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Abstract: Landslide susceptibility assessment can effectively predict the spatial distribution of
potential landslides, which is of great significance in fields such as geological disaster prevention,
urban planning, etc. Taking Xining City as an example, based on GF-2 remote sensing image
data and combined with field survey data, this study delineated the spatial distribution range of
developed landslides. Key factors controlling landslides were then extracted to establish a landslide
susceptibility assessment index system. Based on this, the frequency ratio (FR), random forest (RF),
support vector machine (SVM), and artificial neural network (ANN) models were applied to spatially
predict landslide susceptibility with slope units as the basis. The main results are as follows: (1) The
overall spatial distribution of landslide susceptibility classes in Xining City is consistent, but the
differences between different landslide susceptibility classes are significant. (2) The high-susceptibility
area predicted by the FR-RF model is the largest, accounting for 15.48% of the total study area. The
prediction results of the FR-ANN and FR-SVM models are more similar, with high-susceptibility
areas accounting for 13.96% and 12.97%, respectively. (3) The accuracy verification results show that
all three coupled models have good spatial prediction capabilities in the study area. The order of
landslide susceptibility prediction capabilities from high to low is FR-RF model > FR-ANN model >
FR-SVM model. This indicates that in the study area, the FR-RF model is more suitable for carrying
out landslide susceptibility assessment.

Keywords: landslide susceptibility; machine learning; Xining City; loess area

1. Introduction

Since the onset of the Quaternary Period, under the influence of tectonic processes,
the Loess Plateau has witnessed intermittent episodes of uplift [1]. These geological forces
incited profound river incision, sculpting a distinctive loess topography typified by gullies and
ravines. Vast and continuous deposits of loess material span regions encompassing Qinghai,
Gansu, Ningxia, and Shanxi; the total coverage area of loess is about 4.4 × 105 km2 [2]. Due to
the distinctive properties of loess, including vertical joints and collapsibility, coupled with
the intensified precipitation resulting from the continental monsoon climate prevalent in the
Loess Plateau, loess landslides occur frequently [3,4]. The Loess Plateau region holds pivotal
significance as a major population center in China and a cornerstone for coal fossil energy
production. Loess landslides are widespread in the region with complex conditions, which
severely impact the life and property security of local residents and pose threats to national
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energy security. Despite the substantial attention and effort dedicated to disaster prevention
and mitigation by relevant authorities, the region continues to bear the brunt of catastrophic
and often fatal landslides. Over the past two decades, advancements in modern Earth
observation technologies and the widespread adoption of numerous machine learning
models have brought new opportunities for landslide monitoring and early warning [5–7].
Landslide susceptibility assessment can clearly present the spatial probability of landslide
hazards. The implementation of landslide susceptibility assessments carries profound
implications, not only for the safeguarding of human lives but also for the judicious
selection of sites for engineering construction projects.

Landslide susceptibility assessment is an important method for predicting the spatial
distribution of landslide hazards. A multitude of scholars have undertaken such assess-
ments through a combination of qualitative and quantitative approaches, anchored in the
consideration of influential factors encompassing topography, climate, hydrology, and
human activities within the study area. These assessments are based on mathematical
probability statistical models or machine learning models to reflect the probability and
potential spatial distribution of regional landslides [8–11]. The methodologies for land-
slide susceptibility assessment can be categorized into two overarching streams: statistical
methods and machine learning methods. The statistical methods mainly include certainty
factor (CF), information value (IV), weight of evidence (WOE) [12], and frequency ratio (FR)
methods [13]. For instance, Xiong [14] conducted an assessment of landslide susceptibility
in Puge County, Sichuan Province, employing diverse statistical coupling models, and
discerned that the WF-LR model had the highest evaluation accuracy. Fundamentally,
landslides are complex nonlinear processes. Compared with traditional statistical mod-
els, machine learning models such as random forest (RF) [15], artificial neural network
(ANN) [16], support vector machine (SVM) [17], and naive Bayes (NB) [18] are more suit-
able for dealing with nonlinear problems and can better extract deep data characteristics.
Therefore, they are widely applied in landslide susceptibility assessment.

