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Abstract: Genetic transformation has emerged as an important tool for the genetic improvement
of valuable plants by incorporating new genes with desirable traits. These strategies are useful
especially in crops to increase yields, disease resistance, tolerance to environmental stress (cold, heat,
drought, salinity, herbicides, and insects) and increase biomass and medicinal values of plants. The
production of healthy plants with more desirable products and yields can contribute to sustainable
development goals. The introduction of genetically modified food into the market has raised potential
risks. A proper assessment of their impact on the environment and biosafety is an important step
before their commercialization. In this paper, we summarize and discuss the risks and benefits
of genetically modified plants and products, human health hazards by genetically transformed
plants, environmental effects, Biosafety regulations of GMO foods and products, and improvement of
medicinal values of plants by the genetic transformation process. The mechanisms of action of those
products, their sources, and their applications to the healthcare challenges are presented. The present
studies pointed out the existence of several controversies in the use of GMOs, mainly related to the
human health, nutritions, environmental issues. Willingness to accept genetically modified (GM)
products and the adoption of biosafety regulations varies from country to country. Knowledge about
the gene engineering technology, debate between the government agencies, scientist, environmentalist
and related NGOs on the GM products are the major factors for low adoptions of biosafety regulation.
Therefore, the genetic transformation will help in the advancement of plant species in the future;
however, more research and detailed studies are required.

Keywords: transgenic plants; genetic transformation; environmental effects; biosafety regulations;
Agrobacterium tumefaciens; electroporation

1. Introduction

Present agriculture practices alone cannot solve food security, and eradicate malnu-
trition and hunger that exist globally [1]. Recent research reported that approximately
17.2% of the global population is lacked to the access of nutritious and sufficient food [2].
According to a survey, the present global rate of increase in crop yield is less than 1.7% and
currently, the rate of increase in agricultural yield needs to be 2.4% to meet the world’s
demands for grains and to improve the nutritional quality [3]. FAO predicted the loss of
arable land available for crop production from the current 0.242 ha to 0.18 ha by 2050 [4].
Conventional breeding creates a new population by intercrossing several lines with another
parental line, in hopes of expressing one or more desired traits [5]. The conventional breed-
ing process process have certain limitations such as sexual incompatibility, gene linkage,
and the time involved in obtaining cultivars [6].

Genetically modified organisms (GMOs) are usually referred to as living organisms
whose genetic makeup has been artificially manipulated by inserting new genes through
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the process called the technology of recombinant DNA, or genetic engineering giving the
plants new characteristics [7]. Genetically modified plants and products that emerged along
with advanced biotechnology can contribute to the increase in agricultural production,
and improved nutritional values that could relieve global food shortages [8]. Moreover,
genetic transformation methods have generated the possibility of producing plants with
desired traits in elite cultivars in considerably shorter time-frames with reduced gene
linkage problems [9]. This technique not only provides desirable traits but also improves
nutritional levels, transforming them into rich and healthy food items in both dicot and
monocot plants [10]. Such technology is widely applicable in transferring genes from any
organism to a great variety of plant species, from wild to cultivated species, thus preventing
the natural barriers between species and reducing the time to obtain new varieties [11].
The use of these techniques in agriculture has also enabled the discovery of processes that
involve the use of DNA techniques, which enable their propagation via cell and tissue
culture in vitro, and in the production of transgenic plants to develop drug leads, and
perform biosynthesis of functional compounds, enzymes, and hormones, blood substitutes,
vaccines and antibodies [12], for the production of medicines, recombinants, and industrial
products [13].

Agricultural products produced by genetic manipulation of crops such as soy, cotton,
tomato, potato, canola, and corn, among others, have already been approved for market-
ing [14]. GMOs have great potential to solve the poverty of the global population, improve
the nutritional value of crops, reduce environmental pollution, enhance medicinal values,
and contribute to the sustainability of agriculture [15]. Despite the advantages of GMOs,
there are widespread concerns about the biosafety of the products, causing the great concern
regarding human health and environmental integrity, and political and regulatory issues [16].
The use of transgenics generates controversies related to possible risks to human health, such
as; food allergies, antibiotic resistance, increase in toxic substances, more pesticides in food
consumed, and also the lack of information on packaging labels [17]. Several arguments
and intense debates have emerged from different forums analyzing potential benefits and
possible risks associated with the cultivation and consumption of GMOs in terms of ethical,
environmental, health, biodiversity, and religious issues [16]. It is, therefore, important to
conduct the risk assessment of genetically modified plants and their products by making
common regulatory methods before their release into nature and applications [18]. However,
restrictions on transgenic plants exist and vary from country to country.

