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Abstract: The agricultural industry has the potential to meet the increasing food production re-
quirements and supply nutritious and healthy food products. Since the Internet of Things (IoT)
phenomenon has achieved considerable growth in recent years, IoT-based systems have been estab-
lished for pest detection so as to mitigate the loss of crops and reduce serious damage by employing
pesticides. In the event of pest attack, the detection of crop insects is a tedious process for farmers
since a considerable proportion of crop yield is affected and the quality of pest detection is diminished.
Based on morphological features, conventional insect detection is an option, although the process has
a disadvantage, i.e., it necessitates highly trained taxonomists to accurately recognize the insects. In
recent times, automated detection of insect categories has become a complex problem and has gained
considerable interest since it is mainly carried out by agriculture specialists. Advanced technologies
in deep learning (DL) and machine learning (ML) domains have effectively reached optimum perfor-
mance in terms of pest detection and classification. Therefore, the current research article focuses
on the design of the improved artificial-ecosystem-based optimizer with deep-learning-based insect
detection and classification (IAEODL-IDC) technique in IoT-based agricultural sector. The purpose of
the proposed IAEODL-IDC technique lies in the effectual identification and classification of different
types of insects. In order to accomplish this objective, IoT-based sensors are used to capture the
images from the agricultural environment. In addition to this, the proposed IAEODL-IDC method
applies the median filtering (MF)-based noise removal process. The IAEODL-IDC technique uses
the MobileNetv2 approach as well as for feature vector generation. The IAEO system is utilized for
optimal hyperparameter tuning of the MobileNetv2 approach. Furthermore, the gated recurrent unit
(GRU) methodology is exploited for effective recognition and classification of insects. An extensive
range of simulations were conducted to exhibit the improved performance of the proposed IAEODL-
IDC methodology. The simulation results validated the remarkable results of the IAEODL-IDC
algorithm with recent systems.

Keywords: Internet of Things; agriculture; insect recognition; crop productivity; computer vision;
deep learning; parameter tuning

1. Introduction

Recently, the application of Internet of Things (IoT) technology in agricultural practices
has proved to have great potential in terms of developing dynamic pest management
practices. One of the major effective applications is the utilization of IoT devices to classify
and inspect pests in agricultural settings. With the help of a network of sensors that capture
environmental images and data, farmers gain clearer insights into the existence of pests
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and their activities [1]. Such sensors gather vital data, namely soil moisture, temperature,
humidity, and the images of crops along with the surrounding vegetation. With real-time
data analytics and processing techniques, the system rapidly identifies the pest outbreaks
and immediately alerts the agricultural experts or farmers, thus allowing them to proceed
with timely and targeted pest management measures [2]. This combination of the IoT and
pest classification techniques has the potential to revolutionize pest control in agriculture,
causing more sustained practices, decreased pesticide use, and, ultimately, maximum
crop yields.

Insect detection in IoT-based agricultural practice is vital to advancing sustainability
by enabling accurate and targeted pest management practices. By leveraging the IoT tech-
nologies, farmers can observe the insect populations on a real-time basis, which in turn
enables them to reduce the indiscriminate use of pesticides, optimize resources, and miti-
gate environmental impact. This type of data-driven approach not only preserves essential
resources but also promotes various other features such as biodiversity preservation, crop
health, and resilience in the face of climate change, aligning agricultural practices with the
overarching goal of sustainable and environmentally responsible food production. Early
identification of pest infestations enables timely intervention and also prevents massive
crop damage. Further, this preemptive process helps in maintaining the crop yield and
also minimizing the risks of crop failure, thus contributing to food security and sustainable
agricultural production. Sustainable agriculture often involves conservation and improve-
ment of biodiversity. IoT-based insect detection techniques help farmers to differentiate
the harmful pests from beneficial insects, such as pollinators and natural predators. It is
vital to protect these beneficial species in order to maintain a balanced ecosystem within
agricultural environments, which in turn supports long-term sustainability.

