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Abstract: Machine learning techniques are a widespread approach to monitoring and diagnosing
faults in electrical machines. These techniques extract information from collected signals and classify
the health conditions of internal components. Among all internal components, bearings present the
highest failure rate. Classifiers commonly employ vibration data acquired from electrical machines,
which can indicate different levels of bearing failure severity. Given the circumstances, this work
proposes a methodology for detecting early bearing failures in wind turbines, applying classifiers that
rely on Hjorth parameters. The Hjorth parameters were applied to analyze vibration signals collected
from experiments to distinguish states of normal functioning and states of malfunction, hence
enabling the classification of distinct conditions. After the labeling stage using Hjorth parameters,
classifiers were employed to provide an automatic early fault identification model, with the decision
tree, random forest, support vector machine, and k-nearest neighbors methods presenting accuracy
levels of over 95%. Notably, the accuracy of the classifiers was maintained even after undergoing
a dimensionality reduction process. Therefore, it can be stated that Hjorth parameters provide a
feasible alternative for identifying early faults in wind generators through time-series analysis.

Keywords: wind generator; vibration signal; bearing; Hjorth parameters; early fault diagnosis

1. Introduction

Due to increased prices during the COVID-19 epidemic, renewable energy production
has grown substantially, and the Russian invasion of Ukraine emphasized the energy
situation. Between 2023 and 2027, the wind energy market, one of the most representative
sources for renewable energy generation, is projected to expand by around 15% annually,
increasing by 680 GW of installed capacity, of which 130 GW is expected from offshore
plants [1]. In offshore wind farms, which can generate 1.7 times more electricity than
commercial wind turbines [2], 25% to 50% of the total generation costs are due to operation
and maintenance expenses [3]. Among the components that make up a wind turbine, the
generator and electrical system have the highest failure rate, accounting for 35% of failures
in offshore wind farms and 25% in onshore wind farms [2].

Electrical machinery is susceptible to mechanical and electrical failures, with me-
chanical failures accounting for 45–55% and electrical failures accounting for 35–40% of
equipment shutdowns [4]. The percentage of failures in electrical machine components
was described in [5] as follows: (i) 41% were caused in bearings; (ii) 37% in stators; (iii) 10%
in rotors; and (iv) 12% by other issues.

Among all components, the bearing is responsible for the majority of machine failures.
According to [4,6], some of the causes of bearing failure are: (i) rotor vibration induced by
output torque; (ii) improper assembly; (iii) the deterioration of lubricating fluid; (iv) heat
conduction from rotor friction; and (v) friction and contamination.
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The bearing is a critical component that supports the shaft of the electrical machine,
which plays the role of the generator in wind turbines and is used in other systems, such
as transmission and turbine adjustment, supporting large loads and operating in harsh
conditions [7]. In response to the high incidence of bearing failure and high-altitude instal-
lation, methods for monitoring bearing health conditions have been developed to minimize
the expenses associated with maintenance costs and unexpected equipment downtime [8].
Monitoring methods use vibration, acoustic emission, oil analysis, temperature, and other
factors to assess failure occurrences [9].

Vibration-based monitoring techniques are reported to be more effective for the identi-
fication of mechanical faults [4,10,11], and they can detect changes in component behavior,
with vibration signal amplitude representing the severity of the failure [12]. This method
is non-invasive because sensors can be installed on the equipment casings to monitor
internal components. For example, the internal bearings of a generator can be monitored
without the bearing being directly beneath it. However, low-frequency detection issues are
limited [3].

Monitoring approaches use signal processing in the time, frequency, or time–frequency
domains. Time-domain analysis examines signal variations in a time series using statistical
signal information. Frequency-domain analysis examines time series to determine the
frequencies present in a given signal. Time–frequency domain analysis combines the
two prior techniques, simultaneously analyzing both domains to create a two-dimensional
study of the signal [13].

Bearing monitoring and fault detection can be performed using machine learning
and domain-specific data. The implemented classification models can either use attributes
extracted from the signals along with the class to which the sample belongs, or they
can solely utilize the extracted attributes and seek similarity among the samples. The
performance of classifiers can be affected by the quantity of data presented to the model,
and dimensionality reduction can be implemented to reduce the complexity of the problem,
potentially enhancing the classifier performance [14]. In [15], for example, the authors
selected optimal signal features for bearing classification through a genetic algorithm
and validated the method using the decision tree (DT), random forest (RF), and k-nearest
neighbors (k-NN) classifiers. Classification models require a large amount of data for
training and validation, which can come from simulation or experimental signals.