This study aims to analyze the possible harm and benefits of transgenic food according
to the scientists working in the field, making people know what they are consuming. More-
over, the impact of transgenic plants on human health, the environment, and agriculture
have been analyzed critically. This study will also take a look at the Gm biosafety and
regulatory framework for GM foods in different countries. We will also take a look at the
risks and controversies of GMOs

2. Literature Search Method

The literature presented in the study covers different social science field related to the
GMOs. We conducted a mini survey of literature of GM plant and its products published
in the journals (research articles and reviews paper) from 2000 to 2022. The search engines
used in the collection of published papers (accessed on 1 October 2022) were Google scholar
(http://www.google.co.kr), PubMed. The data base such as Scopus (https://ww.scopus.com,
accessed on 1 October 2022) were used selection of identification of publications. All the
downloaded papers were peer reviewed, English language, and related to GM products.
Relevant published papers were searched in the Google scholar using the list of keywords
(search terms). The search terms were organized in the following different groups: genetically
modified organisms (GMOs), risk and advantages of GMOs, GMOs and biofortifications,
phytoremediation, allergens, phytochemicals, GMOs and environmental and human health
issues, and biosafety regulations, GMOs and controversies. The collected data were analyzed
and illustrated to obtain the results based on the objectives of the present study.

http://www.google.co.kr
https://ww.scopus.com
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3. Plant Genetic Transformation Methods

Hundreds of plants species have been successfully transformed by various genetic
transformations and for numerous useful traits; however, these techniques have inherent
problems and limitations, including the lack of an efficient plant regeneration system, low
frequency of transformation, genotype specificity, low availability of genes of interest and
biosafety, and time and labor-intensiveness [19]. The successful regeneration of transgenic
plants requires two major factors: an efficient, rapid, reproducible regeneration system and
an effective method for the integration of genes into the DNA of plant cells [20]. Foreign
genes can be introduced into plant genomes by various methods, including biolistics,
sonication, liposomes, viral vectors, transfer mediated by Agrobacterium, chemicals, silicon
carbide fibers, floral dip method, microinjection, and microlaser treatment depending on
the species to be transformed and types of explants used [21]. Among these, transformation
mediated by Agrobacterium, electroporation, and biolistics, are the most commonly used
methods for producing commercially released transgenic plants. Despite the limitations of
transgenic plants, there has been a continuous increase in the production of such plants to
improve the nutritional and medicinal value of crops.

3.1. Agrobacterium-Mediated Transformation of the Plant

Plasmids are the most commonly used vectors in the genetic transformation of plants
(Figure 1). These vectors have an artificial T-DNA, into which different transgenes can be
inserted and transferred to host plants [22]. Agrobacterium tumefaciens and A. rhizogenes have
plasmid types Ti and Ri, respectively, both of which can be used for genetic transformation.
The advantage of Agrobacterium-mediated transformation is that it possesses the natural
ability to transfer and integrate transgenes into the host cell, transfer large segments of DNA
with only minimal rearrangement, and possess the higher rates of genetic transformation
efficiency, low copy number integration, and enable the transmission of integrated genes
into progeny in a Mendelian manner [23]. This technique is applicable in both monocot and
dicot plants, algae and fungi, human cells, and sea urchin embryos [24,25]. The limiting
factor of this technique is the ability to regenerate the transformed tissues and the low
transformant ratio; in addition, the size and complexity of the Ti and Tr plasmids also
influence the rate of transformation [26].
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Figure 1. Agrobacterium-mediated genetic transformation of the plant. The schematic diagram shows the
steps associated with the cloning of the gene of interest in the Ti-plasmid of Agrobacterium tumefaciens
and its transfer to plant cells in culture to regenerate the transgenic plants with desirable traits.
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3.2. Biolistics Method of Genetic Transformation of the Plant

