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Abstract: Sanitary landfilling is still considered worldwide as one of the most common methods
applied for the management of the municipal solid waste. As a consequence, vast amounts of
landfill leachate are generated annually, which are characterized by variability in physicochemical
composition, owing to the stabilization process that occurs over the years. However, sustainable
management of landfill leachate is a challenging issue, due to diverse chemical composition and high
concentration in heavy metals and xenobiotics. Despite the fact that several studies have been reported
on the biotreatment of landfill leachate, only in recent years has the microbial composition in such
systems have been examined. In the present review, the key role of the microbial ecology involved in
depurification and detoxification of landfill leachate in activated sludge and anaerobic systems is
interpreted and ecological considerations influencing landfill leachate treatment are stated. Apart
from the assessment of landfill toxicity on certain model organisms, this work provides an extensive
overview on microbial communities performing key biological processes during landfill leachate
treatment, including nitrification-denitrification, anammox and anaerobic digestion. Moreover,
microbial aspects affecting nutrient removal efficiency in such biosystems are discussed.

Keywords: landfill leachate generation; leachate pollution impact; toxicity of leachate; activated
sludge population; microbial ecology of landfill leachate

1. Introduction
1.1. Municipal Solid Waste Composition (MSW)

An overview of recent surveys on the composition of waste products in various
countries across the globe gives an idea of how they are represented, mostly by fractions
of putrescible organics (residues of the culinary processing), as well as paper and plastic
(mainly packaging). Organic waste (putrescible, yard waste, paper and plastic) in most of
the countries account for 80% of the total waste produced (Table 1).
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Table 1. MSW composition in various countries, as % on wet basis.

Country
Putrescible

Organic
(%)

Paper
(%)

Glass
(%)

Metal
(%)

Plastic
(%)

Miscellaneous
Combustible

(%)

Textile
(%)

Special/
Hazardous
Waste (%)

Fines
(%) References

Argentina 53.8 7.5 6.6 1.2 9.8 - - - - [1]

Canada 51.7 6.6 2.8 6.8 15.0 4.0 - 13 - [2]

China 42.8–50.8 4.0–11.6 1.9–3.5 0.5–1.7 6.7–13.7 1.2–5.9 1.9–4.2 0.3–3.7 19.2 [3]

Denmark 42.2 15.8 2.1 2.3 12.6 17.6 3.3 0.7 - [4]

Finland 24.2 15.5 2.5 3.8 21.6 20.1 10.5 1.7 - [5]

India 43.0 6.0 2.0 5.0 6.0 11.5 5.0 3.0 - [6]

Italy 22 20 8 3.7 13.4 - 3.3 7.0 * - [7]

Malaysia 27.9–42.9 24.0–30.8 0.4–1.4 0.7–1.4 15.8–25.2 1.1–1.9 3.0–4.1 0.4–1.1 - [8]

Norway 25.8 31.5 5.3 5.5 13.2 11.8 3.8 - - [9]

Russia 24.2 20.0 12.5 0.6 18.7 1.9 2.0 0.6 11.2 [10]

South
Africa 21.3 16.2 7.8 6.7 22.6 6.4 0.2 19.1 - [11]

Spain 79.5–82.4 2.2–3.1 0.4–2.1 0.2–0.3 4.5–6.0 - 0.02–0.3 - 7.5–8.4 [12]

USA 21.6 23.1 4.2 8.8 12.2 6.2 5.8 12.1 * - [13]

* yard trimmings.

1.2. Municipal Solid Waste Management Approaches

The chemical composition of urban waste includes various heavy metals and other
toxic substances [14]. During uncontrolled disposal and dumping, such pollutants can
disperse in aquatic and terrestrial environments, affecting surface and ground waters [15],
soil [16] and atmosphere [17], while they intrude in some cases into the human food
chain [18]. Many vital functions are compromised or altered by heavy metals, which
permanently bind to enzymes, inhibiting their activity and causing health issues [19].

That is why waste needs to be managed properly with a consistent and coherent
strategy. People should not be left to manage waste on their own, because they are affected
by public opinion syndromes: NIMBY (not in my backyard), NIMO (not in my office time)
and BANANA (build absolutely nothing anywhere near anybody) [20].

The European Directive 2008/98/EC [21] focuses on minimizing the negative effects of
waste production on the environment and human health. Some operations and techniques
should be preferred to others, because of their environmental impact; for example, waste
disposal in landfills is a major cause of greenhouse gas (GHG) emissions into the atmo-
sphere (more than 20% of GHG emissions globally, about 30% in the US) [22–24], while
recycling of waste can decrease natural sources exploitation. In this frame, processes should
be evaluated for sustainability reasons, meaning economic advantage, small environmental
impacts and social endurance. Since the application of the directive in the EU Member
states, there has been a general decline in the disposal of landfilled waste (from 63% to 25%),
and of putrescible waste [25]. In past decades in the EU, the amount of produced waste
followed an upward trend, while the amount of landfilled waste was limited. Interestingly,
121 million tonnes (286 kg per capita) were landfilled in 1995, whereas the respective
amount was only 53 million tonnes in 2019, corresponding to an average annual decrease
of 3.3%. In the EU, the percentage of MSW directed to material recycling, incineration,
landfilling and composting is 30%, 27%, 24% and 17%, respectively [25]. In the United
States of America (U.S.A.), the proportion of municipal waste landfilled is double compared
to that in the EU. The percentage of MSW in the U.S.A. directed to material recycling, incin-
eration, landfilling and composting is 24%, 12%, 50% and 8%, respectively [13]. According
to Ding et al. [26], in China, a country producing more than 10% of the urban solid wastes
globally, 52% of the 228 million tonnes of MSWs are landfilled, 45% are incinerated and 3%
are composted.
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1.3. Sanitary Landfilling

Sanitary landfilling is considered the most common method for the management of the
waste in the world, with the majority of collected waste being disposed of in landfills [27].
The minimization of the impact on public health and the environment takes place in sanitary
landfilling using engineered barriers that prevent the dispersion of pollutants contained in
waste and favor the decomposition of organic matter through the appropriate amount of
water [28]. Barriers need to be of containment purposes, such as bottom liners and capping
for draining purposes and the use of coarse medium and the pipes. However, the presence
of water cannot be avoided in the bulk, due to initial moisture and rain percolating through
the capping [28].