Moreover, several scholars combined statistical models with machine learning models
to improve the accuracy of landslide susceptibility assessment. For instance, Ma [19] es-
tablished a database of 14 influencing factors and used the FR model to process the raw
landslide factor data. They combined the RF and FR models to conduct a landslide sus-
ceptibility assessment in Lueyang County, finding that landslide hazards were negatively
correlated with linear factors. Xia [20] established landslide susceptibility zoning maps of
the Three Gorges Reservoir area based on SVM, ANN, and SVM-ANN models, respectively.
The study results revealed that the prediction accuracy of individual SVM and ANN models
were lower than the coupled SVM-ANN model. The SVM-ANN model is more suitable
for practical applications of landslide disaster risk analysis. Research has shown that each
model has its advantages and disadvantages, and the predictive ability of the same model
varies in different research areas. In areas with complex geological conditions and frequent
disasters, the landslide susceptibility results obtained by relying on a single model may
have potential uncertainty [21]. Therefore, the combination and comparison of different
methods can improve the accuracy of landslide susceptibility prediction in complex areas
and provide more scientific guidance and suggestions for landslide disaster prevention
and control.

The Loess Plateau has a complex geological environment and frequent human activi-
ties, making it a hotspot for landslide susceptibility assessment research. Xining City, an
important central city in northwest China, is located in the Loess Plateau. In recent years,
geological disasters mainly induced by landslides have frequently occurred in Xining, caus-
ing huge losses of lives and property [22,23]. Although some previous studies conducted
landslide susceptibility assessments for the entire Loess Plateau region [24,25], there has
been relatively little research focused on Xining City. In particular, studies using various
coupled models are lacking. Therefore, based on remote sensing images from Gaofen-1
satellite and Google Earth combined with field investigation, this study delineated landslide
locations and extents in Xining City. Using slope units as the assessment units, statistical
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methods were combined with machine learning methods, connecting the frequency ratio
(FR) model with the random forest (RF) model, artificial neural network (ANN) model,
and support vector machine (SVM) model, to rapidly and accurately assess landslide sus-
ceptibility in Xining City. The accuracy of the calculation results from the three models
was validated, and the advantages and disadvantages of different models were analyzed.
Landslides are one of the most common types of natural disasters in the Loess Plateau
region, and their potential threats have a significant impact on human society and the
environment. This study employs machine learning algorithms to assess the susceptibility
to landslides, aiming to assist Xining City in gaining a more comprehensive understanding
and effective management of landslide risks. This endeavor not only contributes to the
protection of lives and property of residents but also supports the maintenance of societal
sustainability. Furthermore, the research findings provide crucial information for urban
planning and land use decisions. Urban planners can utilize this information to avoid
construction in high landslide risk areas, thereby promoting sustainable land use, reducing
disaster-induced losses, and enhancing the city’s sustainability. The rest of this paper is
structured as follows: Section 2 details the specifics of the study area. Section 3 focuses on
data sources, methods, and models. In Section 4, we introduce the preparation of landslide
susceptibility assessment from four aspects: landslide hazard identification, slope unit
extraction, index system construction, and determination of landslide samples. Finally,
Section 5 is about the results and analysis of landslide susceptibility assessment.

2. Overview of the Study Area

The study area is located in the western part of the Loess Plateau, in the transition
zone between the Qinghai–Tibet Plateau and the Loess Plateau (Figure 1). It is situated in
the midstream valley basin of the Huangshui River, with an area of approximately 490 km2.
The Huangshui River runs from west to east through the entire Xining City area. Under the
control of fluvial erosion and deposition as well as tectonic movements, the study area has
developed erosion tectonic low mountains and hills along with erosion–deposition river
valleys and plains. This makes the topography of the study area show a pattern of high
surrounding areas and a low center.
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Xining City has a semiarid continental highland climate, characterized by large diurnal
temperature variations, long sunshine duration in summer, and mean annual precipitation
around 495 mm (Figure 2). As seen in Figure 2, there are significant seasonal differences
in precipitation within the study area, making the region susceptible to heavy rainfall
events and thus increasing the likelihood of landslide development. Figure 3 illustrates the
spatial distribution of annual average precipitation within the study area. The disparity
between the highest and lowest precipitation values is 14 mm, indicating a relatively
modest overall spatial variation in precipitation. The primary fold structure in the study
area is the Huangshui anticlinal axis. The major fault zones along the margins of the basin
include the Larishan Fault Zone, Dabashan Fault Zone, and Riyueshan Fault Zone [26],
which are all active fault zones and provide the geological background conditions for the
development of landslide hazards in the study area. Moreover, the study area is located
in the loess region [27], where loess has weak resistance to erosion. Under the influence
of factors like river channel scouring, slope excavation, and agricultural irrigation, the
stability of sloping soil masses has been compromised and soil strength weakened, which
has consequently induced numerous landslides, collapses, and other geological disasters.
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3. Materials and Methods
3.1. Data Source and Data Preparation