This method is also called a gene gun, particle acceleration, or microparticle bombard-
ment for the growth of transformants [27]. This method is useful for both dicot and monocot
plants, consisting of bombarding cells or tissues with 0.5 mm gold or tungsten microparti-
cles carrying exogenous DNA-coated projectiles using compressed helium incubated at
30 ◦C in a special chamber under vacuum conditions (Figure 2). The mechanism involves
direct penetration of the cell wall and plasma membrane for direct DNA transfer [28].
Different systems are employed to accelerate the particles, including chemical explosion,
higher pressure helium, electrical discharges, and vaporization of water drops [29]. This
method readily transfers genes into intact plant tissues, including leaves, petals, and pollen
endosperm, and has been successfully used to generate transgenic maize, soybeans, oats,
rice, wheat, and barley [30]. The advantages of this method are that it consumes less time,
allows the cells and tissues to undergo direct gene transformation, and can be applied to
diverse groups of plant species with the higher stability of transformants [28].
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the bombardment of gold particles containing the gene of interest onto the plant cells in culture to
regenerate the transgenic plants with desirable traits.

3.3. Electroporation Method of Genetic Transformation of the Plant

The electroporation method was initially developed for the transformation of cereal
genes and was later applied to other plant species. This method utilizes a high-voltage
electric field to generate holes in the plasma membrane (Figure 3). The electrostatic forces
formed in the process cause compression, which leads to the formation of holes in the
membrane to integrate the transgene to be taken up by the cell [31]. The successful
regeneration of transgenic plants using electroporation methods depends on various factors,
including the diameter and source of host cells, electroporation medium (pH), electrical
conductivity, membrane composition, size and shape of introduced DNA, and intensity
and duration of electrical pulses used in the process [31]. The limitation of this method is
the production of efficient protoplasm regeneration protocols and high cell mortality [32].
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shows the steps involved during the electroporation that lead to the insertion of the exogenous gene
of interest into the plant cell.

4. Benefits of Genetically Modified Plants and Products
4.1. Biofortification

Micronutrient deficiencies are posing a serious threat to the health of one–half of the
global population [33]. Nutritionally enhanced food crops using modern biotechnology,
conventional selective breeding, and agronomic practices to enhance nutritional values
are considered an effective and alternative approach for mitigating in economically poor
countries [34]. The production of foods using biotechnology offers both benefits and threats.
The production of transgenic plants is not only helpful in developing new varieties with
increased nutrition but also increased resistance against biotic and abiotic factors, thereby
enhancing the quality and yield of plants [35]. In addition, plant production enables the
production of materials of industrial interest, such as biodegradable plastics, vaccines
(transgenic bananas that produce vaccines against hepatitis B, transgenic potatoes that are
resistant to viruses, rice with increased iron and vitamin levels, with increased resistance to
extreme weather, and drought, [12,36,37].

GMO consumption maintains a healthy balance by fortifying nutritional quantity in
foodstuffs that may not normally occur in them. For example, the production of “golden
rice” with elevated vitamin A levels, the development of herbicide- and insecticide-resistant
crops, thereby reducing crop losses, and other therapeutic substances of specific interest [38].
Moreover, research reports have indicated that proteins produced by GMOs are non-toxic,
easily digestible, and cause no allergies [39]. Genetically modified fish grow larger, and
pigs are grown with less body fat [40]. Other studies have reported increased beneficial
nutritional profiles, such as increased levels of antioxidant compounds in GMOs that may
provide health benefits to humans [41], and provide useful medicines, such as insulin for
treating diabetes, from genetically engineered bacteria [42].