Pest attack is one of the major problems encountered by the agricultural sector, and it
degrades the quality of crops and accordingly the yield [3]. Weeds, pests, and germs cause
heavy losses to the crops and negatively impact the market for final goods. So, it is of im-
mense importance to identify innovative ways to obtain even small growths in efficacy [4].
Extra caution should be taken regarding pest attacks on crops that greatly affect the quality
and yield of the crop. The high demand for cash crops mainly contributes to the large scale
of production. The key reason behind the degradation of crop quality is insects, which
also diminish the crop yield [5]. On the other hand, it is essential to evaluate and monitor
the losses incurred due to insects so as to overcome the safety and crop quality issues
in agriculture. Manual identification and classification of insects necessitate professional
knowledge of the field and are also time-consuming processes [6]. Conventionally, expert
entomologists classify insects through manual procedures. However, it is challenging for
non-professionals to categorize insects without entomological knowledge. Thus, the study
of automatic detection of insect types using image processing technology is extremely
useful [7].

Computer vision techniques have been successfully adopted for monitoring soil and
crop environments, insect pest recognition, plant disease detection, and fruit grading.
Various developments have been achieved recently in agriculture with the involvement of
machine learning (ML) techniques to classify and detect insects in stored grain settings [8].
Yet, the prevailing ML methods have some limitations if applied in the image detection
process due to the compromised performance of the hand-engineered features that affect
the whole results. Further, learning such features is a complicated and time-consuming task
considering that the system has to be changed when the dataset changes or new problems
arise. Hence, these features demand expensive efforts that hinge on professionals and
are ineffective [9]. Many researchers have established that deep learning (DL) techniques
possess substantial benefits in terms of feature extraction from the images [10].

In this context, the current research article concentrates on the design of an improved
artificial-ecosystem-based optimizer with deep-learning-based insect detection and classifi-
cation (IAEODL-IDC) approach in the IoT-based agricultural sector. The IoT sensors are
primarily used for data collection purposes. The presented IAEODL-IDC technique uses the
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median filtering (MF)-based noise removal process. In addition, the IAEODL-IDC method
makes use of the MobileNetv2 system for feature vector generation. Meanwhile, the IAEO
methodology is also exploited for optimal hyperparameter tuning of the MobileNetv2
system. Lastly, the gated recurrent unit (GRU) methodology is exploited for an effective
recognition and classification of insects. An extensive range of simulations were conducted
to exhibit the superior performance of the IAEODL-IDC algorithm. The key contributions
of the current study are summarized as follows:

• Development of the automated IAEODL-IDC technique comprising MF-based prepro-
cessing, a MobileNetv2 feature extractor, IAEO-based parameter tuning, and GRU-
based classification for insect detection in the IoT-based agricultural sector. To the best
of the authors’ knowledge, there are no existing reports on the IAEODL-IDC technique
in the literature.

• Design of a new IAEO technique by integrating the lens imaging dynamic learning
approach and the AEO algorithm to overcome the local optima problem.

• Hyperparameter optimization of the GRU model using the IAEO algorithm with
cross-validation, which helps in boosting the predictive outcome of the IAEODL-IDC
model for unseen data.

2. Related Works

Kundu et al. [11] developed a process named the ‘Automated and Intelligent Data
Collector and Classifier’ structure by incorporating the IoT and DL techniques. This
‘Custom-Net’ technique was utilized on the cloud server. The Grad-CAM was also applied
for visualizing the attributes derived by ‘Custom-Net’. Additionally, the effect of the TL
on Inception ResNetV2, ‘Custom-Net’, InceptionV3, VGG19, VGG16, and ResNet50 is
shown in this study. Kusrini et al. [12] presented an advanced ML approach to detect the
onset of biological threats with the help of CV and DL technologies and examine large-
scale mango fields. The ML method extended the pre-trained VGG16 DL approach in
order to supplement the final layer with FC network training. In Reference [13], a pest
detection technique was modeled using the improved YOLOv5-based method with high
precision. Firstly, the Transformer (C3TR) and SWin Transformer (SWinTR) systems were
incorporated into the YOLOv5 network in such a way that a larger number of global
features are captured, which can increase the receptive sector.

