ha),
harvest area (1000 ha), and productivity (1000 ton). However, they do not lead in terms
of rice yield (1000 kg/ha). The top five provinces for rice yield (1000 kg/ha) include Loei,
Kalasin, Surin, Mukdahan, and Nong Bua Lamphu, respectively. In contrast, for the DS, as
indicated in Table 2, Kalasin, Nakhon Ratchasima, Roi Et, Khon Kaen, and Maha Sarakham
province consistently dominate the top five positions for cultivated area (1000 ha), harvest
area (1000 ha), productivity (1000 ton), and rice yield (1000 kg/ha). This underlines the
need to investigate the weather’s impact on rice productivity across different regions. In
this research, copula methodology has been chosen to analyze the correlations among these
datasets. Additionally, trend analysis is employed to examine the association between
predictor and outcome variables, especially when the relationship is not uniform across the
entire predictor variable range. Figure 2 presents essential meteorological data for Northeast
Thailand spanning the years 1981–2021. Among the regions studied, Nakhon Phanom
registered the highest annual mean and cumulative rainfall (measured in mm). Nakhon
Ratchasima exhibited the peak annual average temperature (in Celsius), while Kalasin
recorded the maximum annual average relative humidity (expressed as a percentage).
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Figure 2. Box-plot illustrating key meteorological metrics for the Northeast (1981–2021): (a) mean
rainfall (mm), (b) mean temperature (◦C), (c) total rainfall accumulation (mm), and (d) mean relative
humidity (%).

2.3. Methodology
2.3.1. Trend Analysis

The segmented regression model, also referred to as a piecewise linear model, emerges
as a powerful methodology to delineate the relationship between a predictor and its
corresponding response variable, especially when this relationship does not maintain a
constant presence throughout the predictor variable’s full range. At its core, this model fuses
various linear segments that intersect at designated junctions, often labeled as breakpoints
or knots. The foundational equation for a segmented regression model, characterized by a
singular breakpoint, can be expressed via Equation (1):

Yi = β0 + β1Xi + β2(Xi − τ)× I(Xi > τ) + εi. (1)

Within this equation, Yi symbolizes the response variable, while Xi stands for the
predictor variable. τ designates the breakpoint, and I() acts as the indicator function
(amounting to 1 when Xi > τ, and 0 in other scenarios). The parameters β0, β1, and β2 are
subject to estimation, and Ei indicates the error term. Here, β1 demarcates the line’s slope
leading up to the breakpoint, while β1 + β2 outlines the slope post-breakpoint. In essence,
β2 elucidates the shift in slope at the breakpoint’s location. These models extend a robust
mix of adaptability and clarity, making them invaluable when dissecting intricate, non-
linear data relationships, especially in contexts demanding the pinpointing of thresholds
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or breakpoints [18]. The chosen crop attributes serve as the response variable, while time
(years) is used as the predictor variable.

A depiction of variations in rice yield spanning from 1981 to 2021, framed within dual
productivity-area combinations during WS, accompanied by segmented regression lines
for the Ubon Ratchathani province, can be observed in Figure 3. The analysis distinctly
highlights two separate slopes in the production (ton) regression line (blue line)—one from
1921–2000 and the other from 2001–2021, both of which are on an upward trend. For the
area (ha), there is a declining slope from 1921–2000, which reverses into an increasing trend
from 2001 upwards. Notably, from 2015, both the production and area regression lines
converge, indicating that as the area increases, production correspondingly rises.

Figure 3. Changes in rice yield from 1981 to 2021 in two combinations of productivity and area for
wet seasons with segmented regression lines at Ubon Ratchathani province. Symbols * and *** denote
significance levels of 0.05 and 0.001, respectively.

2.3.2. Copula Function

Recently, the field of copulas has seen rapid advancements, demonstrating signifi-
cant potential in analyzing multivariate joint distributions and conducting multivariate
frequency assessments. The primary strength of copulas lies in their ability to capture the
interdependence among variables, enabling the computation of joint probabilities with-
out being affected by the marginal tendencies of the variables in question. Essentially,
using copula functions seamlessly merges several univariate marginal distributions to
generate their associated joint distribution. The copula function stands as a multivariate
distribution where all its univariate margins align with U(0, 1). Considering a random
vector (X1, . . . , Xn), it is characterized by a joint distribution function H(X1, . . . , Xn) and
a continuous marginal distribution function (Fi(X1) = ui). Here, Ui possesses a uniform
distribution over [0, 1] for i = 1, . . . , d. Consequently, a unique d-dimensional copula C
emerges [19–22]. In addition, the optimal copula function approach provides a comprehen-
sive and flexible framework for understanding spatial dependencies, especially with its
ability to capture diverse and non-linear relationships. Its strength lies in distinguishing
marginal distributions and dependencies, as well as in capturing tail dependencies often
overlooked by traditional methods. However, this approach can be computationally inten-
sive, requires careful model selection, and may not inherently consider spatial continuity
as efficiently as some geostatistical or Bayesian models. Although it offers advantages over
deterministic and some stochastic methods in terms of flexibility and depth, the choice to
use copulas should be based on the specific research objectives, data characteristics, and
the need to model spatial continuity.
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2.3.3. Copulas Families