Significant studies involving bearing failure have adopted the dataset provided by
Case Western Reserve University (CWRU), where bearing failures were introduced through
electrical pitting corrosion and signals were already labeled considering the bearing’s health
state at the time of data gathering [16,17]. Other studies in the literature have employed
bearings with manually inserted faults, as seen in [18,19], where bearing structures were
subjected to manual cutting or grinding to collect data.

The dataset provided by the Center for Intelligent Maintenance Systems (IMS) recorded
the temporal evolution of vibration signals up to bearing failure without labeling the
samples [20]. In this scenario, Hjorth parameters offer a time-domain alternative tool for
revealing non-linear and time-varying behavior. They also provide a lower processing
complexity than frequency and time–frequency analysis approaches. When just their
temporal evolution is available, Hjorth parameters can label vibration signals.

Bo Hjorth [21] created the Hjorth parameters in 1970 to analyze electroencephalogram
signals, and they were later applied to rolling vibration signals [22]. Assuming that all
subsequent signals acquired were from faults, they proved to be an effective method
for estimating the point at which the degeneration of bearings became detectable by the
vibration sensor.

Early-stage fault detection is critical due to the high demand for monitoring and
detecting problems in electrical machines to prevent unexpected shutdowns. Therefore,
this paper proposes a novel method for detecting defects in their early stages. This method
analyzes the Hjorth parameters to determine when the bearing fault occurs, allowing
the creation of labels for unlabeled datasets and enabling the development of supervised
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machine learning classification models. The proposed method provides the classifier with
time-domain data to detect problems in their earliest stages in wind turbine generator
bearings due to the high failure rate and maintenance costs.

Considering the novelty of employing Hjorth’s parameters for fault diagnosis and
incorporating features in the time domain, the study is organized as follows. Section 2
explains the methodology proposed for the present study. The experimental dataset used
to validate the proposed method is presented in Section 3. The results are discussed in
Section 4, and the conclusion is presented in Section 5.

2. Methodology

This study used vibration signals acquired by the Center for Intelligent Maintenance
Systems (IMS) at the University of Cincinnati, previously utilized in [20]. Figure 1 depicts
the flowchart of the method proposed in this work.

(a) Vibration signal
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(b) Hjorth's parameters (c) Signal separation
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Figure 1. Flowchart of the methodology.

As shown in Figure 1, the method comprised two main stages, with the first one
represented by the “Signal separation using Hjorth’s parameters” block, where the analysis
was performed using Hjorth’s parameters to determine the time instant at which the fault
occurred, allowing the labeling of samples for their use in supervised learning approaches.
The second stage, represented by the “Feature engineering and machine learning” block in
Figure 1, consisted of extracting time-domain attributes from the signals, as described in
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Section 2.2, and the quality of these attributes was evaluated. For feature extraction, the
implemented classifiers had their hyperparameters tuned through a grid search, aiming
to find the topology with the best performance [23]. A dimensionality reduction was also
performed to reduce possible noise and redundancy, in an attempt to improve the efficiency
of the classifiers [14]. The classifiers were trained with the best identified hyperparameters
and features, performance metrics were evaluated, and training and classification time
were computed.

2.1. Hjorth’s Parameters

Non-linear bearing degeneration occurs within the time series. Consequently, offline
approaches or techniques can be used to detect signal variations. On the other hand,
monitoring and failure detection should be performed online, allowing maintenance before
bearing collapses.

Bo Hjorth developed the Hjorth parameters in 1970 [21] to evaluate electroencephalo-
gram (EEG) signals, allowing signal analysis to be conducted without the Fourier transform.
Since the Hjorth parameters are less complex to compute than the Fourier transform, they
can be used for online monitoring and fault detection. The mathematical components of
the Hjorth parameters are activity, mobility, and complexity [21].

• Activity is defined as the zeroth-order spectral moment (m0), given by Equation (1),
and is expressed by the variance (σ2) of the signal amplitude (y), representing the
surface envelope of the power spectrum in the time domain.

Activity = m0 = σ2(y) (1)

• Mobility represents the second-order spectral moment (m2), expressed by Equation (2),
as the square root of the ratio between the variance (σ2) of the first-order derivative of
the signal (ẏ) and the variance of the signal. A measure of the standard deviation of
the slope compared to the standard deviation of the amplitude is established, often
known as the mean frequency.

Mobility = m2 =

√
σ2(ẏ)
σ2(y)

=
σ(ẏ)
σ(y)

(2)

The fact that mobility is a slope measure relative to the mean makes it dependent
solely on the waveform shape.