In a previous study [14], an insect pest detection technique was presented with contour
detection and foreground extraction in order to identify insects. To enhance the outcome
of the classification method, a 9-fold cross-validation method was implemented. The
highest classifier rates of 90% and 91.5% were attained for 9 and 24 class insects through
the convolutional neural network (CNN) method. Li and Chao [15] devised an artificial
neural network (ANN)-based continual classification technique through retrieval and
memory storage with two advantages, namely high flexibility and few data. The presented
ANN-based method integrated both a CNN and a generative adversarial network (GAN).
Islam et al. [16] examined the performances of several ML approaches such as the random
forest (RF), K-nearest neighbor (KNN), and a support vector machine (SVM) to detect
weeds through UAV images captured in chili crop fields. Rong et al. [17] presented an
object detection technique based on the enhanced Mask RsCNN method that is targeted at
enhancing the efficiency and accuracy in the pest detection process. In Reference [18], the
authors presented non-destructive approaches to find the syndromes that affect tomato
crops such as the target spot (TS), bacterial spot (BS) and tomato yellow leaf curl (TYLC)
for two tomato types utilizing hyperspectral sensing under two conditions: (a) in the field
using a drone-based application and (b) in the lab (benchtop scanning).

3. The Proposed Model

In the current study, an automated insect recognition technique, i.e., the IAEODL-IDC
technique, has been developed to properly classify various types of insects. The presented
IAEODL-IDC technique comprises MF-based noise removal, MobileNetv2 feature extrac-
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tion, IAEO-based hyperparameter optimization, and GRU-based classification. Figure 1
exhibits the workflow of the IAEODL-IDC approach.
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3.1. Image Pre-processing

Initially, the MF system is employed to eradicate the noise present in the images. The
MF system is a digital signal processing method that is used for the removal of noise from
signals or images [19]. This system works by replacing all the pixels in an image with the
median values of the nearby pixel in a predetermined neighborhood. MF is a non-linear
filter, i.e., the output of the filter relies on the order of input.

3.2. Feature Extraction

In order to develop the feature vectors, the MobileNetv2 model is utilized in this
study. A CNN is an NN with more than one layer, and it involves multiple convolutional
pooling layer pairs along with full-connection output layers [20]. The aim of a typical
CNN is to recognize that an image’s shape remains partially invariant to the position of
the shape. In the convolution layer, the input image is convolved with the help of the 2D
filter. For instance, when a 2D image I is fed as an input and a 2D convolutional kernel K is
applied, then

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

K(i−m, j− n) (1)

Next, the feature map following the convolution filter is downsized to small instances
from the pooling layer. Both the network filters (kernel) and the weights in the convolution
layer are learnt via the backpropagation model in order to mitigate the classification error.
The network is exploited to train NF = 30 filters in total, sized at Nh × 3. The input image
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is convolved by the kernel that is to be trained, and later it is passed over the f output
function to generate the output map in the convolutional layer. The map of the k-th feature
is attained using the following equation:

hk
ij = f (a) = f ((Wk ∗ x)ij + bk) (2)

In Equation (2), Wk signifies the weight matrix for the kth filter, and bk characterizes
the bias values; for k = 1, 2, · · · , NF and x signify the input image. In this work, the 1D filter
has Nh × 3 dimensions, j = 1 and = 1, 2, · · · , Nt − 2. The f output function is designated
as ReLu.

f (a) = ReLU(a) = ln(1 + ea) (3)

The result of the convolution layer is an NF vector sized at (Nt − 2)× 1. The max-
pooling layer is a full-connection layer with two outcomes that characterize the MI of L.H.S
and R.H.S [21]. Here, the BP model is utilized for learning the CNN parameters. Using the
presented method, the network is provided with the labeled trained set, and the error E is
calculated by assuming that the selected output is dissimilar to the actual output. Then, the
gradient descent model is exploited to minimize the error E that takes place with changes
in the mode parameter and is represented as follows.