Sklar’s theorem, proposed in 1959 by Sklar [21], describes the relationship between
marginal distributions and heterogeneous distributions, known as the “copula”. Thus, any
cumulative distribution function (CDF), (F(X1, X2), of two random variables (X1, X2) can
be stated as Equation (2);

F(X1, X2) = C(F1(x1), F2(x2)), (2)

where F1(x1) and F2(x2) are the marginal CDFs of variables X1 and X2, and C is a bivariate
copula function.

Among all copula families, the elliptical copula family and the Archimedean copula
family have been widely used in many areas. There is a variety of forms for both two
copula families. In this study, the elliptical copulas (Normal copula and t copula), the
Archimedes copulas (Clayton copula, Frank copula, and Joe copula) and the extreme value
copula (Gumbel copula, Gumbel–Hougaard copula, and Husler–Reiss copula) are selected,
which show in Table 3, to analyze the joint probability of data for their simplicity and wide
representation [23,24]. These copulas are especially suitable for analyzing our crop and
meteorological data, as these sets do not adhere to a normal distribution [25,26].

Table 3. The family of copula.

Family Copula
Name Function Range

Elliptical Student-t C(u1, u2, . . . , ud; ν, Σ) = tν,Σ(t−1
ν (u1), t−1

ν (u2), . . . , t−1
ν (ud)) −∞ < x < ∞

Normal Cρ(u, v) = Φρ(Φ−1(u), Φ−1(v)) −∞ < x < ∞

Archimedean Clayton Cθ(u, v) = (u−θ + v−θ − 1)−1/θ −1 < θ < ∞

Frank Cθ(u, v) = − 1
θ ln
(

1 + (e−θu−1)(e−θv−1)
e−θ−1

)
−∞ < θ < ∞

Joe Cθ(u, v) = 1 + (u−θ − 1) + (v−θ − 1) 1 ≤ θ < ∞

Extreme Gumbel Cθ(u, v) = exp
{
−
[
(− log(u))θ + (− log(v))θ

]1/θ
}

1 ≤ θ < ∞

Galambos Cθ(u, v) = u · v · exp
{
−
[
(− log(u))θ + (− log(v))θ

]}
0 < θ < ∞

Husler–Reiss Cθ(u, v) = u · v ·Φ
{√

2θ
(
log(u−1/2) + log(v−1/2)

)}
0 < θ < ∞

In this study, we analyze the spatial correlations (spatial dependence) of the data
between the ranking data with Kendall’s correlation coefficient as Equation (3) under the
null hypothesis of independence of X and Y [27];

τ =
2
˜n(n− 1)

[∑
i<j

sgn(xi − xj)sgn(yi − yj)]. (3)

Then, we selected each pair of the highest spatial correlations to analyze the copula
function as Equation (4) follows.

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (4)

when F1(x1), F2(x2), . . . , Fn(xn) are marginal distribution function, then copula function, C,
is unique [28].

In this study, we showed the correlation matrix with the Kendall’s tau (τ) between
interested variables by “corrplot” package in R program [29]. Furthermore, Kendall’s
tau (τ) is a non-parametric statistic used to measure the strength and direction of the
association between two variables by comparing the relative ranks of these variables;
essentially, it gauges the degree of similarity between two data sets in their orderings [27].
The relationship between Kendall’s tau and a copula’s parameter can be leveraged to gauge
correlations within copula families [21].
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2.4. Goodness-of-Fit Statistical Tests

The goodness-of-fit test is a statistical method used to assess the correlation between
variables and determine if the collected data conform to a specific distribution. This
test evaluates the performance of both marginal and joint probability functions. It plays
a crucial role in hypothesis testing to check the normality of residuals and to compare
two samples (observed and from the marginal distribution) to verify if they originate
from identical distributions. In this study, the estimation of empirical non-exceedance
probabilities for crop dataset and meteorological dataset utilized the Kolmogorov–Smirnov
test and Cramer–von Misés test; these tests were employed to evaluate the performance
of the joint probabilities in the bivariate case. In our models, these tests offer insights into
the model’s accuracy in fitting the observed data, allowing us to gauge how closely our
predicted values align with actual observations and thereby validating the suitability of
our chosen models.