Two scenes of high-resolution remote sensing imagery covering Xining City were
utilized in this study, acquired by the Gaofen-2 satellite on 8 February 2019 and 1 March
2022 (Row 145–149, Path 38–40). The spatial resolution is 1 m panchromatic and 4 m
multispectral for these images. Digital elevation model (DEM) data were sourced from
the 30 m resolution global DEM acquired by the Advanced Land Observing Satellite
“ALOS-1”. Based on the DEM, the slope, aspect, and curvature were derived for the
study area. Additionally, the relative slope position (RSP) and topographic wetness index
(TWI) factors were computed from the DEM using SAGA GIS software (7.6.2, SAGA-GIS,
Hamburg, Germany). Based on the basic geological background information provided by
the 1:200,000 geological map combined with the GF-2 remote sensing imagery, the faults
and lithologies in the study area were deciphered using remote sensing interpretation
and field investigation methods [28,29]. Road data were sourced from the OpenStreetMap
platform, and the distances from roads, water systems, and faults were generated based
on the ArcGIS software (10.8.2, Esri, California, United States) platform. Precipitation
data were obtained from the China Meteorological Data Network (http://data.cma.cn)
(accessed on 2 December 2022).

3.2. Evaluation Method for Landslide Susceptibility
3.2.1. Frequency Ratio

The frequency ratio (FR) is a statistical method that is simple to implement with
accurate results; it is widely used in landslide susceptibility mapping and highly compatible
with GIS technology [30–34]. An FR of 1 is the average value from the ratio of the area
where landslides occurred to the total area. If the probability value is greater than 1, there
is a greater susceptibility for landslides and vice versa [30]. The FR model determines
the probability of landslide occurrence within different classification intervals for each
landslide susceptibility assessment factor, thereby quantifying the influence of each factor
on landslides [19]. The formula for calculating the FR is as follows:

FR =
n

∑
i=1

(
Ni/N

Si/S

)
(1)

where:

FR–frequency ratio of a certain unit in the research area (/);
n–the number of categorized intervals for evaluating factors (/);
Ni–number of mapping units containing landslide inventory points in the ith class of the
factor (/);
N–the total number of units with distributed disaster points (/);
Si–the area of the ith class for the factor (km2);
S–the total area of the study area (km2).

3.2.2. Random Forest

Random forest (RF), originally proposed by Breiman [35], is an ensemble learning
method that constructs multiple decision trees for classification. The RF algorithm employs
bootstrap sampling to randomly select k training subsets, with replacements from the
original training set equal in size to the original sample. Decision trees are fitted on
each of the k samples to obtain k classification results. Final predictions are obtained by
majority vote of the k decision tree outputs for each record, giving the optimal classification.
The random forest model demonstrates robustness to noise and outliers, especially when
dealing with very large sample sizes [36,37]. For landslide identification and susceptibility
assessment, the RF algorithm has shown strong performance and has been widely utilized
by researchers in related studies [38,39].

http://data.cma.cn
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3.2.3. Artificial Neural Networks

Artificial neural networks (ANN) are inference models established on the basis of mim-
icking the functions and neural system of the human brain [40]. Their structure consists of
three parts: an input layer, a hidden layer, and an output layer. They possess powerful capa-
bilities for nonlinear processing. This paper utilizes a multilayer perceptron neural network to
conduct landslide susceptibility assessment. The basic idea is as follows: Landslide influenc-
ing factors are used as input neurons. Different neurons are interconnected via weights that
propagate to the output layer. The weight calculation is expressed as Formula (2) [41]:

yi = f
(
∑i Wij + bj

)
(2)

where:

Wij–the weight connecting neuron i and neuron j (/);
bj–the bias term (/);
f –the activation function (/).