As landfill matures, a succession of phases is observed [29]. Shortly after MSW is
disposed of, organic substances undergo multistep biochemical degradation. The oxygen
that is initially entrapped within solids allows a limited aerobic degradation of the organic
matter. This process is considered quite brief as the penetration of oxygen is restricted and
rapid consumption occurs as a consequence of the high organic load inside the cell. The
exothermic reactions that take place result in an increase in the temperature within the
cell, which also leads to an increase in the solubility of salts, thus increasing the electrical
conductivity of the landfill leachate.

During the stabilization process, leachate is produced, and methane is released, which
poses a negative effect on the environment. After the hydrolysis of the polysaccharides,
mainly hemicelluloses and celluloses, which are the main constituents of the organic frac-
tion of solid waste (45–60% of organic matter), the decomposition process is carried out
by fermentative bacteria, which further converts mono- and di-saccharides into volatile
fatty acids (VFAs) and low molecular weight (M.W.) alcohols. In a secondary fermenta-
tion process named acetogenesis, volatile fatty acids (VFAs) and low M.W. alcohols are
converted to acetate in synergy with methanogenic archaea, otherwise such conversion
is non-thermodynamically favored [30,31]. Thus, a syntrophic relationship with the hy-
drogenotrophic methanogenic archaea is required to achieve acetogenesis. Finally, methane
production takes place either by the action of acetoclastic methanogens Methanosaeta and
Methanosarcina, or through the reduction in carbon dioxide in the presence of hydrogen by
hydrogenotrophic methanogens.

After a few decades, methanogenesis is limited due to the restricted degradation of
organic matter and landfill emissions are reduced.

Even though several studies have focused on the biotreatment of landfill leachate, the
microbial composition in these landfill leachate treatment systems have been just recently
uncovered. Thus, this systematic review aims to provide a comprehensive understanding
of microbial communities ruling biological processes during landfill leachate treatment
and to identify how microbial community structure is linked with the nutrient removal
efficiency of these biosystems.

2. Methodology

A keyword survey was conducted by formulating and developing a search state-
ment. Following identification of the main concepts of the research topic, multiple key-
word searches were performed through exploration of the words “ecology”, “landfill
leachate”, “diversity” and “landfill leachate”, as well as “microbial communities” and
“landfill leachate”. From an initial search of 806 scientific publications in Scopus under
the above-reported keyword searches, 122 references were selected to be included in the
systematic literature review. Then, the article was structured into four sections, where
Section 1 was an introductory to landfilling and landfill leachate generation and treatment;
Section 2 reported the conducted methodology; Section 3 referred to landfill leachate toxic-
ity; Section 4 provided a comprehensive evaluation of the microbial communities in the
activated sludge of landfill leachate treatment systems and Section 5 stated the conclusions
of this systematic study.
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3. Toxicity of Landfill Leachate
3.1. Comparative Evaluation of Landfill Leachate Toxicity

One critical aspect of landfills is leachate production, not only during operation, but
also during the post-closure period which may last decades or even centuries [32]. Toxicity
of the leachate constitutes another challenging issue of this wastewater (Table 2).

Table 2. Toxicity of landfill leachate at LC50 level.

Test Organism pH NH4
+ -N (mg/L) Initial COD

(% v/v Landfill Leachate)
Test Time

(h) References

Artemia salina 8.04 381 12,161 mg/L COD - [33]

Artemia salina 8.00 - 3324 mg/L COD (20% v/v) - [34]

Daphnia magna - 1955 17,988 mg/L COD (12.5% v/v) 48 [35]

Macrobrachium lanchesteri 8.30 1693 3583 mg/L COD (1–7.5 % v/v) 96 [36]

Mytilus sp. (mussels) 8.15 1526 4925 mg/L (0.53% v/v) 96 [37]

Danio rerio (zebrafish) 7.95 2700 5123 mg/L COD (1.4% v/v) 96 [38]

Danio rerio embryos,
D. rerio larvae * 6.55 ± 0.34 394 ± 24 1400 mg/L COD 96 [39]

Oreochromis mossambicus 7.35 43 51,200 mg/L COD (3.2% v/v) 96 [40]

Oreochromis niloticus 8.80 57.69 mg/L 96 [41]

Pangasius sutchi S., 1878
Clarias batrachus L., 1758 8.20 880 10,234 mg/L COD (3.2 & 5.9% v/v) 96 [42]

Poecilia reticulata 6.12–8.31 952–1078 8880–66,420 mg/L COD
(1.22 & 12.35% v/v) 96 [43]

Poecilia reticulata 7.90 283 1500 mg/L COD (47% v/v) 96 [44]

Rasbora sumatrana 8.30 1693 3583 mg/L COD (0.82–1.39% v/v) 24 [36]

Eisenia andrei 7.80 2398 2.32 & 1.34 µL/ cm2 paper
77.83 & 53.94 mL/kg soil

48/72
168/336 [45]

Senna macranthera seeds 9.00 595 6.25% v/v (5592 mg/L COD) 168 [46]

* 84.75 & 82.64% v/v of population died.