• Complexity is given by the fourth-order spectral moment (m4), defined by Equation (3),
as the square root of the ratio between the variance (σ2) of the second-order derivative
of the signal amplitude (ÿ) and the variance of the first-order derivative of the signal.
A measure of the similarity of the waveform under study to a sinusoidal wave is
established, expressing a change in the frequency of the analyzed signal.

Complexity = m4 =

√
σ2(ÿ)
σ2(ẏ)

(3)

Using the Hjorth parameters, signal division can be performed by determining the
point at which activity and mobility increase suddenly, indicating an increase in signal
magnitude and average frequency [22].

The complexity will reduce significantly, reaching close to 1, which indicates that
the signal is comparable to a sinusoidal wave. When the Hjorth parameters display the
characteristics mentioned above, the point in time represents the border splitting the
samples into healthy and faulty ones. Section 4.1 will present the signal separation in
more detail.
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2.2. Feature Engineering and Machine Learning

The features were calculated from each vibration signal labeled based on the Hjorth
parameters related to the motor health status. Each vibration signal from the CWRU dataset
was acquired at a sampling rate of 20.48 kHz, with a duration of one second. Each vibration
signal and motor health status label comprised an instance of the dataset for training the
classifiers. The stages of feature extraction from vibration signals and the classification
techniques adopted in this study are presented in this subsection.

2.2.1. Feature Extraction

MATLAB software (R2023a) was used to extract features in the time domain. The
following values were extracted from the vibration signals with a duration of 1 s, according
to Equations (4) to (13): standard deviation (STD), root mean square (RMS), skewness
(SKW), kurtosis, peak value (Vp), waveform length (WL), crest factor (CF), factor K (FK),
impulse factor (IF), and form factor (FF).

• The standard deviation (STD) is given by Equation (4), where N represents the number
of points composing the signal, X̄ represents the mean value of the signal amplitude,
and Xi is the amplitude of the signal at point i, with the SDT being a measure of data
dispersion around the mean value.

STD =

√√√√ 1
N

L

∑
i=1
|Xi − X̄|2 (4)

• The root mean square (RMS) is expressed by Equation (5), quantifying the average
power contained in the signal, serving as a metric for detecting vibration levels yet
not being sensitive to early-stage faults.

RMS =

√
∑N

i=1 X2
i

N
(5)

• The skewness (SKW) assesses how far the signal distribution deviates from a normal
distribution, and faults can lead to an increase in signal skewness, as expressed by
Equation (6).

SKW =
1
L ∑L

i=1 |Xi − X̄|3(√
1
L ∑L

i=1 |Xi − X̄|2
)3 (6)

• Kurtosis is a measure of the data concentration around the central tendency measures
of a normal distribution, given by Equation (7).

Kurtosis =
1
L ∑L

i=1 |Xi − X̄|4(
1
L ∑L

i=1 |Xi − X̄|2
)2 (7)

• The peak value (Vp) checks for the highest absolute value of the signal, given by
Equation (8), where X represents the signal amplitude, and an increase in its value
may indicate the occurrence of faults.

Vp = |max(X)| (8)

• The waveform length (WL) provides information about the signal frequency, calculated
by Equation (9), where P represents the number of signal points and |xi+1 − xi|
represents the difference between the amplitude of the current sample i and that of
the next sample.
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WL =
P

∑
i=1
|xi+1 − xi| (9)

• The crest factor (CF) aims to overcome the limitation encountered by the RMS value
for sensitivity to early-stage faults, expressed by Equation (10), which is the division
of the peak value by the RMS value.

CF =
Vp

RMS
(10)

The peak value has a greater sensitivity to early-stage faults, but as the fault progresses,
the RMS value increases faster than the peak value, causing the CF value to decrease
in the later stages.

• The factor K (FK) aims to combine the sensitivity of the peak value for early-stage
faults and the sensitivity of the RMS value for later-stage fault detection. It is expressed
as the product of the two metrics, as in Equation (11).

FK = Vp · RMS (11)

• The impulse factor (IF) compares the maximum value of the signal to the signal’s
mean and is expressed by Equation (12), where X̄ represents the signal’s mean value.

IF =
Vp

X̄
(12)

• The form factor (FF), given by Equation (13), is defined as the ratio between the RMS
value and the mean value of the signal, becoming dependent on the signal’s shape
and independent of the signal’s dimensions.

FF =
RMS

X̄
(13)

Before being incorporated into the classification models, the above characteristics were
subjected to exploratory data analysis to identify absent values.