2.4.1. Kolmogorov–Smirnov Test (K-S Test)

The Kolmogorov–Smirnov (K-S) test is favored because it does not hinge on assump-
tions regarding data distribution. It measures the largest discrepancy between the observed
and theoretical cumulative distribution functions. As defined by [30], the K-S test metric
(Dn,nτ ) serves as a criterion to evaluate the acceptability of parameters:

Dn,nτ = sup
x
|F1,n(x)− F2,nτ (x)|.

Here, F1,n represents the observed distribution; F2,nτ stands for the theoretical distribu-
tion, and sup is the supremum function. In executing the goodness-of-fit test, we adopt
the null hypothesis; it is only validated if the deviation from the theoretical is less than the
anticipated amount for the sample in question.

2.4.2. Cramer–Von Mis és Test (CvM)

To assess the fit of the extreme value copula function, we employ the Cramer–von
Mises test, as detailed in [31]. This test uses a parametric bootstrap, as represented in
Equation (5):

Sgo f
n =

∫
[0,1]d

n(Cn(u)− Cθn(u))
2dCn(u) =

n

∑
i=1

(Cn(ui)− Cθn(ûi))2, (5)

where C is a unique cumulative distribution function having uniform margins on (0,1),
Cn(u) is a consistent estimator of the true underlying copula C, Cθn is a parametric estimate
of Cθ , θ is parameters, u is observations and i = 1, 2, . . . , n. An estimated p-value derived
from Sgo f

n can be achieved through a parametric bootstrap. The asymptotic soundness of
this approach is further explored in [32].

2.5. Selection Models

This research employs the XV-CIC statistic to determine the most suitable copulas,
utilizing the Leave-One-Out Cross Validation (LOOCV) method for evaluating performance
and model generalization capacity, as highlighted by [33]. The model’s efficacy can be
gauged using the formula −2(logLcv) + 2(d f ), where logLcv represents the average log-
likelihood across the cross-validation sets, and d f denotes the model’s effective parameter
count, factoring in the degrees of freedom from the cross-validation process. The XV-CIC
method starts by partitioning the dataset into training and validation subsets. Models are
trained on the former and then make predictions on the latter. Residuals are calculated as
differences between actual and predicted values. Using these residuals, the XV-CIC statistic
combines both the variance and bias, offering a holistic measure of prediction error. The
models are then ranked based on their XV-CIC values, with a lower value indicating a
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better fit and predictive capability. This systematic approach ensures the chosen model
aptly fits the data while maintaining robust predictive performance on unseen data [33].

The XV-CIC (Cross-Validation Information Criterion) statistic is a valuable tool for
evaluating copula models in statistical analysis. It assists in determining the most suitable
copula model by balancing goodness of fit with model complexity. The formula for XV-CIC
is defined as:

XV-CIC = −2(logLcv) + 2(d f ),

where XV-CIC is a comparative metric for copula models, logLcv is the average log-
likelihood calculated across cross-validation sets, indicating how well the chosen copula
model fits the data during cross-validation and d f is effective parameter count, factoring
in degrees of freedom from the cross-validation process, to account for model complexity.
Researchers often select the copula model with the lowest XV-CIC value, as it reflects
an optimal trade-off between model fit and complexity. However, the exact calculation
details may vary based on the research methodology and software tools employed. It is
advisable to refer to the original research source or relevant citations for specific application
details [34].

3. Results

To understand how crop values depend on factors that affect rice productivity, we
employed seven unique two-dimensional copula models, as outlined in the previous section.
These models included the Student-t, Normal, Clayton, Frank, Joe, Gumbel, Galambos,
and Husler–Reiss copulas. We derived the parameters for these selected copulas using a
two-stage maximum likelihood technique.

3.1. Data Analysis

A summary of crop data from the Northeast regions between 1981–2021, including
cultivated area (ha), harvested area (ha), productivities (ton), and yield (kg/ha), can be
found in the Supplementary Material (Tables S2–S4). Additionally, a comparison between
rice productivity and other crop data, encompassing cultivated area (ha), harvested area
(ha), and yield per ha (kg) for selected provinces from 1981–2021 is illustrated in Figures 4–7.