Wk = Wk − η
tialE

tialWk (4)

bk = bk − η
tialE
tialbk

(5)

where Wk signifies the weight matrix for kernel k, η refers to the learning rate, and bk
characterizes the bias value. Eventually, the trained network is used to categorize the new
sample in the testing set.

3.3. Hyperparameter Tuning

The IAEO algorithm is exploited for the optimal hyperparameter tuning process.
AEO is a metaheuristic optimization technique that is modeled on the flow of energy
in the Earth’s ecosystem [22], such as production, consumption, and the decomposition
processes. In such a system, food offers energy together with sunlight, CO2, nutrients, and
water generated by decomposers. The generation operator supports the AEO in arbitrarily
replacing the preceding one (xn) with a novel individual (xrand). The production behavior
is determined as given below.

χ1(t + 1) = (1− a)xNP(t) + axrand(t) (6)

a =

(
1− t

T

)
r1 (7)

xrand = r(U − L) + L (8)

Here, NP denotes the size of the population, T implies the maximal iteration count of
this technique, and L and U denote the upper and lower boundaries of the searching space,
respectively.

During the AEO, random walking, at a point dependent upon Levy flight (LF), is
termed as the consumption feature and is calculated as follows.

C =
1
2

v1

|v2|
(9)

v1 ∼ N(0, 1), v2 ∼ N(0, 1) (10)
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Herbivore: The consumption design of the herbivore is as follows

xi(t + 1) = xi(t) + C.(xi(t)− x1(t)), i ∈ [2, . . . , n] (11)

Carnivore: The consumption design of the carnivore is expressed using Equation (12):{
xi(t + 1) = xi(t) + C.(xi(t)− x1(t)), i ∈ [2, . . . , NP]

j = randi([2 i− 1])
(12)

Omnivore: When a consumer assumes another consumer, it could either eat the
consumer, which has high energy, or the producer. This performance is determined as
follows:xi(t + 1) = xi(t) + C.

(
xi(t)− χ1(t)

)
+ (1− r2)

(
xi(t)− xj(t)

)
, i = 3, . . . , NP

j = randi([2 i− 1])
(13)

r2 implies the random number from the interval. During the decomposition procedure,
the decomposer decomposes the situation, when the individual dies. The decomposition
procedures are determined as follows.

χi(t + 1) = xn(t) + D.(e.xn(t)− h.xi(t)) , i = 1, . . . , NP (14)

D = 3u, u ∼ N(0, 1) (15)

e = r3.randi([1 2])− 1 (16)

h = 2.r3 − 1 (17)

The lens imaging dynamic learning system can be assumed to prevent the AEO
technique from becoming trapped in the local optima. Hence, on the L.H.S of the y-axis,
the person is noticeable with F, whereas its estimate on the x-axis is exposed with X, and
distance in the x-axis is noticeable with ξ. If accepted by a convex lens, the F proceeds
with an inverse F′ where the image on the x-axis is referred to as X′, and its distance in the
x-axis is determined as ξ ′. The person X and the opposite person X′ are chosen.

X′ is attained as follows.

X′ =
ψU + ψl

2
+

ψU + ψl
2× µ

− X
µ

(18)

The scaling, dependent upon non-linear dynamic reduction µ, is determined as follows.

µ = λmin −
(

λmax − λmin
)
×
(

t
T

)2
(19)

where λmax and λmin signify the upper and lower scaling features (100 and 10), respectively.
Equation (18) is determined for n-dimensional space as given below.

X′j =
ψuj + ψl j

2
+

ψuj + ψl j

2× α
−

Xj

α
(20)

Here, Xj and X′j denote the X0 and X mechanisms in the dimension j, and ψl j and ψuj
signify the upper and lower limits of the dimension j, respectively.
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The IAEO technique not only develops a fitness function (FF) from attaining a supreme
classifier solution, but it also expresses a positive integer to exemplify the high efficacy
of candidate performances. A reduced classifier rate of errors is regarded as an FF and is
expressed as follows.

f itness(xi) = Classi f ierErrorRate(xi) =
no. o f misclassi f ied instances

Total no. o f instances
∗ 100 (21)

3.4. Image Classification

Lastly, the GRU technique subjects the image to class labeling. The GRU is composed
of several GRU cells, and the number of hidden states is fixed at 2 [23]. Here, the update
gate is used for controlling the extent to which the data of the preceding moment are taken
into the existing state. The reset gate is the same gate as the forget gate in LSTM, which
controls the number of data that are neglected from the preceding moment.