Landfill leachates may contain important amounts of heavy metals, such as manganese
(Mn), zinc (Zn), nickel (Ni), copper (Cu), chromium (Cr), arsenic (As), lead (Pb), cadmium
(Cd) or mercury (Hg), as a result of the disposition of metal-containing wastes into sanitary
landfills. During maturation, the solubility of metals, like Zn, Mn and Mg, decreases
significantly (Table 3), due to both pH and alkalinity increase. Moreover, the presence
of significant organic content in all stages of landfill operation leads to the formation of
metal-organic complexes in leachate, further hindering its sustainable management [47–49].

Table 3. Age of leachate and changes in the concentration of heavy metals in the landfill leachate.

Parameter (mg/L) BOD/COD > 0.3 References 0.15 < BOD/COD < 0.3 References BOD/COD < 0.15 References

Zn 0.16–8.00 [50–53] 0.05–7.51 [54] 0.09–2.78 [55–59]
Cd ND–0.57 [51–53,60] 0.06–0.54 [54,61–63] ND–0.45 [52,64]
As 0.02–0.33 [60] 0.12–0.94 [61,63] 0.02–0.38 [56,64]
Cr ND–2.24 [50–53,60] 0.01–2.21 [61,63] 0.04–1.90 [56,58,59,64]
Co 0.07–0.30 [52] 0.1 [52] 0.01–0.04 [52,56]
Cu 0.01–2.69 [50–53,60] 0.03–0.19 [61–63] 0.03–2.94 [55–57,59]
Fe 1.17–20.6 [50–53,65] 1.20–23.2 [54,61–63] 2.82–22.9 [55–59]
Pb 0.08–0.83 [50–53,60] 0.01–0.66 [54,61–63] 0.003–0.57 [55,56,64]
Mn 0.01–18.5 [52,60] 0.01–9.70 [54,61,63] 0.06–1.09 [56,58,64]
Hg 0.01–2.4 [52,60] 0.03–1.21 [52] 0.001–0.16 [52]
Ni 0.02–4.80 [50–53] 0.33–1.20 [54,61,63] 0.03–1.45 [55–59]
Mg 32–1800 [50,51,53,66,67] 24.1–300 [65,67] 31.1–98 [55,56,58]

Environmental pollution and health risks need to be prevented by applying sustainable
leachate treatment techniques in order to eliminate the content of organic and inorganic
pollutants prior to their discharge into the water system. Unfortunately, their content in
landfill leachate is inconstant, making difficult the selection of the appropriate design and
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operating procedure [68]. Öman and Junestedt [69] analysed leachates from 26 different
landfills and detected around 400 substances of both organic and inorganic origins. Some
of them were detected in traces, but others, like benzenes, reached a concentration of
15 mg/L. Escape of chemical substances present in leachate can occur in the food web and
bioaccumulate in various aquatic species [70].

Risk assessment regarding landfill leachate may be accomplished through toxicological
methods, which indicate the possible impact on aquatic organisms. Knowledge of the
composition and toxicity of substances is necessary to determine any long-term adverse
effects on the aquatic ecosystems [71].

Landfill leachate toxicity changes over season and climate conditions [72]. Even diluted
landfill leachate is enough to induce toxic effects on a variety of aquatic model organisms,
including crustaceans, mussels and fish (Table 2). The adverse effects of landfill leachate on
aquatic organisms should be attributed to the high ammonium content and the presence of
various toxic compounds, including a wide range of xenobiotics and heavy metals [73–75].

The toxicity of landfill leachate has been assessed using aquatic crustaceans, mussels,
fishes and seeds. Interestingly, leachate toxicity (expressed as LC50) initiates even at
58 mg/L COD in the case of Oreochromis niloticus and expands above 3.3 g/L COD, when
Artemia salina serves as the test organism. The resistance of this brine shrimp species could
be attributed to its saline nature, a fact that permits it to overcome the relatively high
salinity of landfill leachate and to tolerate the synergistic effect of high organic content and
salinity (Table 2). The possible interface of ammonia concentration with the acute toxicity
of landfill leachate should be also taken into consideration [76].

3.2. Landfill Leachate Toxicity on Activated Sludge Microbiota

de Albuquerque et al. [77] have reported that pretreatment with alkali and air stripping
highly improved the performance of activated sludge, a fact that may be indicative of high
ammonia concentration, permitting the achievement of high BOD and COD removal
efficiencies. A higher sensitivity to eukaryotes compared to prokaryotes was identified
by increasing the proportion of landfill leachate in the treated effluent. By increasing
landfill leachate proportion in the composition of a synthetic influent, activated sludge
dehydrogenase and esterase activities were found to be reduced by approximately 80%,
indicating the strong inhibition of activated sludge microbiota by the presence of landfill
leachate [78], which should be considered as a major drawback in the case that the biomass
is not acclimatized. A shift in the microbial composition was observed, determining greater
proportion of 3-hydroxy and cyclopropane fatty acids [78]. Phosphate concentration can
also be a limiting factor affecting activated sludge microbiota [79]. Moreover, activated
sludge microbiota appeared to produce more exopolymeric substances (EPS) as a protective
mechanism against landfill leachate toxicity [80].