3.2.4. Support Vector Machine

The support vector machine (SVM) is a nonlinear classification and regression machine
learning method proposed by Cortes and Vapnik in 1995 [42]. The principle is structural
risk minimization with a theoretical basis in statistical learning theory. The SVM maps
the input variables from the original space to a higher dimensional feature space through
various kernel functions in order to find the optimal separating hyperplane. The SVM
model has strong generalization abilities and fast convergence rates when dealing with
high-dimensional data of small samples [20,24] and has been widely applied in landslide
susceptibility assessment. This model is mainly influenced by the kernel width (γ) and
regularization (C) parameters. The grid search method is used to obtain the optimal
parameters γ and C, which are 2 and 0.4, respectively.

In the Python environment, the frequency ratio (FR) values of each evaluation factor
in the sample dataset were input into the RF, ANN, and SVM machine learning algorithms
with optimal parameters to make predictions and construct FR-RF, FR-ANN, and FR-SVM
models to calculate landslide susceptibility indexes.

3.3. Method for Verifying the Accuracy of Evaluation Models

In order to compare the above methods, this paper selects the confusion matrix,
accuracy, kappa coefficient, and area under the receiver operating characteristic curve
(AUC) to evaluate model performance [43–45].

3.3.1. Confusion Matrix

The confusion matrix is a matrix that measures the prediction performance of classifi-
cation models, presenting algorithm performance in the most fundamental and intuitive
way [46]. It contains the number of samples that are correctly or incorrectly classified for
each category (Table 1). TP (true positive) means correctly predicting positive samples as
positive, FN means false negative, indicating incorrectly predicting positive samples as
negative, FP (false positive) means incorrectly predicting negative samples as positive, and
TN (true negative) means correctly predicting negative samples as negative.

Table 1. Confusion matrix.

Predicted Landslide Predicted Nonlandslide Sum

Actual landslide TP FN TP + FN
Actual nonlandslide FP TN FP + TN

Sum TP + FP FN + TN TP + FN + FP + TN
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3.3.2. Kappa Coefficient

The kappa coefficient aims to test whether the model prediction results are consistent
with the actual classification results for classification problems. The calculation depends on
the confusion matrix, and the calculation formula is as follows [47]:

k =
po − pe

1 − pe
(3)

where:

Po–the sum of the number of correctly classified samples in each class divided by the total
number of samples (/).

Po is also the overall classification accuracy. Assuming the true number of samples in
each class is a1, a2. . .am and the predicted number of samples in each class is b1, b2. . .bm,
with a total of n samples. The formula for Pe is

pe =
a1b1 + a2b2 + · · · ambm

n2 (4)

3.3.3. Receiver Operating Characteristic (ROC)

The receiver operating characteristic (ROC) curve is a method to quantitatively evalu-
ate the prediction accuracy of binary classification models [48]. The method uses a series of
true positive rates (TPRs) and false positive rates (FPRs) to plot the curves and calculates
the area outside the curve (AUC) to assess the predictive accuracy of the model. When the
classification threshold is changed, the classification result of the model changes, which
affects the TPR and FPR of different models for different landslide classes. When the
classification threshold is lowered, it means that the model correctly identifies landslide
units more frequently, which will result in an increase in the TPR and FPR. On the contrary,
when the threshold is increased, it leads to a decrease in TPR and FPR. Therefore, TPR and
FPR are calculated by constantly changing the classification thresholds to plot the ROC
curves, from which the AUC results are calculated.