4.2. Transgenic Approaches for Improving Phytochemicals and Biological Activities in Plants

Several authors have reported an improvement in the production of antioxidants, such
as phenolic compounds, from transgenic plants transformed with the bacteria
Agrobacterium tumefaciens and A. rhizogenes (Table 1). Increased concentrations of phe-
nolic compounds have also been reported to improve antimicrobial activities in Cucumis
melo [43]. Furthermore, scientists have produced transgenic lines by overexpressing genes
in Lycopersicon esculentum Mill. cv. Per with increased phenolic compound content in plants
that are involved in phytoremediation [44]. Moreover, an increase in metabolites such as
triterpene and steroidal saponins, and phenolics [45], was reported in hairy root cultures of
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Trigonella foenum-graecum L., an elevated amount of phenolics acid, and flavonoids [46] was
reported in Spagneticola calendulacea (L.) Pruski to increase food value. Increased resistance
to Botrytis cinerea in transgenic Morus notabilis C.K. Schneid [47].

Genetic engineering has been successful in producing transgenic rice that contains
23 times higher concentrations of carotenoids than in previous transgenic golden rice [48].
Similarly, the genetic transformation of phytase in the transgenic soybean resulted in
enhanced phytase activity by 2.5 fold compared to non-trangenic soybean [49]. More-
over, methyltransferase genes (VTE3 and VTE4) from Arabidopsis thaliana transformed into
the soybean genome resulted in an enhanced α-tocopherol content by 95% more than in
non-trangenic plants [50]. The transformation of lactoferrin in dehusked rice successfully
enhanced the iron contents by 120% [51]. In another report, expression of soybean ferritin
in rice resulted in an increase in the iron contents in Indica cv IRR68144 seeds, in wheat by
1.5–1.9 fold [52], lactoferrin genes enhanced the Fe content in Maize [53], potato, lettuce and
tomato [54], Endogenous nicotianamine content was increased by 5–10 fold in transgenic
rice over-expressed with HvNaSi [55]. Induces the proliferation of hairy roots, which
increases the production of secondary metabolites. Many plant species have been trans-
formed with A. rhizogenes for increased production of polyphenolic antioxidants such as
phenolic acids and flavonoids (Table 1). Transformed plants of Codonopsis lanceolata and Per-
illa frutescens transformed with γ-tmt genes present higher concentrations of tocopherol and
phenolic compounds, thereby enhancing the antioxidant properties of such plants [25,56].
Another approach to the recombinant production of foodstuffs is the genetic transformation
of useful genes that enhance the production of beneficial compounds in plants and improve
human health. Recently, researchers introduced genes into Lycopersicon esculentum Mill. cv
Ailsa Craig, to increase the accumulation of antioxidants, such as phenolic compounds [57].
Similarly, increased amounts of phenolic compounds and resveratrol have been reported in
transgenic Rehmannia glutinosa transformed by A. tumefaciens [58].



Sustainability 2023, 15, 1722 7 of 25

Table 1. Genetic transformation strategies and genes used for the biofortification in crops.

Scientific Name Agrobacterium Strains/Vector Gene Phytochemicals Biological Activity References

Codonopsis lanceolata LBA4404/pYBI121, γ-tmt Phenolic compounds and tocopherol Antioxidant and antimicrobial activity Ghimire et al. [25]
Perilla frutescens LBA4404/pYBI130 γ-tmt Phenolic compounds and tocopherol Antioxidant and antimicrobial activity Ghimire et al. [57]

Lycopersicon esculentum L. pBI101 stilbene synthase (StSy) Resveratrol Antioxidant activity D’Introno et al. [59]

Cucumis melo MAFF 03–01724 (pRi1724) rolC gene
Aroma essential oils (Z)-3-hexenol,

(E)-2-hexenal, 1-nonanol, and
(Z)-6-nonenol

Antimicrobial activity Matsuda et al. [43]

Wheat pMDC32 Nicotianamine synthase 2 (OsNAS2) Higher concentration of grain iron
and zinc Beasley et al. [60]

Cassava LBA4404/p8023 FER1 and IRT1 Higher concentration of iron and zinc Narayanan et al. [61]
Rice pMDC32 35S-OsGGP Increase concentrations of ascorbate Broad et al. [62]

Soybean EHA105/pATPS1 Overexpression of adenosine
5′-phosphosulfate sulfurylase 1