The parameter ranges varied because of the nature of the calculation and the infor-
mation they conveyed. Consequently, the data were normalized using min–max normal-
ization [24], depicted in Equation (14), where Xmax and Xmin represent the maximum and
minimum values from the data, respectively, and Xi represents the value from the data
to be normalized. This procedure normalized the parameters to values between 0 and 1,
yielding a more accurate representation of the data. The normalized data were used to
investigate the correlation between variables and for categorization.

Xin =
Xi − Xmin

Xmax − Xmin
(14)

2.2.2. Machine Learning

In this work, five machine learning classifiers were employed for the supervised
learning of two target classes: healthy and faulty machine conditions. The time-domain
features described in Section 2.2.1 were calculated using the Hjorth parameters, and the
separation from the Hjorth observation comprised the target feature. The classifiers that
were used in this work were:

1. Logistic regression (LR) is a statistical method for binary classification that employs
input variables to calculate the probability of an event occurring. Utilizing the logistic
function to convert values to probabilities ranging from 0 to 1, LR is useful for
categorical and binary classification problems [25].

2. Decision tree (DT) is a method that predicts outcomes by generating a tree-like
structure of decisions based on input features. It divides data into subsets recursively,
beginning with the root node, using features that best separate between classes.
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Leaf nodes represent the result of the predictions. DTs are interpretable, applicable
to different fields, and facilitate the hierarchical visualization of decision-making
processes [26].

3. Random forest (RF) is a DT ensemble-based classification method. Since the decision
trees in the RF are generated independently from random samples, there is a low
association between the trees. Afterward, voting takes place using the classifications
generated by each tree, and the class with the most votes is used to predict the
presented sample [27].

4. The support vector machine (SVM) algorithm searches for the optimal hyperplane
for class separation, and various hyperplanes can be used to divide classes [28].
Nonetheless, the optimal hyperplane is determined by utilizing the most similar
samples between the classes, which are the coordinates from which the support
vectors are derived. The objective is to maximize distances in both directions to
identify the hyperplane with the most significant separation, providing superior
generalization [29].
SVM can classify datasets that are not linearly separable by utilizing a kernel that de-
termines the relationship between higher-dimensional data to identify the separability
plane [30].

5. The k-nearest neighbors (k-NN) classifier is based on the distance between the new
sample to be classified and the other samples. The class of the new sample is deter-
mined by the majority class among the nearest neighbors. The parameter k specifies
the number of closest points (neighbors) observed during classification, where small k
values can lead to less stable results. In contrast, larger k values produce more stable
results with increased errors. The Euclidean, Manhattan, or Minkowski functions can
compute the distance between points [31].

The hyperparameters of the constructed classification models significantly impacted
how each model carried out the learning process and, as a result, its classification perfor-
mance. Due to the significance of establishing hyperparameters that provided the highest
performance, a grid search [32] was utilized to determine the optimal configuration for
each implemented classifier by examining a variety of existing hyperparameters.

The number of features presented to a classifier and the hyperparameters immediately
affect the classifier’s performance [33]. Depending on the correlation between the variables,
insufficient features can hinder the performance of a classifier. In addition, excessive
information can result in redundancy or a heightened sensitivity to noises in the model [34].

An increase in the amount of data to be processed increases the computational com-
plexity a model, generates a higher cost in storing these data, and can increase classifier
overfitting [34]. Therefore, the feature selection technique was used to identify the most
suitable classification features for maintaining or boosting performance levels [14]. Such a
process eliminates redundant and irrelevant attributes for classification [34]. The filter-type
method, which uses statistical analysis to select the most relevant features, can reduce
the feature dimensionality and remove feature similarity, presenting a low computational
cost. However, the process is performed without interaction with classifiers, ignoring the
dependency between attributes and considering each attribute separately, which can lead to
low computational performance [14]. The wrapper approach takes longer to compute than
feature selection using filter methods [35]. However, it attempts to discover the ideal subset
of data by comparing performance metrics on subsets to determine which combination
produces the best performance for the classifier method [34,36].

This study employed a wrapper method with exhaustive feature selection, which as-
sessed all potential combinations of features to identify the subset with the most significant
performance metrics.

3. Experimental Setup and Dataset

The vibration signal data were collected experimentally by the Center for IMS at the
University of Cincinnati [20]. The experimental setup shown in Figure 2 was realized
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using 4 Rexnord ZA-2115 double-row roller bearings under a load of 2721.5 kg (6000 lbs),
and it can be observed that each bearing had two accelerometers in the x (axial) and y
(radial) directions. They were mounted on the shaft connected to an AC motor via belts
and maintained at a constant speed of 2000 rpm.