(a)

Figure 4. Cont.
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(b)

Figure 4. Comparison of rice production and yield for Ubon Ratchathani Province. (a) Rice production
and cultivation areas from 1991 to 2021. (b) Evolution of rice production and yield over the period
1981 to 2021. Symbols *, **, and *** denote significance levels of 0.05, 0.01, and 0.001, respectively.

Rice production and yield in select provinces saw a significant rise from 1981, starting
at 13.4 million tons and reaching 38.1 million tons by 2011, marking an impressive growth
over a span of 40 years (as depicted in Figures 4–7). The initial 20 years witnessed a
moderate yearly growth, which nearly doubled post the year 2000. However, post-2011,
there has been an observable decline and fluctuation in production. This growth between
1981 to 2011 can be attributed to two factors:

1. An expansion in rice cultivation areas, growing from 7.3 million hectares to 12.0 million
hectares (a jump of 64%).

2. A surge in yield rates, rising from 1.8 tons per hectare to 3.2 tons per hectare. This
represents a 78% increase, averaging an annual growth rate of 35.9 kg per hectare.

(a)

Figure 5. Cont.



Sustainability 2023, 15, 14774 11 of 21

(b)

Figure 5. Comparison of rice production and yield for Udonthani Province. (a) Rice production and
cultivation areas from 1991 to 2021. (b) Evolution of rice production and yield over the period 1981
to 2021. Symbols * and *** denote significance levels of 0.05 and 0.001, respectively.

Figure 4a shows highlights on two separate slopes in the production (ton) regression
line (blue line)—one from 1981–2000 and the other from 2001–2021, both of which are
on an upward trend. For the area (ha), there is a declining slope from 1981–2000, which
reverses into an increasing trend from 2001 onwards. These patterns correspond to two
regression models: ŷ = 0.009X − 18.951 with R2 = 0.282 and ŷ = 0.028X − 54.845 with
R2 = 0.761, respectively. From 2000 onwards, there is a noticeable intersection of the
production and area regression lines, signaling that an expansion in area is paired with an
increase in production.

Additionally, Figure 4b shows highlights for three separate slopes in the rice yield
(ton/ha)—one from 1981–1995, from 1996–2010, and the other from 2010–2021, all of which
are on an upward trend. These patterns correspond to three regression models: ŷ = 0.006x−
11.472 with R2 = 0.503, ŷ = 0.006x− 11.560 with R2 = 0.806 and ŷ = 0.002x− 4.052 with
R2 = 0.374, respectively.

(a)

Figure 6. Cont.
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(b)
Figure 6. Comparison of rice production and yield for Roi-Et province. (a) Rice production and
cultivation areas from 1991 to 2021. (b) Evolution of rice production and yield over the period 1981
to 2021. Symbols ** and *** denote significance levels of 0.01 and 0.001, respectively.

Figure 5a illustrates the production (ton) regression line (blue line) with two dis-
tinct slopes: a decreasing trend from 1981–2000 and a stable trajectory from 2001–2021.
Similarly, the area (ha) showcases a downward slope from 1981–2000, transitioning to
a consistent trend from 2001 and beyond. These patterns correspond to two regression
models: ŷ = 0.002x + 5.201 with R2 = 0.009 and ŷ = 0.008X − 15.325 with R2 = 0.461,
respectively.

Additionally, Figure 5b shows highlights for three separate slopes in the rice yield
(ton/ha)—one from 1981–1995, from 1996–2010, and the other from 2010–2021, all of
which are on an upward trend. These patterns correspond to three regression models:
ŷ = 0.01x− 2.357 with R2 = 0.01, ŷ = 0.003x− 4.947 with R2 = 0.294 and ŷ = 0.002x +
3.451 with R2 = 0.204, respectively.

(a)

Figure 7. Cont.
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(b)

Figure 7. Comparison of rice production and yield for Burirum province. (a) Rice production and
cultivation areas from 1991 to 2021. (b) Evolution of rice production and yield over the period 1981
to 2021. Symbols * and *** denote significance levels of 0.05 and 0.001, respectively.

Figure 6a illustrates the production (ton) regression line (blue line) with two distinct
slopes: a decreasing trend from 1981–2000 and a decreasing trend with a lower slope
from 2001–2021. Similarly, the area (ha) showcases an upward slope from 1981–2000,
transitioning to a decreasing trend from 2001 and beyond. These patterns correspond to
two regression models: ŷ = 0.015x− 30.011 with R2 = 0.595 and ŷ = 0.010x− 20.368 with
R2 = 0.347, respectively.