In each GRU cell, the forward propagation formula is given as follows:

zt = σ(atUz + ht−1Wz + bz)

rt = σ(atUr + ht−1Wr + br)

ht = tanh
(

atUh + (ht−1 ◦ rt)Wh + bh
)

ht = (1− zt) ◦
∼
ht + zt ◦ ht−1

(22)

In Equation (22),ht zt, rt, and
∼
ht refer to the active layers of the present hidden node

outcome, the update gate, reset gate, and candidate layer of the existing hidden node at
time t, respectively; at ∈ Rd denotes the input vector to all the GRU cells; ◦ denotes the
component-wise multiplication; U and W imply the weight matrices learned during model
training; σ denotes the sigmoid activation function; b shows the bias vector; and tanh
indicates the hyperbolic tangent function.

4. Results and Discussion

The proposed model was simulated using Python 3.6.5 on a PC configured with an
i5-8600k CPU, a GeForce 1050Ti 4 GB GPU, 16 GB RAM, a 250 GB SSD, and a 1 TB HDD.
The insect classification performance of the IAEODL-IDC algorithm was validated using
the IP102 database [24], containing 300 instances for six classes, as represented in Table 1.
The IP102 database has a hierarchical taxonomy, and the insect pests that mainly affect one
specific agricultural product are grouped in the same upper-level category. Figure 2 shows
some of the sample images.

Table 1. Detailed database.

Insect Class Label Number of Insects

Rice leaf roller Insect-1 50

Asiatic rice borer Insect-2 50

Yellow rice borer Insect-3 50

Rice gall midge Insect-4 50

Rice Stemfly Insect-5 50

Rice leafhopper Insect-6 50

Total Number of Insects 300
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Figure 3 exhibits the classification results achieved by the IAEODL-IDC approach
with the 70:30 TR/TS sets. Figure 3a,b show the confusion matrices generated by the ACC-
CBOEFF algorithm with the 70:30 TR/TS sets. The outcomes denote that the ACC-CBOEFF
method identified and classified all six class labels accurately. Also, Figure 3c demonstrates
the PR investigation outcomes of the IAEODL-IDC algorithm with the 70:30 TR/TS sets.
The outcome signifies that the IAEODL-IDC algorithm attained enhanced PR solutions
in all the classes. On the other hand, Figure 3d exhibits the ROC investigation results
achieved by the IAEODL-IDC model with the 70:30 TR/TS sets. The outcomes demonstrate
that the IAEODL-IDC system achieved excellent results with maximal ROC values for all
six class labels.
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Figure 4 exhibits the classification performance of the IAEODL-IDC system for the
70% TR set. The results show that the IAEODL-IDC technique determined all six types
of insects. For the insect-1 class, the IAEODL-IDC technique obtained an accuy of 96.67%,
sensy of 87.50%, specy of 98.31%, Fscore of 88.89%, and an AUCscore of 92.91%. Meanwhile,
for the insect-3 class, the IAEODL-IDC system achieved an accuy of 99.05%, sensy of 100%,
specy of 98.88%, Fscore of 96.97%, and an AUCscore of 99.44%. Furthermore, for the insect-6
class, the IAEODL-IDC technique reached an accuy of 93.33%, sensy of 80.49%, specy of
96.45%, Fscore of 82.50%, and an AUCscore of 88.47%.