4. Microbial Communities for Sustainable Landfill Leachate Treatment

A few studies have been carried out in the last decade to reveal microbial composition
in raw leachate and in activated sludge and anaerobic systems treating landfill leachate
of various ages. Thus, this systematic overview gives an in-depth evaluation of microbial
ecology of landfill leachate treatment systems, providing for the first time the key microbiota
influencing biological processes during biotreatment of landfill leachate and the major
factors shaping microbial community structure in these biosystems.

4.1. Microbial Communities in Raw Landfill Leachate

In particular, members of Bacteroidales and Pusillimonas-like bacteria capable of de-
grading recalcitrant compounds, together with anaerobic fermentative bacteria of the class
Clostridia have been detected in the raw landfill leachate (Table 4). A significant proportion
of microbial population in the untreated leachate consists of sulphate reducers, such as
Desulfobacter spp.
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Table 4. Major microbial communities identified in raw landfill leachate and stabilization ponds.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

Raw Landfill Leachate and Stabilization Ponds

Raw landfill leachate
Fresh, intermediate &
Mature/
pyrosequencing

NA 1.21–2.32 g/L/
1.68–2.34 g/L NA

Pseudomonas (11.4%, in fresh), Syntrophomonas (3.4–11.4%),
Sedimentibacter (3.4–4%), Proteiniphilum (3.1–7.1%), Ureibacillus
(1.4–3.1%), Anaerobranca (1–2.9%), Desulfobacter (1.1–1.8%), Petrimonas
(1.1–1.9%), Clostridium (0.8–1.8%), Desulfotomaculum (0.8%, in fresh),
Syntrophothermus (0.9%, in mature)

[81]

Raw landfill leachate Mature/
Illumina NA 9.8 g/L/

1,33 mg/L NA

Candidimonas, Pusillimonas, Leucobacter, Paralcaligens,
Castellaniella, Eoetvosia, Parapusillimonas and
Pseudomonas accounted for more than 42% of relative abundance, with
Pusillimonas-like bacteria representing 34.7% of the total reads

[82]

Stabilization pond
(pilot scale)

Intermediate/
FISH

25–42/
(16 months)

3.2 g/L/
0.9 g/L

56%/
82%

Bacteria: 75% of DAPI, of which 10% of DAPI are nitrifying bacteria
and 25% are Sulphate-Reducing Bacteria.
Methanogenic Archaea: 25% of DAPI

[83]

FISH: Fluorescence in situ hybridization; DAPI: 4′,6-diamidino-2-phenylindole; NA: Not applicable.



Sustainability 2023, 15, 949 7 of 20

4.2. Microbial Communities in Biological Nitrogen Removal Sytems Treating Landfill Leachate

In anoxic-oxic bioreactors, Thauera, Truepera, Pseudomonas, Paracoccus and Luteimonas
are commonly detected in the activated sludge of such systems, followed by Anaerolinae
and Hydrogenophaga members (Table 5). These key taxa are typical denitrifiers capable
of converting the nitrates formed by the nitrifiers to dinitrogen gas, contributing to the
removal of the high nitrogen content of middle age and mature landfill leachate in anoxic-
oxic treatment systems. Regarding nitrification, Nitrosomonas and Nitrosospira are the
main ammonia-oxidizing taxa identified under aerobic conditions during the treatment of
landfill leachate, whereas nitrite oxidizers of the genus Nitrobacter seem to proliferate in
such systems (Table 5).

Due to high ammonium concentration and the low COD content of recalcitrant na-
ture, anammox process is advantageous to remove nitrogen content without the need
for external carbon source as electron donor and high energy consumption for complete
nitrification. Candidatus Brocadia and Candidatus Kuenenia are the key anammox bacteria
in partial nitrification/anammox bioreactor systems treating landfill leachate. Considering
the conversion of ammonia to nitrite, Nitrosomonas spp. are the main ammonia oxidizers
during partial nitrification, while common inhabitants of landfill leachate treatment sys-
tems, such as Truepera, Thauera, Limnobacter and Pusillimonas, are the major heterotrophic
representatives under low-dissolved oxygen conditions (Table 6).

Typical core denitrifiers of wastewater treatment plants, such as Thauera and den-
itrifiers, specialize in the degradation of non-easily degradable compounds, including
xenobiotics, present in high concentrations in landfill leachate are favored in activated
sludge systems that are used to treat this effluent. Thauera processes the metabolic versatil-
ity to cope with a broad spectrum of organic substrates, including aromatic compounds,
whereas recent findings have revealed that representatives of this genus are highly competi-
tive in treating low carbon effluents [84], which is also the case of landfill leachate. Similarly,
Truepera and Pusillimonas appear to be favored under low C/N conditions [85]. Luteimonas
is a gammaproteobacterium capable of degrading complex polysaccharides, such as chitin
and cellulosic substrate, a fact that favors its growth. Interestingly, Remmas et al. [86]
reported high b-glucosidase induction as a mechanism to catabolize the least biodegradable
organic fraction, due to the low organic carbon availability. Limnobacter spp. as thiosulphate-
oxidizing bacteria are involved in the sulfur process in anoxic-oxic activated sludge systems
treating landfill leachate. Pusillimonas-like bacteria and Pseudomonas species are well-known
specialized microbiota with the ability to degrade a broad range of recalcitrant compounds
under moderate salinity [82,87–89], a fact that favors their adaptation in landfill leachate.