The vibration signal was collected with a 1 second duration for each 10 min interval
using integrated circuit piezoelectric (ICP) accelerometers, model PCB 353B33, with a
sampling frequency ( fs) of 20 kHz. However, in [37], it was shown that the signal was
sampled at 20,480 Hz.

Radial Load

Motor

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Accelometers

Figure 2. Experimental setup of the IMS.

An arrangement was employed in which the lubrication of the bearings was forced,
causing the lubricating fluid to pass through a tank where a magnetic plug was installed
in such a way that debris resulting from bearing degradation was trapped on the plug,
preventing it from being re-circulated to the bearings.

The accumulation of a certain amount of debris would lead to the interruption of the
experiment. After the experiment was interrupted, the bearings were disassembled, and
the bearing that experienced failure and the location of the failure were identified.

The experiment was conducted three times using the same methodology, always starting
with new bearings. Among the experiments, Experiment 1 utilized two accelerometers per
bearing, positioned in the x and y directions. On the other hand, Experiments 2 and 3 used
only one accelerometer per bearing with an unspecified direction. Table 1 displays the
sample quantity, the failed bearing, and the failure location for each experiment.

Table 1. IMS dataset description.

Quantity of Samples Bearing Fault Fault Location

Experiment 1 2156 Bearing 3
Bearing 4

Inner race
Roll

Experiment 2 984 Bearing 1 Outer race
Experiment 3 4448 Bearing 3 Outer race

The bearings exhibited failures after the manufacturer’s specified end-of-life of 100 million
revolutions. Bearing 2 did not show any failures in the conducted experiments; therefore,
the data from Bearing 2 were not considered.

The data collected during “Experiment 3” were analyzed in [37], where the results
were inconsistent. The outer race of “Bearing 3” and the other bearings exhibited no
evidence of failure. Therefore, the analysis suggested in this paper did not consider the
data from this experiment.
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4. Results and Discussion

Due to the fact that the data collected in “Experiment 2” did not specify the direction
in which the accelerometer was positioned, they were considered for both the X and
Y directions.

4.1. Signal Separation

By applying the Hjorth parameters to the time series of signals obtained from the
bearings that failed during the experiments, a threshold for labeling the signals depending
on their health condition was established.

The activity (m0) of a signal is directly related to the signal’s average power. Therefore,
when the activity suddenly increases, the average power also increases, indicating the
occurrence of a failure. Mobility (m2) is correlated with activity, so a sudden increase
indicates a failure. Complexity (m4) is a measure of similarity to a sinusoidal wave. When
a failure occurs, the parameter temporarily decreases to a value close to 1. Thus, a value of
1 for complexity represents a sinusoidal waveform.

Figure 3 depicts the behavior over time of the vibration signal and Hjorth parameters
for the signals collected from the bearing that experienced an outer race fault (Bearing
1—Experiment 2). The vibration signal shown in Figure 3a remained constant until 4.8 days,
when an increase in amplitude occurred due to the fault occurrence, and its worsening led
to a variation in the acceleration signal. After day 6, approaching the end of the experiment,
the high amplitude of the vibration signal was due to the advanced stage of the fault and
vibrations transmitted through the shaft from the other bearings.
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Figure 3. Hjorth parameters analysis and separation threshold between healthy and faulty condition.

Figure 3b,c show a similar pattern in terms of activity and mobility, holding a constant
value until approximately 3.5 days, when a progressive increase in the parameters began
and lasted until 4.8 days. Following this point, there was a sudden rise in amplitude, and
the observed variation increased dramatically. Another point to highlight is the fact that
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the activity was related to the power of the vibration signal, and it exhibited a behavior in
response to the signal. Meanwhile, the mobility showed a significant variation after the
fault occurrence but did not follow the increase in vibrations in the final moments of the
test, as it is a measure of the signal’s average frequency.

Figure 3d shows that the complexity began to decline at 3.8 days, and the minimum
value was attained at 4.8 days after a rapid decrease in the parameter, approaching similarity
to a sine wave in the time domain, indicating the occurrence of bearing failure. The increase
in activity and mobility associated with the moment when the complexity reached its
minimum value indicated bearing failure, with day 4.8 being the moment used to establish
the separability threshold of the signals.

The established threshold for labeling the samples enabled the presentation of faulty
samples from the early stages of failure, making the classifier capable of classifying the
health condition at different stages of failure, thereby increasing its generalization power.