Higher aamounts of sulfate, cysteine,
and secondary metabolites in seeds Kim et al. [63]

Gynostemma pentaphyllum ATCC 15834 TL-DNA rolB Triterpene saponins Antitumor, immunopotentiating,
antioxidant, antidiabetic Chang et al. [64]

Momordica charantia ATCC 15834 rolC gene Charantin Antioxidant, antibacterial, antifungal Thiruvengadam et al. [65]
Momordica dioica KCTC 2703 rolC gene Phenolic compounds Antioxidant, antibacterial. Thiruvengadam et al. [66]
Cucumis anguria KCTC 2703 rolC gene Phenolic compounds antioxidant, antibacterial Yoon et al. [67]

Lycopersicon esculentum Mill. pBBC200/pBBC3 LC and C1. Flavonoids Antioxidant activity Le Gall et al. [68]
Rehmannia glutinosa LBA4404/pMG-AhRS3 Resveratrol Synthase Gene (RS3). Phenolic compounds and Resveratrol Antioxidant activity Lim et al. [58]

Ipomoea batatas [L.] Lam. pCAMBIA1300 IbCAD1 lignin contents, monolignol levels,
and syringyl (S)/guaiacyl (G) Stress tolerance Lee et al. [69]

Miscanthus sinensis LBA4404/pMBP1 antisense COMT gene. Lignin content Lignin biosynthesis Yoo et al. [70]
Cucumis melo MAFF 03-01724 rolCgene Volatile compounds Antimicrobial activity Matsuda et al. [43]

Trigonella foenum-graecum L. ARqua1 and LBA9402, nary
vectorp35S::eGFP,

Green fluorescent protein gene [eGFP
S65T variant

triterpene and steroidal saponins,
phenolics, and galactomana Heterologous expression Garagounis et al. [45]

Sphagneticola calendulacea (L.) Pruski LBA1334, pCAM:2 × 35S:g rolA,rolB, rolC and gusA Phenolics acid and flavonoids Anti-hepatotoxic activity Kundua et al. [46]
Morus notabilis GV3101/pLGNL MnMET1 Flavonoid content Inhibitory effect on Botrytis cinerea Xin et al. [47]

Arabidopsis thaliana (L.) pCAMBIA1301-AtMyB12 AtMYB12 Phenolic compounds Increase in the flavonoid contents Wang et al. [71]

Gynostemma pentaphyllum ATCC 15834 TL-DNA rolB Triterpene saponins (gypenosides)
Antitumor, cholesterol lowering,

immunopotentiating, antioxidant,
hypoglycemic, antidiabetic activity

Chang et al. [64]

Aspergillus niger ANIp7-laeA LaeA flaviolin, orlandin and kotan Biosynthetic model for flaviolin Wang et al. [72]
Nicotiana tabacum pCAMBIA1301- LlCCR Phenolic compounds, Wood properties Prashant et al. [73]

Brassica rapa ssp. rapa KCTC 2703 rolC and virD2 Phenolic compounds Antioxidant activity, antimicrobial activity Chung et al. [74]

Hypericum perforatum L. Ri plasmid rolB Phenolic compounds, hypericin, and
pseudohypericin Antioxidant activity Tusevski et al. [75]

Nicotiana tabacum L. pGANE7/pBAK61 AK-6b Phenolic compounds Auxin and cytokinin Galis et al. [76]

Solanum tuberosum LB4404/pBinKan-TX TyrDC2 Phenolic compounds, tyrosol
glucoside Increased resistance against pathogens Landtag et al. [77]

Salvia miltiorrhiza Bunge GV3101/pHB-GFP RAS and CYP98A1 Phenolic compounds Antibacterial; Antioxidant activity; Fu et al. [78]
Nicotiana tabacum L. LB4404 ipt-gene Phenolic compounds Peroxidase activity Schnablová et al. [79]

Artemisia carvifolia Buch GV3101 c/pPCV002 rol Genes Artemisinin Increased production of artemisinin Dilshad et al. [80]

Cucumis anguria L. BA9402, A4, 15834, 13333, R1200,
R1000 rol A and rol B Phenolic compounds Antioxidant and antimicrobial activity Sahayarayan et al. [81]