In several studies, it is striking that the genus Truepera within the class Deinococci,
consisting of a single species, was the dominant taxon in untreated and treated landfill
leachate. This ‘exotic’ bacterium has been reported to be favored in environmental condi-
tions, similar to those established in landfill leachate treatment systems, due to its ability
to grow under poly-extreme conditions, including alkaline pH, moderate salinity, high
radiation and temperature [90]. Indeed, the alkaline pH and moderate salinity of landfill
leachate, as well as the natural weathering of landfill sites, which expose leachate to solar
radiation and its metal resistance, facilitate the adaptation of this Deinococcus/Thermus
member [90,91].
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Table 5. Major microbial communities identified in aerobic and anoxic/oxic landfill leachate treatment systems.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

Aerobic granular
SBR (GSBR)

Fresh/
FISH

0.5 d/
NR

0.9 g/L/
0.3 g/L

32–50%/
66–70%

Betaproteobacterial AOB (16.6 ± 11.9%), Most Accumulibacter
(3.3 ± 1.2%), Anammox (2.5 ± 0.9 %), cultured Tetrasphaera PAO
(4.3 ± 2.1%), Comamonadaceae (5.6 ± 3.5%), Acidovorax
(5.4 ± 3.6%), Curvibacter (4.8 ± 1.6%), Paracoccus (4.2 ± 2.9%),
Zooglea not Z. resiniphila (4.1 ± 2.8%), Azoarcus (2.8 ± 0.6%),
Thauera (2.4 ± 0.4%)

[92]

Anoxic/multi-oxic
stages full-scale
treatment plant

Mixture of fresh and
mature leachate/Ion
torrent

0.3 d/NR 5.16–25.78 g/L/
41–2330 mg/L

NR/
>80%,
as TN

Azoarcus, Cellulosibacter, Clostridium, Comamonas, Nitrosococcus,
Nitrosomonas, Nitrosospira, Paracoccus, Petrimonas, Pseudomonas,
Proteiniborus, Syntrophomonas, Thauera, Tissierella

[93]

A/O MBR Intermediate to mature/
pyrosequencing

5 d/
infinite

1.5–3.0 g/L/
708–927 mg/L

32–58%/
41–86%

Nitrosomonas (amoA), Nitrospira (amoA), Arenimonas (nirS),
Bradyrhizobium (nirS), Sulfuritalea (nirS), Acidovorax (nirS),
Thauera (nirS), Dechloromonas (nirS), Parococcus (nirS)

[94]

A/O MBR Fresh to Intermediate
/Illumina

5 d/
infinite

0.90–1.60 g/L/
300–800 mg/L

39.9–56.8%/
81.1–83.0% (as TN)

Bacteria: Candidate Saccharibacteria (50% at 50 & 100% v/v),
while SR1, Sinobacteraceae, Truepera, Thauera, Limnobacter,
Paracoccus, Phyllobacteriaceae, Nitrosomonas and Dokdonella
accounted for 21% at 100% v/v)
Fungi (Rozella clade): Cryptomycota (Rozellomycota)-based
community (80%) at 100% v/v

[86]

A/O MBR Mature/
Pyrosequencing

4.2 d/
20 d

5.0–6.9 g/L/
2200–3035 mg/L

43–51%/
36–38%

Mixed liquor: Pseudomonas (7.6%), Aequorivita (7%), Ulvibacter
(3.4%), Taibaiella (4.5%), Thermus (3.7%), Pusillimonas (1.7%),
Halomonas (0.7%)
Biofilm: Aequorivita (7.3%), Thermus (7.3%), Taibaiella (7.0%),
Pseudofulvimonas (3.2%), Candidatus Microthrix (3.0),
Phyllobacterium (2.1%), Paracoccus (1.1%)

[95]

A/O MBR Fresh/ PCR-DGGE 4 d/No excess
sludge wastage

4.6 g/L/
489 mg/L

99%/
99%

Bacteria: Pseudomonas (intense band), Bacillus (intense band),
Sphingomonas (intense band) Nitrosomonas (intense band), Others:
(Dechloromonas, Rastolia, Rhodopseudomonas, Nitrosococcus,
Nitrosospira)
Archaea: Methanosphaerula (intense band), Methanosaeta (intense
band), Methanoregula (intense band) Methanosarcina (intense
band), Others (Methanobacterium, Methanobolus, Methanococcoids,
Methanogenium)

[96]
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Table 5. Cont.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

Two-stage
anoxic/oxic
combined MBR

Intermediate/
Illumina

168 h/
*

4–20 g/L/
1.5–2.1 g/L

81%/
99%

Nitrosomonas (3.6–10.0%), Nitrobacter (6.5–9.5%), Truepera
(2.1–6.7%), Planctomyces (3.1–5.6%), Acidovorax (0.69–5.8%),
Pseudomonas (1.6–5.5%), Nitrolancea (1.6–3.3%), Rhodobacteraceae
(1.4–2.3%), Azospira (0.6–1.2%), Others (Pedosphaera, Thalassospira,
Flovobacterium)

[97]

Two-stage A/O-MBR Intermediate to
mature/Illumina NR/14 d 5.3–17.9 g/L/

1589–2031 mg/L
77.6–85.6%/
99.1–99.3%

Thiopseudomonas (2–25%), Amaricoccus (6–14%), Nitrosomonas
(3–10%), Luteimonas (4–7%), Tissierella (0.5–7%), Ottowia (2.5–6%),
Moheibacter (2.5–5%), Tepidisphaera (2.5–5%), Truepera (1.5–3%),
Nitrobacter (1–3%), Nitrospira (0.5–2%), Others (Thauera,
Paracoccus, Petrimonas, Pusillimonas, Halobacteriovorax,
Brevundimonas, Flavobacterium, Geminicoccus, Phycisphaera)

[98]