Figure 5 exhibits the classification outcomes of the IAEODL-IDC approach for the
30% TS set. The outcome depicts that the IAEODL-IDC system determined all six types
of insects. For the insect-1 class, the IAEODL-IDC technique obtained an accuy of 97.78%,
sensy of 94.44%, specy of 98.61%, Fscore of 94.44%, and an AUCscore of 96.53%. Meanwhile,
for the insect-4 class, the IAEODL-IDC system achieved an accuy of 96.67%, sensy of 94.12%,
specy of 97.26%, Fscore of 91.43%, and an AUCscore of 95.69%. Additionally, in the insect-6
class, the IAEODL-IDC algorithm achieved an accuy of 96.67%, sensy of 88.89%, specy of
97.53%, Fscore of 84.21%, and an AUCscore of 93.21%.

Figure 6 demonstrates the classification outcomes of the IAEODL-IDC methodology
for the 60:40 TR/TS sets. Figure 6a,b depict the confusion matrices generated by the ACC-
CBOEFF algorithm for the 60:40 TR/TS sets. The outcomes show that the ACC-CBOEFF
method recognized and classified all six class labels accurately. Next, Figure 6c displays
the PR curve of the IAEODL-IDC method for the 60:40 TR/TS sets. The results state that
the IAEODL-IDC method obtained the highest PR curve in all six classes. Lastly, Figure 6d
shows the ROC investigation outcomes of the IAEODL-IDC system for the 60:40 TR/TS
sets. The figure exhibits that the IAEODL-IDC method achieved excellent outcomes with
the highest ROC values for dissimilar class labels.
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Figure 7 exhibits the classification outcomes of the IAEODL-IDC method for the 60%
TR set. The results show that the IAEODL-IDC method determined all six types of insects.
In the insect-1 class, the IAEODL-IDC method attained an accuy of 99.44%, sensy of 96.97%,
specy of 100%, Fscore of 98.46%, and an AUCscore of 98.48%. Meanwhile, for the insect-3 class,
the IAEODL-IDC technique achieved an accuy of 97.78%, sensy of 90%, specy of 99.33%,
Fscore of 93.10%, and an AUCscore of 94.67%. Moreover, for the insect-6 class, the IAEODL-
IDC method yielded an accuy of 91.67%, sensy of 70%, specy of 96%, Fscore of 73.68%, and
an AUCscore of 83%.

Figure 8 displays the overall classification outcomes of the IAEODL-IDC system for
the 40% TS set. The results demonstrate that the IAEODL-IDC system determined all
six types of insects. For the insect-1 class, the IAEODL-IDC technique obtained an accuy
of 95.83%, sensy of 82.35%, specy of 98.06%, Fscore of 84.85%, and an AUCscore of 90.21%.
Meanwhile, for the insect-4 class, the IAEODL-IDC method attained an accuy of 96.67%,
sensy of 92.31%, specy of 97.87%, Fscore of 92.31%, and an AUCscore of 95.09%. Moreover, for
the insect-6 class, the IAEODL-IDC method reached an accuy of 98.33%, sensy of 95%, specy
of 99%, Fscore of 95%, and an AUCscore of 97%.

Figure 9 exhibits the classifier outcomes of the IAEODL-IDC method with the 70:30
and 60:40 datasets. Figure 9a,c show the accuy analysis outcomes achieved by the IAEODL-
IDC methodology with the 70:30 and 60:40 datasets. The outcome demonstrates that the
IAEODL-IDC system obtained the maximum accuy values with an increase in the number
of epochs. In addition, the maximum valid_n over train_g accuy exhibits that the IAEODL-
IDC methodology learns efficiently. Lastly, Figure 9b,d exhibit the loss examination out-
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comes of the IAEODL-IDC algorithm with the 70:30 and 60:40 datasets. The outcomes
illustrate that the IAEODL-IDC methodology obtained nearby train_g and valid_n loss
values. The IAEODL-IDC system obtained effective outcomes with the test database.
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Figure 10 shows the accuy examination outcomes of the IAEODL-IDC system and
other existing methods [14,25,26] for the TR set. The results indicate that the SqueezeNet,
LR, CNN, ANN, NB, AlexNet, and ShuffleNet models reached low accuy values of 94.38%,
94.86%, 94.80%, 94.68%, 94.67%, 93.87%, and 91.99%, respectively. Though the FFGWO-
CNN model attained a reasonable accuy of 95.32%, the IAEODL-IDC technique outper-
formed all other models and achieved a maximum accuy of 96.19%.