4. Construction of Landslide Susceptibility Evaluation System
4.1. Optical Remote Sensing Interpretation of Landslides

Based on Gaofen-2 satellite image data and historical imagery data from Google Earth,
landslides in Xining City were visually interpreted. Combining the planar morphology,
topographic conditions, and tone and texture characteristics of landslides in the optical
imagery, the boundaries of landslides in the study area were preliminarily delineated.
We synthesized field investigation data and deleted wrongly interpreted points (human
engineering activities, surface erosion); a total of 242 landslides were delineated, with a
total area of 2.97 km2. The scale of these landslides is mainly small- and medium-sized,
and the spatial distribution of landslides is shown in Figure 4.

4.2. Extracting Slope Elements Based on the r.slopeunits Method

The evaluation unit is the basis for regional landslide stability assessment, with similar
geological and geomorphological characteristics within the same evaluation unit. The slope
unit is the basic geomorphological unit for landslide occurrence. This study takes the slope
unit as the basic mapping unit for regional landslide susceptibility assessment and extracts
slope units using the r.slopeunits method [49,50]. This method is based on the GRASS GIS
platform and uses iterative and adaptive algorithms. By inputting DEM, plain data, flow
accumulation area threshold (t), minimum slope unit area, and other parameters, slope
units were obtained. A total of 2072 slope units were calculated in the study area, and the
distribution of slope units is shown in Figure 5.
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4.3. Establishment of Susceptibility Evaluation Index

Landslides are the product of the combined effects of multiple factors including
geology, geomorphology, climate, etc. Selecting suitable factors is the key to establishing
a landslide susceptibility assessment. Based on previous research [8,10,20,51] and the
actual conditions of the study area, nine factors were selected to construct the landslide
susceptibility assessment index system, including slope, aspect, curvature, topographic
wetness index (TWI), relative slope position (RSP), lithology, distance to faults, distance to
rivers, and distance to roads. Among them, aspect, curvature, and lithology are discrete
types, and the other factors are continuous (Figure 6). It is noteworthy that for the loess area,
rainfall is an important factor in triggering landslides. It is undeniable that precipitation
is a significant triggering factor for landslide development. The seasonal distribution of
precipitation in Xining City is highly uneven, making the region susceptible to heavy
rainfall, which in turn reduces slope stability and increases the likelihood of landslide
occurrences. Considering the conditions required for precipitation, most precipitation
events typically have a wide spatial extent. However, due to the limited size of our study
area, covering only 490 km2, and the relatively minor spatial variability in precipitation, it
has therefore not been included as an evaluation criterion in our study.
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4.4. Identification of Landslide and Nonlandslide Samples

Landslide susceptibility was assessed in Xining City based on the FR-RF, FR-ANN,
and FR-SVW models. This study examined cases where the landslide area as a percentage
of the slope unit area was greater than 1%, 2%, and 3%, respectively. Since the landslides in
the study area were dominated by small- and medium-sized landslides, by comparing with
the actual situation in the study area, it was found that the 275 slope units with landslides
obtained are the best landslide units when the proportion of landslide area to the area of the
slope unit is 1%. The establishment of the location of landslide and nonlandslide samples
based on slope units affects the calculation of the frequency ratio model. By comparing the
magnitude of the frequency ratios, it is possible to determine which features are strongly
correlated with landslide occurrence, which in turn affects the calculation of the landslide
susceptibility index. The nonlandslide samples were randomly selected within the very-
low- and low-landslide-susceptibility zones constructed by the frequency ratio model. In
the landslide and nonlandslide sample datasets, 70% of the data were used to construct the
RF, ANN, and SVW models, and 30% were used for model testing. The specific distribution
of the sample sets is shown in Figure 7.
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5. Result
5.1. Prediction Results and Analysis of Landslide Susceptibility Class in Xining City

Based on FR-RF, FR-ANN, and FR-SVM models, landslide susceptibility indices were
calculated and obtained, respectively, and the results are shown in Figure 8. In addition,
when extracting slope units, areas with a slope less than 5◦ were delineated as flat ground,
which were identified as very-low-susceptibility areas.
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Figure 8. Distribution of landslide susceptibility classes based on three models: (a) FR-SVM;
(b) FR-RF; (c) FR-ANN.