Anoxic tank-aerobic
MBR

Mature/
Illumina

10 d/
16–19 d

1.5–1.9 g/L/
1.8 g/L

13.1%, as DOC/
99.3%

Thauera (18.8–23.5%), Candidatus Nitrospira defluvii (10.0%),
Burkholderia (4.0%), Nitrosomonas europaea (7.5%), Alicycliphilus
(2.9%), Rhodospirillum (2.7%), Pseudomonas (2.6%), Spiribacter
(2.3%), Bordetella (2.2%), Others (Thiomonas, Nitrobacter,
Chloracidobacteria, Gallionelaceae)

[99]

A/O full-scale
system combined
with ultrafiltration

Mix of fresh,
intermediate & mature
leachate/
Illumina

NR 4.8–27.5/
0.9–4.8 g/L

87–95%/
95–99.9%

Phycisphaerae, Flavobacteriales, Anaerolineaceae,
Ignavibacteriales,
Thauera (0.4–5.5%), Truepera (0.6–2.8%), Nitrosomonas (2.1–3.3%),
Nitrosospira (0.1–0.6%), dominant uncultured bacteria (~ 10%)

[100]

Landfill simulation
reactor with aerobic
and anoxic zones

Mature/
Illumina

13.8 L/m3/d
(HLR)/NR

3.02 g/L/2947
mg/L

77.67–80.61%/
72–98%

Methylocaldum (11.61–26.94%), Methylobacter (0.73–4.22%),
Nitrosomonas (0.62–2.75%), Nitrobacter (0.81–0.86%), Anaerolimnae
(0.98–10.20%), Others (Nitrospira, Paeniglutamicibacter,
Planococcus, Pseudomonas, Truepera)

[101]

Multistage biological
contact oxidation
reactor

Mix of synthetic and
landfill
leachate/Illumina

1–1.5 d/
NR

0.2–5 g/L/
100–832 mg/L

84.26–90.51%/
31.7–72%

Major taxa: Saprospiraceae, Family_XI, Comamonadaceae,
Trichococcus, Others (Acinetobacter, Anaerolinaceae, Arcobacter,
Bargeyella, Christensenellaceae, Desulfobulbaceae, Desulfobulbus,
Desulfomicrobiu, Enterococcus, Flavobacterium, Hydrogenophaga,
Leucobacter, Saccharibacteria, Stenotrophomonas, Thermomonas, NS9
marine group, vadinBC27)

[102]



Sustainability 2023, 15, 949 10 of 20

Table 5. Cont.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

Rotating biological
contactor

Mix of fresh & mature/
pyrosequencing

7 d/
30 d

2.1 g/L/
0.4 g/L

89%/
99.9%

Thauera (16.4–24.0%), Arenimonas (10.5–16.0%), Azoarcus
(5.0–12.0%), Hydrogenophaga (3.4–6.3%), Truepera (2.4–8.2%),
Pseudomonas (1.7–2.6%), Thiopseudomonas (0.7–1.7%), Others
(Anaerolineae, Clostridium, Limnobacter, Luteimonas, Ottowia,
Persicitalea)

[103]

* 100% sludge reflux ratio & mixed liquid reflux ratio 150%. GSBR: Granular Sequencing Batch Reactor; SBR: Sequencing Batch Reactor; FISH: Fluorescence in situ hybridization;
TN: Total Nitrogen; A/O MBR: Anoxic/Oxic Membrane Bioreactor; PCR-DGGE: Polymerase Chain Reaction—Denaturing Gradient Gel Electrophoresis; HLR: Hydraulic Loading Rate;
DOC: Dissolved Organic Carbon; NR: Not reported.

Table 6. Major microbial communities identified in Simultaneous Nitrification-Denitrification (SND) and ANAMMOX systems treating landfill leachate.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

PN, simultaneous
Anammox and
denitrification

Mature/
Illumina NR/35 d 1.35 g/L/

1200 mg/L
70%/
97%

Thauera (25.3%), Truepera (10.6%), Limnobacter (4.1%), Nitrosomonas
(3.0%), Candidatus Brocadia (2.1%), Candidatus Jettenia, Candidatus
Kuenenia

[104]

DN coupled with
PN-Anammox

Mature/
Illumina 1.15–1.91 d/NR 2.5 g/L/

2550 mg/L
<10%/
>90%

Partial nitrifification: Thiopseudomonas (4–40%), Saprospiraceae (4–8%),
Pusillimonas (2.5–8%), Arenimonas (2–4%), NS9 marine group (2–4%),
Others (Denitratisoma, Limnobacter, Nitromonadaceae, Nitrospira,
Novosphingobium, Ottowia, Pusillimonas)
Anammox: Candidatus Kuenenia (5–26.0%), Candidatus Brocadia
(0.9–3.5%), SBR1031 (5–18%), Limnobacter (2.5–6%), JG30-KF-CM66
(2–4%), Nitrosomonas (0.5–2%), Truepera (0.5–2%). Others:
(Actinomarinales, Arenimonas, Denitratisoma, Gemmatimonadaceae)

[105]

Single stage attached
growth anammox
SBR

Mature/
Illumina 2 d/NR 0.49–0.82 g/L/

88–159 mg/L
21–32%/
92–97%

Candidatus Brocadia (7–25%), Nitrosomonas (8–16%), Thauera (0.03–9%),
Candidatus Kuenia (0.1–8.5%), Hyphomicrobium (0.08–4%), Thermomonas
(0–3%), Arenimonas (0–3%), Comamonas (0.08–2%), Steroidobacter (0–1%),
Others (Azospira, Bdellovibrio, Candidatus Accumulibacter, Gemmata,
Hydrogenophaga, Hyphomonas, Isosphaera, Parvibaculum, Pirellula,
Roseomonas)

[106]
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Table 6. Cont.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