Medicago sativa LBA4404 /pUC18-PAL COMT and CCoAOMT Phenolic compounds Lignin biosynthesis Guo et al. [82]
Nannochloropsis sp. BA4404/pCAMBIA130404 gus–mgfp5 Phenolic compounds Transient GUS expression in Cha et al. [83]

Linum usitatissimum C58C1:pGV2260
Chalcone synthase (CHS), chalcone

isomerase (CHI), and
dihydroflavonol reductase (DFR)

Phenolic compounds,
monounsaturated fatty acids, and

lignans content
Antioxidant properties Lorenc-Kukuła et al. [84]



Sustainability 2023, 15, 1722 8 of 25

4.3. Transgenic Approaches for Environmental Protection

The benefits of transgenics can be assessed from an environmental point of view
(Table 2). Bacillus subtilis and Bacillus thuringiensis (Bt) strains can produce toxic proteins
such as Cry or d-endotoxins [85], that are toxic to various kinds of pests, insects, and
pathogens [86]. Bt toxins are also being used in generating trangenic crops effectively con-
trol crops pests such as CryIAc in rapeseed to control hairy bugs, diamondback moths, and
cotton bollworms [87]. Cry2Aagene in transgenic pigeon beans to control pod borers [88],
Cry3A gene in transgenic spruce to control bark beetles [89]. According to a recent report,
a significant change in the amount of herbicides and pesticide application was observed
in the USA with the adoption of herbicides tolerant GM plants [90], such as; transgenic
soybean [91], summer corn and cotton. The reduction of herbicides and pesticides can
reduce the environmental impacts on cultivated land. The reduction in the application of
pesticides also minimizes the use of machinery for spraying them in the field, thus reducing
fossil fuel consumption in the agriculture sector.

Table 2. Genetic transformation strategies and genes used for the improvement of biotic and abiotic
stress resistance in crops.

Scientific Name Plant Parts A. tumefaciens
Strains/Vector Gene Biotic and Abiotic

Resistance References

Medicago sativa Leaves and petiole
Agrobacterium.

tumefaciens LBA4404/
AGL01/S GV101

CRY3A (BT Toxin) Insect resistance Tohidfar et al. [92]

Oryza sativa L. Seed Particle bombardment ITR1 gene Insect resistance Alfanso-Rubi et al. [93]

Glycine max L. Somatic embryo Micro projectile
bombardment Viral coat protein Soybean dwarf virus

resistance Tougou et al. [94]

Jatropha curcas L. Leaves
Agrobacterium

tumefaciens EHA 105
strain

Chitinase Disease resistance Franco et al. [95]

Glycine max L. Leaves Agrobacterium
tumefaciens CRY1A gene (TIC107) Insect resistance Macrae et al. [96]

Gossypium hirsutum var
Coker Seed

Agrobacterium
tumefaciens (LBA

4404)/PBI121
CRY1AB gene Insect resistance Tohidfar et al. [97]

Brinjal Leaves
Agrobacterium

tumefaciens
LBA4404/pBI121

CYSTATIN gene
Higher rate of inhibition
of root-knot nematode

in transgenic plant
Papolu et al. [98]

Kiwi fruits Leaves
Agrobacterium

tumefaciens
LBA4404/pBin513

sbtCryIAc gene Resistance against
Oraesia excavate Zhang et al. [99]

Camelina sativa L. Floral parts
Agrobacterium rhizogenes

(pB172)/plasmid
pKYLX71.1

ACDS: ACC deaminase Salinity tolerance Heydarian et al. [100]

Arabidopsis thaliana L. Seedlings

Agrobacterium
tumefaciens

GV3101/pBI121
expression vector

Transcription factor
JCCBF2 Freezing tolerance Wang et al. [101]

Camelina sativa L. Flower, stem, leaf, and
root

Agrobacterium
tumefaciens/pCB302-3

vectors
CSHMA3 Heavy metals tolerance Park et al. [102]