Additionally, Figure 6b shows highlights for three separate slopes in the rice yield
(ton/ha)—one from 1981–1995, from 1996–2010, and the other from 2010–2021, two of which
are on an upward trend, and the last one is one downward trend. These patterns correspond
to three regression models: ŷ = 0.008x− 15.133 with R2 = 0.739, ŷ = 0.007x− 13.261 with
R2 = 0.510 and ŷ = 0.003x + 7.056 with R2 = 0.570, respectively.

Figure 7a illustrates the production (ton) regression line (blue line) with two distinct
slopes: a decreasing trend from 1981–2000 and a decreasing trend with a lower slope
from 2001–2021. Similarly, the area (ha) showcases an upward slope from 1981–2000,
transitioning to a decreasing trend from 2001 and beyond. These patterns correspond to
two regression models: ŷ = 0.0096x− 18.450 with R2 = 0.173 and ŷ = 0.004x− 7.090 with
R2 = 0.047, respectively.

Additionally, Figure 7b shows highlights for three separate slopes in the rice yield
(ton/ha)—one from 1981–1995, one from 1996–2010, and the other from 2010–2021, two
of which are on an upward trend and the last one is on a downward trend. These
patterns correspond to three regression models: ŷ = 0.0006x − 1.488 with R2 = 0.007,
ŷ = 0.007x− 14.637 with R2 = 0.744, and ŷ = 0.003x + 6.030 with R2 = 0.365, respectively.

In addition, we note that the 1980s were marked by an expansion in rice cultivation
areas. This trend plateaued during the 1990s through the early 2000s but then picked up
pace rapidly between 2005 and 2011. Unfortunately, post-2011, the cultivated area saw
some fluctuations, eventually dipping to 8.7 million hectares by 2016. In terms of yield, the
initial decade starting from 1981 experienced a slower growth rate of 20.3 kg per hectare
annually, culminating at 1.95 tons per hectare in 1990 (as shown in Figures 4b–7b). The
following 21 years up to 2011 marked a rate of increase of 53.5 kg per hectare annually,
which translates to a 1.7% yearly surge. However, the subsequent seven years leading up to
2021 did not witness any further rise in yield. The causes behind these shifts in production
will be explored in subsequent sections.
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3.2. Dependence Analysis

To investigate the interplay between rice production and yield in designated provinces,
we utilized seven distinct two-dimensional copula models, as previously described. Figure 8
displays the connection between yields and the selected provinces. In contrast, Figure 9
emphasizes the linkage between crop variables and key meteorological elements.

Figure 8 reveals a strong correlation within agricultural planning for neighboring areas,
influenced by water management practices within each watershed. Concurrently, Figure 9
demonstrates the impact or risk assessment of critical meteorological variables, such as
cumulative rainfall (mm) and average temperature (◦C), on yield (kg) and production (ton).
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Results detailing the estimated parameters of the probability distribution for production
and yield across various provinces are provided in Tables 4 and 5, categorized based on the
main rivers (Khong, Chi, and Mun). Table 6 displays the estimated probability distribution
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parameters for crop and meteorological variables specific to Ubon Ratchathani province. Each
table highlights the fitting distribution and pertinent statistics. In this study, pseudodata based
on rank variables are estimated using a copula function, so the estimation of an appropriate
peripheral probability distribution is important. Probability distributions such as Weibull
distribution, Normal distribution, Log-normal distribution, Gamma distribution, Logistic
distribution, and Exponential distribution were considered. The KS test can be used to assess
how well each chosen probability distribution fits the data for each province.

Table 4 displays the appropriate distribution of the product for each province, catego-
rized by their respective watersheds: Khong, Chi, and Mun, located in the Northeast. Six
distributions, namely Log-normal, Logistic, Gamma, Weibull, and Normal, are identified as
suitable for various provinces within the Northeast region. Furthermore, Table 5 presents
the fitting distribution of yields for selected provinces. Across all regions, the Logistic and
Weibull distributions were found to be the most fitting. Table 6 displays the suitable distri-
bution for both crop and meteorological data specific to the Ubon Ratchathani province.

Table 4. The estimated parameters of probability distribution for product by each provinces.