PN-SBR/Fermenter
SBR/Anammox SBR

Mature/
Illumina 1.67–10 d/10 d 1.5 g/L sCOD/

1236 mg/L
10%/
99.6%

Anaerolineae (15.58% biofilm & 12.53% floc sludge), Thauera
(0.11% & 17.29%), Candidatus Kuenenia (4.49% & 3.91%), Brocadiaceae
(4.13% & 3.42%), Acetonaerobium (0.02% & 4.07%), Dechloromonas
(0.004% & 1.69%), Saprospiraceae (1.51% & 1.51%), Parcubacteria
(0.003% & 0.63%)

[107]

Aerobic MMBR
(polyvinylidene
fluoride
biofillers)/SND

NR/
Pyrosequencing NR 4–7/2.1 g/L 64.3%/

97.4%

Thauera (1–10%), Truepera (4–10%), Myroides (2–8%), Pseudomonas
(1.5–8%), Hydrogenophaga (1–5%), Luteimonas (2–4%), Arenimonas,
Pseudoxanthomonas, Serpens, Tissierella, Solitalea, Nitrosomonas,
NItrobacter

[108]

Two sequencing
batch biofilm
reactors (SBBRs) for
simultaneous PN,
ANAMMOX and
denitrification

Mature/
Pyrosequencing NR 1.0 g/L/

1.9 g/L
59%/
95–97%

AOB (Nitrosomonas & Nitrospira) (16.5%), Anammox (Candidatus
Brocadia) (9.0%), Thermomonas (6.5%), Bellilinea (4.9%), Comamonas
(3.8%), Ferrugibacter (3.0%), Limnobacter (2.8%), Truepera (1.7%),
Brevundimonas (1.68%), uncultured Chloroflexi (1.31%)

[109]

PN: Partial Nitrification; DN: Denitrification; anammox SBR: Anaerobic Ammonium Oxidation Sequencing Batch Reactor; SND: Simultaneous Nitrification-Denitrification; SBBRs:
Sequencing Batch Biofilm Reactors; NR: Not reported.
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4.3. Microbial Communities during Anaerobic Digestion of Landfill Leachate

During anaerobic digestion of landfill leachate, hydrolytic and fermentative bacteria
of the order Bacteroidales (e.g., Petrimonas, Bacteroides and Parabacteroides), clostridia and
clostridia-like bacteria (Clostridium, Eubacterium, Anaerovorax, Butyricicoccus, Alkaliphilus),
and Synergistetes-like representatives (e.g., Synergistes, Thermoanaerovibrium, Aminobacterium)
are the common inhabitants of anaerobic bioreactor systems treating landfill leachate
(Table 7). Secondary fermenters, such as Syntrophobacter spp., are capable of convert-
ing volatile fatty acids (VFAs) and low-molecular weight alcohols to acetate in a syn-
trophic relationship with methanogenic archaea. Hydrotrophic methanogens of the orders
Methanobacteriales and Methanomicrobiales, such as Methanobacterium, Methanobrevibacter and
Methanoculleus, convert hydrogen and carbon dioxide to methane, whereas Methanosaeta
and Methanosarcina are key acetoclastic methanogens, producing methane from acetate. Sul-
phate Reducing Archaea (SRA), such as Sulfolobus and Picrophillus, are other members of the
kingdom Archaea carrying out the dissimilatory sulphate reduction in anaerobic systems
treating landfill leachate, converting sulphate to hydrogen sulfide (Table 7). Although the
threat from potential pathogens is restricted in anoxic-oxic and anammox systems treating
landfill leachate since only clostridia have been reported among the major microbial taxa
(Tables 5 and 6), such concern is greater during anaerobic digestion of landfill leachate since,
apart from clostridia, pathogens such as enterococci and treponema have been detected
(Table 7).
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Table 7. Major microbial communities identified in anaerobic digestion systems treating landfill leachate.

System Leachate Age/Method HRT/
SRT

COD/
NH4

+-N
CODrem/
NH4

+-Nrem Microbial Community Reference

AnMBR

Fresh/PCR-single-
strand conformation
polymorphism
(PCR-SSCP)

7 d/
infinite

84.29 g/L/
2800 mg/L

93.97%/
NA

Bacteria: Pseudomonas, Alkaliphilus, Aminobacterium, Anaerovorax,
Bacillus, Bacteroides, Brevibacterium, Butyricoccus, Clostridium,
Eubacterium, Parabacteroides, Petrimonas, Synergistes,
Thermoanaerovibrio, Verrucomicrobium
Archaea: Ferroplasma, Methanocella, Methanoculleus, Methanolobus,
Methanoplanus, Methanosaeta, Methanosarcina, Picrophillus,
Thesmoplasma, Sulfolobus

[110]

AnMBR
Mix of fresh & mature
leachate/
pyrosequencing

2.5 d/
125 d

13 g/L /
3.2 g/L

62%/
NA

Bacteria: Fastidiosipila (9.25–12.2%), vadinBC27 (6.3–16.5%),
Alkaliphilus (0.12–2.94), Enterococcus (0.15–3.53%), Petrimonas
(0.32–1.31%)
Methanogenic Archaea: Methanosarcina & Methanosaeta (52.3 to
81.6%), Methanobacterium & Methanobrevibactor (45.3 to 17.6%) Others
(Methanoculleus, Methanofollis)

[111]