The overall spatial distribution of landslide susceptibility classes in Xining City is
basically consistent. The high-susceptibility areas obtained from all three models are mostly
distributed in the northern part of Chengdong District and eastern part of Chengbei District,
especially in the transitional zones between the Huangshui Valley and the mountains.
The lithology in these areas is dominated by mudstone, sandstone, and gypsum, with
interbedded structures. In areas with abrupt topographic changes and dramatic slope
increases, the influence of rainfall and groundwater can form weak structural surfaces and
induce landslides. Moderate-susceptibility areas are mainly distributed surrounding the
high-susceptibility areas, mostly concentrated in Chengbei, Chengxi, and Chengzhong
districts. Low-susceptibility areas are mainly concentrated on both sides of the Huangshui
River valley.

In order to verify the results of landslide susceptibility distribution obtained based on
the three models, we counted the number of landslide sites within the range of the four
landslide susceptibility classes and calculated the percentage of the number of landslides
within each class, and the results are shown in Table 2. It can be seen that 56.61%, 66.12%,
and 60.74% of the landslides are distributed in the high-susceptibility zone, and 30.58%,
21.49%, and 27.69% of the landslides are distributed in the medium-susceptibility zone
based on the FR-RF, FR-ANN, and FR-SVM models, respectively. It can be seen that more
than 87% of the landslides are distributed in the medium- and high-susceptibility zones,
which indicates that the prediction results of landslide susceptibility classes based on the
three machine learning models are basically consistent with the actual situation, which also
provides a reliable database for landslide disaster risk prevention.

Table 2. Percentage of the number of landslide points in the range of four susceptibility classes.

Susceptibility Classes
FR-SVM FR-RF FR-ANN

Number Percentage/% Number Percentage/% Number Percentage/%

Very low susceptibility 0 0 0 0 0 0
Low susceptibility 31 12.81 30 12.40 28 11.57

Moderate susceptibility 74 30.58 52 21.49 67 27.69
High susceptibility 137 56.61 160 66.12 147 60.74

5.2. Analysis of Differences in Landslide Susceptibility Classes

The landslide susceptibility class results were obtained based on FR-RF, FR-SVM,
and FR-ANN models, and then we counted the area and percentage of different landslide
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susceptibility classes, as shown in Table 3.The high-susceptibility area predicted by the
FR-RF model has an area of 65.80 km2, accounting for 15.48% of the total study area, with a
landslide area of 2.18 km2 accounting for 76.64% of the total landslide area and a landslide
density of 3.32 km2/100 km2. The moderate-susceptibility area has an area of 99.18 km2,
accounting for 23.33% of the total study area, with a landslide area of 0.56 km2 accounting
for 19.66% of the total landslide area and a landslide density of 0.56 km2/100 km2.

Table 3. Analysis of the results of different evaluation models’ susceptibility partitioning.

Evaluation
Model

Landslide
Susceptibility Grades

Area
(km2)

Areal
Percentage (%)

Landslide Area
(km2)

Proportion of
Landslide Area (%)

Landslide Density
(/100 km2)

FR-RF

Very low susceptibility 187.63 44.13 0 0 0
Low susceptibility 72.52 17.06 0.11 3.70 0.15

Moderate susceptibility 99.18 23.33 0.56 19.66 0.56
High susceptibility 65.80 15.48 2.18 76.64 3.32

FR-ANN

Very low susceptibility 190.92 44.90 0 0 0
Low susceptibility 70.81 16.65 0.15 5.21 0.21

Moderate susceptibility 104.12 24.49 0.85 29.96 0.82
High susceptibility 59.37 13.96 1.85 64.83 3.11

FR-SVM

Very low susceptibility 189.74 44.62 0 0 0
Low susceptibility 75.06 17.65 0.18 6.36 0.24

Moderate susceptibility 105.28 24.76 0.91 32.09 0.87
High susceptibility 55.14 12.97 1.75 61.55 3.18

Compared with the FR-RF model, the high-susceptibility area predicted by the FR-
ANN model has an area of 59.37 km2, accounting for 13.96% of the total study area, with a
landslide area of 1.85 km2 accounting for 64.83% of the total landslide area and a landslide
density of 3.11 km2/100 km2. The moderate-susceptibility area has an area of 104.12 km2,
accounting for 24.49% of the total study area, with a landslide area of 0.85 km2 accounting
for 29.96% of the total landslide area and a landslide density of 0.82 km2/100 km2.