Province Distribution
Estimated Parameters

KS-Test (p-Value)
Location Scale Shape Rate

Loei Logistic 768,998.36 - 123,771.70 - 0.06 (0.77)
Nong Bua
Lamphu Logistic 2007.50 - 4.91 - 0.05 (0.79)

Udon Thani Log-normal 12.42 0.24 - - 0.13 (0.64)
Nong Khai Gamma 14.96 - - 0.001 0.18 (0.57)
Bueng Kan Normal 144,781.82 11,075.68 - - 0.02 (0.56)
Sakon Nakhon Log-normal 13.52 0.31 - - 0.08 (0.67)
Nakhon Phanom Gamma 12.35 - - - 0.04 (0.64)
Mukdahan Logistic 525,093.33 97,158.15 - - 0.09 (0.76)
Amnat Charoen Log-normal 0.14 12.40 - - 0.12 (0.65)

Khon Kaen Weibull - 445,198.12 4.71 - 0.13 (0.54)
Maha Sarakham Weibull - 882,503.07 5.33 - 0.03 (0.54)
Roi Et Log-normal 12.6159 0.31 - - 0.08 (0.55)
Kalasin Normal 2001.50 11.54 - - 0.06 (0.79)
Yasothon Log-normal 11.64 0.35 - - 0.09 (0.63)

Chaiyaphum Weibull - 635,372.24 4.90 - 0.11 (0.74)
Nakhon
Ratchasima Log-normal 0.39 12.56 - - 0.13 (0.51)

Buriram Normal 864,636.30 226,791.06 - 0.04 (0.84)
Surin Weibull - 556,319.22 4.13 - 0.07 (0.77)
Sisaket Logistic 147,454.04 12,211.24 - - 0.04 (0.83)
Ubon Ratchathani Logistic 601,413.29 59,138.35 - - 0.03 (0.67)

Table 5. The estimated parameters of probability distribution for yields by region.

Region Distribution
Estimated Parameters

KS-Test (p-Value)
Location Scale Shape

UdonThani Logistic 305.9399 33.9950 - 0.05 (0.47)
SakonNakhon Weibull - 313.9020 7.7314 0.05 (0.78)

MahaSarakham Logistic 312.6092 37.4440 - 0.35 (0.65)
Roi-Et Weibull - 332.0968 5.9746 0.26 (0.73)

Buriram Weibull - 336.0878 6.9120 0.11 (0.58)
Surin Logistic 326.8991 37.7011 - 0.36 (0.48)
Sisaket Weibull - 342.0744 6.6396 0.18 (0.51)
UbonRatchathani Weibull - 304.0702 5.9564 0.12 (0.64)
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Table 6. The estimated parameters of probability distribution for crop and meteorologic variables for
Ubon Ratchathani province.

Region Distribution
Estimated Parameters

KS-Test (p-Value)
Location Scale Shape

Yield Weibull - 316.55 7.84 0.13 (0.54)
Product Log-normal 13.81 0.24 - 0.15 (0.51)
CA Normal 1,021,846.29 245,561.08 - 0.15 (0.52)

HA Log-normal 15.04 0.12 - 0.17 (0.01)

sum_rain Weibull - 1305.85 9.70 0.03 (0.84)
Ave_rain Weibull - 186.56 9.71 0.03 (0.84)
Ave_rh Weibull - 87.85 95.94 0.08 (0.79)
Ave_temp Normal 31.61 0.45 - 0.05 (0.80)

The subsequent step in our analysis was to validate if the relationships illustrated by
the estimated copulas were an accurate reflection of real-world data and whether they were
apt for empirical modeling. To evaluate how well the estimated copulas match the empirical
data related to rice production and yield, we implemented the described methodology.

One way to gauge the accuracy of copula parameter estimation is to compare the
coefficients inferred from the chosen copula with the empirical Kendall coefficients, denoted
as τ̂. We obtained estimates of the Kendall coefficient (τ) for all copulas via a simulation
method. These results can be found in Tables 7–9.

Table 7. The results of the copula function of product between Maha Sarakham and Roi-Et.

Region τ̂ Copula Estimated
θ (s.e.) S (p-Value) xv-CIC

Maha Sarakham Roi-Et 0.77 Normal 0.91 (0.02) 0.04 (0.01) 30.58
Clayton 2.98 (0.69) 0.12 (0.0005) 10.05
Frank 15.12 (3.36) 0.02 (0.07) 34.49
Joe 4.08 (0.86) 0.08 (0.01) 20.41
Gumbel 3.42 (0.62) 0.003 (0.09) 17.51
Galambos 2.70 (0.64) 0.003 (0.09) 13.89
Husler–Reiss 3.20 (0.99) 0.004 (0.09) 10.68

Table 7 presents the outcomes derived from the copula function that examines the
product relationship between the Maha Sarakham and Roi-Et provinces. A pronounced
correlation is evident, with the Frank copula emerging as the most fitting, having an
estimated parameter value of 15.12 and a standard error of 3.36. For enhanced clarity,
Figure 10 visually compares the empirical copulas with the fitted copula specific to the
Maha Sarakham and Roi-Et provinces, which indicates minimal variance between the
empirical and theoretical copula functions.