Anaerobic buffled
MBR/Struvite/O3

Mature/
Illumina 6 d/NR 12.32 g/L/

1583 mg/L
77–80%/
22–26%

Brevundimonas (0.04–6.88%), Alkalibacilum (0.04–4.12%), Methylophaga
(0.21–3.84%) Percubacteria (0.41–1.82%), Thiopseudomonas
(0.02–1.72%), Petrimonas (0.002–1.22%), Others (Acholeplasma,
Hyphomicrobium, Luteimonas, Methylophaga, Pusillimonas,
Sphaerochaeta, Truepera)

[112]

Anaerobic digester Fresh/
pyrosequencing

NR/
NR

5.63 g/L/845.2
mg/L

71.1% (mesophilic) &
77.1%
(thermophilic)/NA

Mesophilic bacteria: Treponema (6.6%), Desulfovibrio (6.0%), E6
(3.6%), HA73 (2.3%), Syntrophobacter (2.0%), Lutispora (1.6%)
Thermophilic bacteria: S1 (16.8%), A55_D21 (2.5%)
Mesophilic archaea: Methanosaeta (75.9%), Methanobacterium (14%)
Thermophilic archaea:
Methanobacterium (30.5%), Methanoculleus (28.8%), Methanosaeta
(18.1%), Methanosarcina (9.5%)

[113]

Others

Conical flasks (fruits
as C source)

Mature/
Pyrosequencing

2 d/
2 d 0.98/1.23 g/L

87.4–93.2%/
99.9%,
at C/N 7

Paracoccus (59.77–69.06%), Bacillus (1.05–2.89%), Tessaracoccus
(1.05–2.6%), Sanguibacter (0.89–2.07%), Raineyella, Sacharimonadaceae,
TM7a, Xanthomarina, Arenimonas

[114]

AnMBR: Anaerobic Membrane Bioreactor; PCR-SSCP: Polymerase Chain Reaction—Single-Strand Conformation Polymorphism; MBR: Membrane Bioreactor; NA: Not applicable.
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4.4. Biological Systems and Factors Influencing the Biotreament of Landfill Leachate

Reduction of pollutants under certain thresholds is compulsory for treatment plants’
authorizations, directing the focus of researchers on landfill leachate treatment techniques,
knowing that dilution is not an acceptable option. Pollutant removal can be carried out on-
site or off-site, according to the location of the treatment facility, or can be provided by per-
forming sequential processes, combining biological and physiochemical approaches [115].

Both age of landfill and leachate composition influence the selection of the right
treatment design [116]. Biological treatment is based on the growth of a specific microbial
population to remove organic and inorganic components from the leachate, but its efficiency
is highly dependent on landfill age and is less effective when mature leachate is treated [117].
The main parameters affecting the biodegradation rate are the sludge age, the F/M ratio,
the hydraulic retention time and the dissolved oxygen concentration [118]. Biological
treatment is economical and energy recovery can be achieved in some cases [119], even
though unbalanced nutrients content, OLR variations, increased ammonium nitrogen
concentration and insufficient phosphorus content may compromise the process [120].
Furthermore, humic and fluvic acids and xenobiotics resist degradation [120].

Satisfactory removal rates may be achieved for macropollutants, such as COD, BOD
and TKN, during biological treatment of young leachates. If leachate is produced in an
aged landfill, physiochemical treatment is the most suited, due to the high content of non-
and low-biodegradable organic compounds. A combination of treatments can be helpful
for overcoming the limitations of both methods [117].

In full- and pilot-scale Sequencing Batch Reactors (SBRs) the oxidation of ammonium
nitrogen can be completed successfully, as the efficiency may reach 99%. However, in
the case of increased presence of inorganic nitrogen content, the ability of the process
to effectively treat landfill leachate is limited. For influent ammonia concentration of
1.3 g/L in mature landfill leachate, the efficiency of a full-scale SBR system was slightly
over 70% [121], whereas the COD removal efficiency for intermediate and mature landfill
leachate in full-scale SBR systems ranged between 40 and 45% [79,122].

5. Conclusions

Current quantities of the total waste generated justify the need for additional scientific
research, high alert and concern regarding the management and treatment of the produced
landfill leachate inside the sanitary landfills. At every stage of the stabilization process, the
landfill leachate consists of high organic content, as well as substantially high ammonium
nitrogen concentration. Heavy metals are constantly detected, whereas a broad range of
xenobiotics and pharmaceuticals, like CHCs, PFCs, phenols, PAHs and plasticizers, enhance
the recalcitrant nature of this wastewater, which in most cases may pose a toxic effect on
living organisms, even at extremely low dilutions (0.53% v/v). The physiochemical methods
applied for depuration of leachate may serve as pretreatment, aiding the subsequent
activated sludge methods, which are mainly carried out through the operation of SBRs and
MBRs. Such activated sludge systems are driven by specialized microbiota, i.e., Thauera,
Truepera, Pseudomonas, Paracoccus, Luteimonas and Pusillimonas, capable of dealing with the
recalcitrant nature of landfill leachate. Biological nitrogen removal is effectively achieved
during landfill leachate treatment in both anoxic-oxic and anammox systems. Regarding
nitrification, Nitrosomonas spp. are the main ammonia oxidizers during partial nitrification,
while Nitrobacter and/or Nitrospira strains, as well as by members of Candidatus Nitrotoga,
are the key nitrite-oxidizers. Due to high ammonium concentration and the low COD
content of recalcitrant nature, anammox process is advantageous to remove nitrogen
content without the need for external carbon source as electron donor and high energy
consumption for complete nitrification. Anaerobic treatment may also be applied at early
stages of landfill operation, resulting in the production of 0.30 to 0.35 CH4/g CODrem. A
concern is raised during anaerobic digestion of landfill leachate, due to the detection of
pathogens such as enterococci and treponema.
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