The FR-SVM model has the smallest high-susceptibility area of 55.14 km2, with a
landslide area of 1.75 km2 accounting for 61.55% of the total landslide area and a landslide
density of 3.18 km2/100 km2. The moderate-susceptibility area has an area of 105.28 km2,
accounting for 24.76% of the total study area, with a landslide area of 0.91 km2 accounting
for 32.09% of the total landslide area and a landslide density of 0.87 km2/100 km2.

In addition, since the valley plains in the study area are vast with a small probability
of landslide occurrence, the very-low- and low-susceptibility areas account for the highest
proportion of around 60% in the three coupled models.

6. Discussion
6.1. Verification of Prediction Accuracy of Different Models

As shown in Figure 9, when using the three coupled models to predict landslide
susceptibility, the obtained AUC values are all greater than 0.8, indicating that the models
in this study have good spatial prediction capabilities and accuracy. Among them, the
FR-RF model has the maximum AUC value of 0.863, followed by the FR-ANN model with
an AUC of 0.839, while the FR-SVM model has the minimum AUC value of 0.825.

Figure 10 shows the confusion matrix for each model in the test set, where TPR, FNR,
FPR, and TNR refer to true positive rate, false negative rate, false positive rate, and true
negative rate, respectively. As shown in Figure 10a, the confusion matrix for the FR-RF
model has a TPR of 84%, FNR of 16%, FPR of 20%, and TNR of 80%. The calculated
accuracy and kappa coefficient are 0.825 and 0.649, respectively. The confusion matrix for
the FR-ANN model has a TPR of 81%, FNR of 19%, FPR of 23%, and TNR of 77%. The
calculated accuracy and kappa coefficient are 0.793 and 0.586, respectively (Figure 10b). As
shown in Figure 10c, the confusion matrix for the FR-SVM model has a TPR of 79%, FNR of
21%, FPR of 25%, and TNR of 75%. The calculated accuracy and kappa coefficient are 0.773
and 0.545, respectively. The above analysis shows that among the three coupled models,
the FR-RF model has the highest kappa coefficient, accuracy, and AUC, indicating it has
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the best fitting performance in this study and superior prediction capability compared to
the other models.
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6.2. Research on Landslide Susceptibility Evaluation Units and Evaluation Models

In the context of selecting assessment units, we introduced slope units as the assess-
ment units. Assessment units play a pivotal role as carriers of landslide disaster-related
information, and their selection fundamentally shapes the spatial scope of the assessment.
Variations in the chosen assessment units can exert pronounced influences on both the
computational efficiency and the accuracy of assessment outcomes. In existing studies
on landslide susceptibility assessment, some scholars conducted research using the scales
of rectangular grids, irregular grids, and administrative units [52,53].With the deepening
of research, the methods for determining assessment units were continuously improved,
including grid units, geomorphic units, slope units, and watershed units [54]. Through a
literature review, it was found that current studies on landslide susceptibility assessment
are mainly based on grid units and slope units [55,56].

The evaluation of landslide susceptibility based on grid units is more convenient in
terms of data acquisition and processing. However, it is essential to acknowledge that the
resolution of grid units directly impacts the quantity of grid cells, consequently influencing
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the determination of an appropriate landslide sample size across distinct intervals of
evaluation factors. This approach, based on grid units, may lead to a partial disconnection
between landslide occurrences and their underlying geological and geomorphic conditions.
Slope is the basic condition for the development of landslides, and the geological lithology,
topography, and other conditions within the same slope unit are basically the same [53].
Hence, we chose to employ the r.slopeunits method, embracing slope units as the primary
evaluation units for our landslide susceptibility research, which is closely combined with
the actual terrain and geology, making the evaluation results closer to reality.