At the same time, Table 8 presents the Kendall correlation coefficient values, τ̂, ex-
tracted from the sampled data. Every estimated correlation in this table is positive and
statistically significant. Among pairs of agricultural products, the combination of Maha
Sarakham and Roi-Et provinces displays the most robust correlation with the highest xv-
CIC linked to the Frank copula, featuring an estimated parameter of 12.95 and a standard
error of 3.10. Conversely, the pair of Srisaket and Ubon Ratchathani exhibits the least
substantial correlation associated with the Clayton copula.

Subsequently, Table 9 outlines the results of the copula function relating variables
in the Ubon Ratchathani province. The most fitting copula between yield and average
rainfall, as well as average temperature, is the Clayton copula. For the correlation between
product and average rainfall, the Frank copula is most apt, whereas the Gumbel copula
best describes the relationship between product and average temperature.
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Figure 10. Comparison of empirical copulas and fitted copula between Maha Sarakham and Roi-
Et province.

Table 8. The results of the optimal copula functions for yields in each regions.

Region τ̂ Copula Estimated
θ (s.e.)

S
(p-Value) xv-CIC

Udon
Thani Sakon Nakhon 0.68 Gumbel 3.17 (0.57) 0.01 (0.05) 28.89

Maha
Sarakham Roi Et 0.75 Frank 12.98 (3.10) 0.02 (0.12) 31.98

Buriram Surin 0.65 Frank 9.55 (0.92) 0.04 (0.06) 20.70
Sisaket 0.60 Frank 8.01 (1.85) 0.03 (0.18) 18.37

UbonRatchathani 0.65 Frank 10.08 (1.62) 0.04 (0.06) 20.76

Surin Sisaket 0.64 Clayton 3.49 (1.06) 0.03 (0.20) 25.36
UbonRatchathani 0.59 Clayton 2.83 (1.06) 0.04 (0.18) 19.80

Sisaket UbonRatchathani 0.51 Clayton 2.07 (0.62) 0.06 (0.03) 12.14

Table 9. The results of the copula function between correlated variables at Ubon Ratchathani province

Variables τ̂ Copula Estimated
θ (s.e.) S (p-Value) xv-CIC

Yield Ave_rain 0.12 Clayton 0.52 (0.39) 0.02 (0.57) 0.35
Ave_temp 0.26 Clayton 0.97 (0.39) 0.03 (0.40) 3.64

Product Ave_rain 0.13 Frank 1.16 (1.09 ) 0.04 (0.06) 0.04
Ave_temp 0.22 Gumbel 1.26 (0.16) 0.02 (0.92) 0.78

The findings in Tables 8 and 9 and Figure 11 corroborate the assessment of how well
the copulas fit using the Kendall coefficient τ and xv-CIC value. For the observation pairs
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Maha Sarakham and Roi-Et, Burirum and Surin, as well as Sisaket and Ubon Ratchathani,
the Frank copula offers the most optimal fit. Conversely, the Clayton copula appears to
be the best match for pairs such as Surin and Srisaket and Sisaket and Ubon Ratchathani,
while the Gumbel copula is best suited for the Udonthani and Sakon Nakorn pair.

In the case of Ubon Ratchathani province, when examining the relationship between
correlated variables, the Clayton copula best represents the link between yield and average
rainfall, the Frank copula aptly captures the connection between production and average
rainfall, and the Gumbel copula is most fitting for the relationship between production and
average temperature.
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Figure 11. Comparison of empirical copulas and fitted copula between yields and meteorological data at
Ubon Ratchathani province. (a) Yield and average rainfall (mm), (b) Yield and average temperature (◦),
(c) Yield and cumulative rainfall (mm) and (d) Yield and relative humidity (%).

4. Discussion

Thailand, recognized as a vital player in the global rice market, faces a looming chal-
lenge: to sustainably bolster its rice productivity amidst the constraints of environmental
and economic adversities. Northeast Thailand, the hub of rice cultivation in the nation,
presents a unique case study with its undulating plateau terrain, soil with low fertility, and
challenges of saline soil, which are predicted to exacerbate due to climate change [17].