Figure 11 depicts the accuy examination results achieved by the proposed IAEODL-
IDC technique and other methods for the TS set. The outcome demonstrates that the
SqueezeNet, FFGWO-CNN, CNN, ANN, NB, AlexNet, and ShuffleNet methods attained
the lowest accuy values of 96.55%, 94.58%, 92.56%, 92.52%, 92.16%, 96.06%, and 96.20%,
respectively. Though the LR method obtained a reasonable accuy of 96.98%, the IAEODL-
IDC technique outperformed the rest of the methods and achieved the highest accuy of
97.78%.
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Lastly, a computation time (CT) analysis was conducted for the IAEODL-IDC method-
ology and other existing approaches, and the results are shown in Figure 12.

fSustainability 2023, 15, x FOR PEER REVIEW 17 of 19 
 

Lastly, a computation time (CT) analysis was conducted for the IAEODL-IDC meth-
odology and other existing approaches, and the results are shown in Figure 12.  

 
Figure 12. CT outcomes of the IAEODL-IDC algorithm with recent systems. 

The outcomes demonstrate that the IAEODL-IDC technique achieved better perfor-
mance over existing models with a minimal CT of 5.49 s. These results establish the supe-
rior performance of the IAEODL-IDC system as an insect classification model. 

5. Conclusions 
In the current study, the authors present an automatic insect detection technique 

named the IAEODL-IDC technique, which properly classifies various types of insects in 
an IoT-assisted environment. The presented IAEODL-IDC technique comprises MF-based 
noise removal, MobileNetv2 feature extraction, an IAEO-based hyperparameter opti-
mizer, and GRU-based classification processes. Additionally, the IAEO method is utilized 
for optimal hyperparameter tuning of the MobileNetv2 system. Moreover, the GRU meth-
odology is exploited for effectual recognition and classification of insects. An extensive 
range of simulations were conducted to demonstrate the superior performance of the 
IAEODL-IDC algorithm; the simulation results highlight the remarkable outcomes of the 
IAEODL-IDC methodology in comparison with the existing systems. In the future, a mul-
timodal feature fusion procedure can be designed to improve the outcomes of the 
IAEODL-IDC technique. 

Author Contributions: Conceptualization, M.A.; Methodology, M.A., H.A.M. and A.M.; Software, 
A.M.; Validation, F.K.; Investigation, H.A.M.; Resources, F.K.; Data curation, F.K.; Writing—original 
draft, M.A., H.A.M. and A.M.; Writing—review & editing, H.A.M. and A.M.; Visualization, F.K.; 

Figure 12. CT outcomes of the IAEODL-IDC algorithm with recent systems.

The outcomes demonstrate that the IAEODL-IDC technique achieved better perfor-
mance over existing models with a minimal CT of 5.49 s. These results establish the superior
performance of the IAEODL-IDC system as an insect classification model.

5. Conclusions

In the current study, the authors present an automatic insect detection technique
named the IAEODL-IDC technique, which properly classifies various types of insects
in an IoT-assisted environment. The presented IAEODL-IDC technique comprises MF-
based noise removal, MobileNetv2 feature extraction, an IAEO-based hyperparameter
optimizer, and GRU-based classification processes. Additionally, the IAEO method is
utilized for optimal hyperparameter tuning of the MobileNetv2 system. Moreover, the
GRU methodology is exploited for effectual recognition and classification of insects. An
extensive range of simulations were conducted to demonstrate the superior performance
of the IAEODL-IDC algorithm; the simulation results highlight the remarkable outcomes
of the IAEODL-IDC methodology in comparison with the existing systems. In the future,
a multimodal feature fusion procedure can be designed to improve the outcomes of the
IAEODL-IDC technique.
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