With the development of machine learning models, the problem of data overfitting
has been gradually overcome, and they have shown outstanding performance in dealing
with nonlinear relationships and generating optimal features. As a result, machine learning
models are widely applied in landslide susceptibility assessment research [5,37,43]. This
study coupled the FR model with three models—RF, ANN, and SVM—and conducted
relevant research based on the FR-RF, FR-ANN, and FR-SVM models. Comparing the
evaluation results and accuracy verification of the three models, it was found that although
the spatial distributions of landslide susceptibility classes obtained by the three models were
quite different, the general distribution patterns were consistent. The FR-RF model yielded
the largest high-susceptibility area, accounting for about 15.48% of the study area. The
high-susceptibility areas obtained by FR-ANN and FR-SVM were more similar, accounting
for 13.96% and 12.97%, respectively. In terms of model accuracy, the area under the curve
(AUC) values followed the descending order of FR-RF > FR-ANN > FR-SVM. In summary,
while all three models can adequately characterize the regional landslide susceptibility,
the FR-RF model demonstrated superior performance in computational efficiency and
assessment result accuracy, making it more suitable for landslide susceptibility assessment
research in regions with similar geographical environments.

In this study, we used machine learning models, including FR-RF, FR-ANN, and
FR-SVM, for landslide susceptibility assessment based on data from Gaofen-1 remote
sensing imagery and Google Earth platforms, as well as a comprehensive analysis of
field surveys in the loess area of Xining City. By comparing the performance of different
models, we arrived at the conclusion that the FR-RF method has more potential in landslide
risk assessment, which can help decision makers better understand landslide risk and
take appropriate measures. Furthermore, our study serves as a stepping stone for future
investigations in loess regions, potentially igniting further exploration and innovation in
the field of landslide susceptibility assessment. However, it is undeniable that our study
still has certain deficiencies. Given the relatively small size of our study area, we did not
incorporate precipitation as a contributing factor in our assessment. Moving forward, it is
imperative to place heightened emphasis on the influence of precipitation and groundwater
levels on landslide occurrences in our future research endeavors. In addition, we will
combine more remote sensing data, such as InSAR data, to further carry out the study of
landslide deformation monitoring and landslide susceptibility assessment in the Loess
Plateau region so as to provide a more comprehensive scientific basis for the prevention
and control of landslide disasters in the Loess Plateau region.

7. Conclusions

In the Loess Plateau, landslide disasters occur frequently. In this paper, taking Xin-
ing City as an example, based on GF-1 high-resolution remote sensing images and the
Google Earth platform combined with a field survey, a total of 242 landslide disasters were
delineated in the study area. Slope units were then extracted as evaluation units based
on the r.slopeunits method. Landslide susceptibility assessment of the study area was
carried out based on FR-RF, FR-ANN, and FR-SVM models, and finally, the prediction
results and prediction accuracy of different machine learning models were compared and
analyzed. Our experimental results show that the three machine learning models exhibit
good performance in landslide susceptibility evaluation and provide strong support for
landslide risk management in the study area. We believe that this study is of significant and
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important value not only for Xining City but also for other areas with similar geographic
environments. The conclusions are as follows:

(1) The overall spatial distribution of landslide susceptibility levels in Xining City is
consistent, but there are significant differences between different landslide suscep-
tibility categories. The high-susceptibility areas are mainly concentrated in the
plain–mountain transitional areas in the eastern and northern urban districts of
Xining City. The medium-susceptibility areas are distributed surrounding the high-
susceptibility areas, while the low-susceptibility areas are relatively small. The very-
low-susceptibility areas are the largest, with the central plain areas of the region all
classified as very-low-susceptibility areas.

(2) The high-susceptibility area predicted by the FR-RF model is the largest, reaching
65.80 km2 and accounting for 15.48% of the total study area. Compared with the
FR-RF model, the prediction results of the FR-ANN and FR-SVM models are more
similar, with predicted areas of 59.37 km2 and 55.14 km2, accounting for 13.96% and
12.97% of the total area, respectively.

(3) The AUC of the FR-RF model, FR-ANN model, and FR-SVM model in predicting
landslide susceptibility is greater than 0.8, indicating that the three coupled models
have excellent spatial prediction ability and accuracy. The accuracy verification results
show that the prediction ability of landslide susceptibility is in the following order: FR-
RF model > FR-ANN model > FR-SVM model. This indicates that in loess areas with
similar geographical environments, the FR-RF model is more suitable for landslide
susceptibility assessment based on slope units.
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