This study aimed to fill the research gap by investigating an optimal copula for the
spatial dependence of rice production and related variables in this area. The objective of this
study is to understand how rice production in different areas relates to each other in order
to improve farming practices and address challenges such as suitable weather. To achieve
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this goal, we apply three families of copulas—elliptical, Archimedean, and extreme—to
analyze crop and meteorological variables across the watershed in the northeastern region
of Thailand. Our study identified significant growth in rice production from 1981 to
2011, with variations evident in the specific regions of Udonthani, Roi-Et, Burirum, and
others. These patterns have been meticulously represented through regression models
that unveil the trends in both cultivated area and yield over the 40-year span. It is not just
about recognizing growth patterns. As evident, while Thailand stands tall in rice exports,
its yield per hectare lags behind neighbors like Vietnam. Factors, both agronomic and
economic—such as soil fertility, climate change impacts, increasing costs of farm chemicals,
and labor—are at play [35].

Through the application of two-dimensional copula models, we have explored the
intricate spatial dependencies between rice production and yield across various provinces.
These models provide an in-depth understanding of how rice productivity in different
regions correlates, which is pivotal for formulating region-specific agricultural strate-
gies. Given the challenges confronting Thai farmers, from saline soils to climate-induced
droughts, understanding these spatial dependencies is crucial for resilience and sustain-
ability. The distinctiveness in rice production and yield trends across various provinces
underscores the regional variations in Thailand’s agricultural landscape.

Maha Sarakham and Roi-Et’s strong dependence contrasts sharply with the relatively
weaker correlation observed between Srisaket and Ubon Ratchathani. These variations
could be attributed to factors such as local agricultural practices, water resource manage-
ment, soil fertility, and regional climate conditions. The utilization of different copulas
(Frank, Clayton, and Gumbel) to best fit these relationships further accentuates the unique
characteristics of each province’s agricultural dynamics. The findings highlight the pro-
found impact of meteorological factors, specifically average rainfall and temperature, on
rice production and yield, particularly in Ubon Ratchathani. As climate change continues
to influence global weather patterns, understanding these correlations becomes paramount
for future agricultural planning and risk management.

Moreover, our data underscore the urgency to adapt to changing climates, especially
in regions like Northeast Thailand that are already grappling with saline soils and water
scarcity. Global warming’s exacerbation of these challenges emphasizes the need for Thai
farmers to innovate and adapt to more water-efficient farming practices. Through our
application of elliptical, Archimedean, and extreme copulas, we have tried to solve the
research gap, offering a nuanced look into the spatial dependencies of rice production in
Northeast Thailand. This understanding is not just academic; it holds profound implications
for future agricultural strategies, policy decisions, and on-ground practices to ensure the
sustainable progression of Thailand’s rice sector in an ever-evolving global landscape.

5. Conclusions

Thailand’s role as a central player in global agriculture, predominantly in rice cul-
tivation, holds significant implications for both national and global food security. With
a projected population increase to 10 billion population by 2050, it becomes increasingly
critical to harness innovative techniques that maximize food production, especially in key
rice-producing regions like Northeast Thailand. This region, characterized by its unique
environmental and climatic challenges, such as saline soils and fluctuating weather patterns,
necessitates a dynamic approach to rice cultivation. Our comprehensive study spanning
1981–2021 illuminated nuanced trends in rice production across pivotal provinces in the
Northeast. The data reveal a promising trajectory in yields up to 2011, followed by a
period of variability, emphasizing the need for adaptive strategies. With the omnipresent
challenges of evolving climatic conditions, terrain-specific difficulties, and the looming
pressure of escalating production costs, there is a clear mandate for re-imagining agricul-
tural strategies. Utilizing the advanced two-dimensional copula models, our study casts a
spotlight on the intricate spatial interdependencies influencing rice yields across the region.
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This methodology, while invaluable, also highlights the necessity for continual refinement
and the adoption of even more sophisticated data analysis techniques in the future.

Conclusively, as Thailand grapples with the dual challenge of sustaining its global
market position and addressing its domestic agricultural challenges, the findings from
this study provide a pivotal foundation. Emphasizing the importance of region-specific,
sustainable agricultural initiatives, the results underscore the value of a more holistic
understanding of the factors influencing rice productivity. For future research, it is worth
considering the integration of advanced analytical methods, possibly leveraging machine
learning or artificial intelligence, to delve even deeper into predicting yield trends and
optimizing agricultural practices in the face of changing environmental scenarios.
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to main watershed; Table S2: Summary of cultivated area (ha) in the Northeast regions in selected
years; Table S3: Summary of harvested area (ha) in the Northeast regions in selected years; Table S4:
Summary of productivities(ton) in the Northeast regions in selected years; Table S5: Summary of
yield (kg) per ha in the Northeast regions in selected years.
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