Another analysis enabled by the Hjorth parameters was the observation of the pre-
failure moment, which occurred between days 3.8 and 4.8, where the parameter variations
began. Such behavior could not be observed solely from the vibration signal.

The preceding analysis was applied to the data from Bearings 3 and 4 of “Experi-
ment 1”, and MATLAB software was used to determine the instant when a sudden increase
in the average power (activity) and average frequency (mobility) of the signal occurred,
as well as the instant when the signal’s resemblance to a sinusoidal wave (complexity)
reached its minimum value, close to 1. The day of the occurrence of failure for each bearing
in its respective experiment, as well as the quantity of healthy and failed samples, is shown
in Table 2.

Table 2. Treshold of the faults.

Day of Fault Number of
Healthy Samples

Number of
Faulty Samples

Bearing 3—Experiment 1 33 1910 246
Bearing 4—Experiment 1 25 1540 616
Bearing 1—Experiment 2 4.8 704 280

The bearings exhibited failures in different structural locations. To achieve increased
generalization power for the classifiers, samples from all bearings were merged, resulting
in 4154 healthy signals and 1142 faulty signals. After separating the signals, the attributes
STD, RMS, SKW, kurtosis, Vp, WL, CF, FK, IF, and FF, presented in Section 2.2.1, were
extracted from the vibration signal.

4.2. Classification

The classifiers conducted a grid search in pursuit of the best hyperparameters before
the data were presented for the training and validation process. Table 3 displays the set of
tested hyperparameters and those selected for constructing each classifier.

The datasets were divided in an 80/20 stratified ratio and presented to the three classifiers
with the selected hyperparameters shown in Table 3. The accuracy, precision, recall, F1
score, and time taken for model training and classification were examined. Tables 4 and 5
present the metrics obtained for the x and y directions.

The classifiers did not show significant variations among themselves when considering
performance metrics. However, for data from the y-axis, the recall was higher for RF and
k-NN, indicating a lower occurrence of false negatives, and the time taken for classification
was shorter for all classifiers when compared to the data from the x-axis.

The dimensionality reduction approach was utilized to decrease the initial problem
of 10 features to 2 using the wrapper method of exhaustive feature selection (EFS). When
EFS is applied to the number of features, the amount of data to be processed and stored
decreases by 80%. The EFS technique executes the search by assessing all feasible subsets
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and returning the best attribute combination. Table 6 presents the selected subsets for each
classifier using an exhaustive attribute search.

Table 3. Hyperparameters adjusted using grid search.

Classifier Hyperparameter Tested Values Selected

LR

C 0.2, 2, 20, 80 0.2

Penalty L2, Elasticnet L2

Solver lbfgs, liblinear,
sag, saga lbfgs

DT

Criterion Gini, Entropy Entropy

Tree depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10

Data points to split a node 8, 10, 12 10

Tree depth 10, 20, 30 10

Attributes to split a node 2, 3 3

RF Data points to split a node 8, 10, 12 10

Minimum allowed data in a leaf 3, 4, 5 3

Number of trees 100, 150, 200, 250 100

C 0.1, 5, 10, 20, 50 50

SVM Kernel coefficient 0.001, 0.01, 0.1, 1 1

Kernel RBF, Linear RBF

k-NN

Number of neighbors (k) 3, 5, 7, 9, 11 11

Weights Uniform, Distance Distance

Metric Minkowski, Euclidian,
Manhattan Minkowski

Table 4. Performance metrics according to the x-axis and all features.

Classifier

Metric LR DT RF SVM k-NN

Accuracy 0.82 0.98 0.99 0.97 0.98
Precision 0.85 0.98 0.98 0.97 0.98
Recall 0.58 0.96 0.98 0.94 0.96
F1 score 0.59 0.97 0.98 0.95 0.97

Ttrain(s) 2.54 3.98 122.64 25.62 0.73
Ttest(s) 0.0007 0.001 0.015 0.072 0.011

Table 5. Performance metrics according to the x-axis and all features.

Classifier

Metric LR DT RF SVM k-NN

Accuracy 0.84 0.99 0.99 0.97 0.99
Precision 0.91 0.98 0.99 0.97 0.98
Recall 0.61 0.98 0.99 0.94 0.98
F1 score 0.63 0.98 0.99 0.96 0.98

Ttrain(s) 2.49 3.38 105.05 22.41 0.73
Ttest(s) 0.0019 0.0022 0.023 0.051 0.012
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Table 6. Remaining features after feature selection.

Classifier Features

LR STD and Vp
DT WL and FF
RF RMS and WL
SVM STD and WL
k-NN RMS and WL

The subset formed by the selected attributes after dimensionality reduction was once
again divided in an 80/20 stratified ratio and applied to the classifiers. Tables 7 and 8
present the performance metrics and the variation compared to the complete dataset.

Table 7. Performance metrics according to the x-axis regarding the two remaining features. The
values in parentheses represent the difference between the entire set and the remaining features.

Classifier

Metric LR DT RF SVM k-NN

Accuracy 0.82 (−0%) 0.98 (−0%) 0.98 (↓ 1%) 0.96 (↓ 1%) 0.98 (↓ 1%)
Precision 0.86 (↑ 1%) 0.97 (↓ 1%) 0.98 (−0%) 0.96 (↓ 1%) 0.97 (↓ 1%)
Recall 0.56 (↓ 2%) 0.96 (−0%) 0.97 (↓ 1%) 0.92 (↓ 2%) 0.97 (↑ 1%)
F1 score 0.56 (↓ 3%) 0.97 (−0%) 0.97 (↓ 1%) 0.94 (↓ 1%) 0.97 (−0%)

Ttrain(s) 0.77 (⇓ 69%) 1.21 (⇓ 51%) 89.52 (⇓ 27%) 24.33 (⇓ 5%) 0.51 (⇓ 30%)
Ttest(s) 0.001 (⇓ 42%) 0.002 (⇑ 50%) 0.018 (⇑ 20%) 0.065 (⇓ 10%) 0.004 (⇓ 64%)

Table 8. Performance metrics according to the y-axis regarding the two remaining features. The
values in parentheses represent the difference between the entire set and the remaining features.

Classifier

Metric LR DT RF SVM k-NN

Accuracy 0.82 (↓ 2%) 0.98 (↓ 1%) 0.99 (−0%) 0.96 (↓ 1%) 0.98 (↓ 1%)
Precision 0.91 (−0%) 0.98 (−0%) 0.98 (↓ 1%) 0.96 (↓ 1%) 0.98 (−0%)
Recall 0.57 (↓ 4%) 0.97 (↓ 1%) 0.98 (↓ 1%) 0.93 (↓ 1%) 0.97 (↓ 1%)
F1 score 0.58 (↓ 5%) 0.97 (↓ 1%) 0.98 (↓ 1%) 0.94 (↓ 2%) 0.98 (−0%)

Ttrain(s) 0.81 (⇓ 67%) 1.24 (⇓ 63%) 86.14 (⇓ 18%) 24.39 (⇑ 4.8%) 0.53 (⇓ 27.4%)
Ttest(s) 0.001 (⇓ 36%) 0.002 (⇓ 22%) 0.025 (⇑ 25%) 0.060 (⇑ 20%) 0.004 (⇓ 55.5%)

The classifiers showed a small reduction of 1% for almost all observed performance
metrics, and RF and k-NN exhibited significant reductions in the time required for classifier
training, while SVM required more time. Variation in the time required to classify the
samples after training was also observed, although with millisecond-scale differences.

Sample dispersion could be visualized due to the dimensionality reduction to only
two variables. Figure 4 depicts the scatter plot of samples for both axes, representing
the two subsets generated in the dimensionality reduction process. Figure 4a,b depict
the data dispersion between WL and RMS used by the RF and k-NN classifiers. In these
figures, a region is visible where healthy and faulty samples mix, but due to the adjusted
hyperparameters, the classifiers achieved an accuracy of 98%. Figure 4c,d display the
dispersion between STD and WL, used by the SVM classifier. In this case, a region of
overlap between the classes is observed, and even with adjusted hyperparameters, the
classifier could not match the performance achieved by the RF and k-NN classifiers.

Figure 4e,f depict the data dispersion between the WL and factor form, which were
selected by the DT classifier. Despite being a classifier with lower complexity than RF, SVM,
and k-NN, the data showed a small overlap region between the samples.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Dispersion of samples for the subsets. (a) WL and RMS of the signal on the x-axis. (b) WL
and RMS of the signal on the y-axis. (c) STD and RMS of the signal on the x-axis. (d) STD and RMS of
the signal on the y-axis. (e) WL and FF of the signal on the x-axis. (f) WL and FF of the signal on the
y-axis. (g) STD and Vp of the signal on the x-axis. (h) STD and Vp of the signal on the y-axis.
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The dispersion between STD and Vp used by logistic regression (LR), as shown in
Figure 4g,h, exhibited a significant overlap region between healthy and faulty samples.
Due to its simpler nature, this classifier yielded the lowest performance metrics among all
implemented classifiers.

All subsets exhibited a region of sample concentration for both healthy and faulty
cases, which could confuse the classifiers. These regions may help to explain the increased
training time, as the SVM method sought a separating hyperplane. The confusion region
could be explained by the similarity of the signals in the threshold of healthy and faulty
samples separated by the Hjorth parameters.

4.3. Comparative Analysis

The efficacy of classifiers utilizing the method provided in this paper was compared
to previous works that used the same dataset. The classifier chosen for the comparison
was k-NN, since its performance metrics were comparable to those of RF, which had the
highest performance metrics, and the computing time needed for training and classification
was the lowest among the classifier models employed. Table 9 shows the performance
indicators obtained by other approaches used in other research efforts. The symbol “–”
indicates that the study did not provide the observed metric.

The best performance achieved by the methods in the literature was attained in [38].
However, the models were trained using equal quantities of healthy and faulty samples,
even though these machines spend most of their time operating under normal conditions.
The works [38–41] applied their respective methodologies using only the data collected in
Experiment 2, which consisted solely of faulty signals from the outer race, in contrast to the
method presented in this study. Our approach utilized data collected from Experiments
1 and 2, enabling the classifier to receive faulty data from the inner race, outer race, and
rolling elements.

Table 9. Comparison of results for the same dataset based on other methods. The abbreviations are
as follows: wavelet packet decomposition (WPD), support tensor data description (STDD), k-nearest
neighbor (KNN), entropy-based combined indicator (COM), grasshopper optimization algorithm
(GOA), support vector data description (SVDD), generalized multiscale Poincare plots (GMPOP),
cyclic spectral correlation (CSC), support vector data description with negative sample (NSVDD).

Method Accuracy Precision Recall F1 Score

Our approach 0.98 0.98 0.97 0.98
WPD-STDD [38] 1.00 1.00 – –
KNN [38] 0.97 0.97 – –
COM-GOA-SVDD [39] 0.92 0.90 1.00 0.94
GMPOP [40] 0.99 – 1.00 –
CSC—NSVDD [41] 0.99 0.99 0.99 0.99

The method with the best metrics was WPD—STDD, implemented in [38], which
achieved an accuracy and precision of 100%. However, it is a tensor-based method that also
uses attributes extracted in both the time and frequency domains, making it a computation-
ally more expensive method with higher data storage requirements than that presented in
this article, which solely utilized attributes in the time domain.

Another method with superior metrics to that proposed in this article was presented
in [40], achieving an accuracy of 99%. However, the method was trained using only healthy
samples with the non-linear dynamics of the bearing for the detection of early-stage faults.
Nevertheless, since the model uses only healthy samples, it may be biased.

The proposed method presents the advantage of obtaining characteristic information
and performing the analysis of vibration signals using attributes extracted directly in the
time domain without applying transforms to the frequency domain. The attributes required
for monitoring and diagnosing the bearings do not present complexity in their calculation,
enabling online monitoring.
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The proposed method exhibited good performance in classifying the samples. How-
ever, a limitation arises from its requirement of a historical series, from the start of operation
until the equipment stops due to bearing failure, as it is dependent on signals that exhibit
failure and demands the processing of a large amount of data.

5. Conclusions

The Hjorth parameters proved to be an effective method for determining the instance
within a time series that separates healthy signals and faulty signals, allowing the labeling
of each sample for use in supervised learning classifiers without the need for frequency-
domain analysis.

The information extracted from the time-domain vibration signals, combined with the
classes resulting from the separation based on the Hjorth parameters and adjustments to
the internal structure of the classifiers, made it possible to achieve an accuracy exceeding
95% for the four implemented classifiers.

The dimensionality reduction demonstrated that by using only 2 attributes, it was
possible to maintain a performance level similar to classifiers trained using the original
10 attributes. The DT, RF, k-NN, LR, and SVM models used the WL attribute after the
dimensionality reduction process, showing it to be an attribute that carries relevant infor-
mation, as it can be considered a measure of signal frequency.

The best results were found when analyzing the signals from the y-axis, which may
indicate that the accelerometers used in Experiments 2 and 3 were positioned in the y-
direction, and the similarity between the results presented in Tables 7 and 8 indicated
the need for only one accelerometer sensor for monitoring and fault detection, preferably
positioned in the y-axis direction.

Future work will involve applying the proposed method to address multiclass classi-
fication problems, identifying the location of bearing faults, whether it be the inner race,
outer race, or rolling elements. This analysis has the potential to facilitate the identification
of the fundamental cause of the failure and to verify the classifier’s performance for ball
bearings, which are commonly used in electric motors.
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