4.4. Transgenic Approaches for Removing Allergens

Genetic transformation technology successfully incorporated genes in the plants
responsible for encoding non-allergic proteins, and hypoallergenic crops, thus improving
food protein equality [103]. A significant reduction in peanut allergies was reported by
silencing the gene encoding Arah2 using RNAi technology [104]. Similar technology
was used by Le et al. [105], to silence the allergens Lyce 1.01 and Lyce 102 in tomato
profiling. Similarly, allergic proteins such as Mal d from apple [106], and GlymBd 30K from
soybean [107] were silenced using RNAi technology. In other studies, the hypoallergenic
approach was effective to reduce allergenic protein in Rye gram pollen [108]. All these
studies indicate that engineered plants can also be expected to improve food quality by
reducing allergens.
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4.5. Transgenic Approaches for Phytoremediation

Phytoremediation is a sustainable solution for solving environmental contaminants
caused by pollutants including heavy metals sediments, and inorganic and organic pol-
lutants. Recently, the application of transgenic plants for the removal of heavy metals
or organic pollutants has gained more interest [109] (Table 3). It is possible to transfer
genes responsible for the hyperaccumulation of traits into target plants having remediation
potential. The introduction of such genes has been reported in several plants including
A. thaliana, [110]. Metallothioneins (MTs) confer heavy metal tolerance and accumulation
in yeast. For example, the overexpression of MT genes increased the Cd tolerance in
tobacco and raper seed plants [111]. Overexpression of phytachelatin synthase (TaPCSi)
in Nicotiana glauca significantly increased the tolerance to heavy metals such as Cd and
Pb [112]. In another study, overexpression of AtPCS, increased the phytochelatins and high
resistance to arsenic [113]. Arsenate (As), mercury (Hg), and selenium (Se) are important
pollutants, and transfer approaches have been employed to remove them from the soil [114].
Expression of the mer B gene in transgenic Arabidopsis thaliana resulted in more tolerance
to methylmercury [115]. Similarly, overexpression of ATP sulfurylase and CGS resulted
in an increased phytovolatilization in Brassica sp. [116]. Enzymes such as peroxidases,
laccases, peroxygenases, nitroreductases, and phosphatases play important roles in the
phytodegradation of organic pollutants [117]. These plant enzymes shown to act on organic
pollutants including atrazine, chloroacetanilide, and TNT (2,4,6trinitrotoluene) [118]. An
increased rate of degradation of TNT and chloroacetanilide has been reported previously in
poplar plants [119]. Other best example of phytoremediation includes the overexpression
of ECS and GS genes in B. juncea resulted in increased tolerance to atrazine [120].

Table 3. Genetic transformation strategies and genes used for increasing phytoremediation efficiency
in crops.

Plant Gene A. tumefaciens
Strains/Vector Product Activity References

Arabidopsis thaliana L.
and Poplar PtABCC1 A. tumefaciens

GV3101/pCX-SN ABC transporter Hg tolerance Sun et al. [110]

Arabidopsis thaliana L. TpNRAMP5 pMD19-T, HBT95-GFP,
pCAMBIA1305.1,

Numerous natural
resistance-associated
macrophage proteins

Increased accumulation of
Cd, Co, and Mn Peng et al. [86]

Arabidopsis thaliana L. CsMTP9
pENTR/D-TOPO vector

into pMDC43 or
pMDC83

Metal transport protein 9 Increased accumulation of
Mn and Cd Migocka et al. [121]

Tobacco OsMTP1 E. coli, DH10B (GIBCO
BRLp/UC18) Metal transport protein 1 Cd hyperaccumulation Das et al. [122]

Salix matsudana ThMT3
A. tumefaciens

LBA4404/PROKII-
ThMT3

Metallothionein Increased Cu tolerance
and root growth Yang et al. [123]

Tobacco AtPCS1
A. tumefaciens

LBA4404/pBI121 and
pCAMBIA

Phytochelatin synthase Cd and As accumulation Zanella et al. [124]

Petunia RsMYB1 A. tumefaciens
C58C1/pB7WG2D Transcription factor Enhanced tolerant to Cd„

Cu, Zn Ai et al. [125]

Arabidopsis thaliana L. ZAT6 A. tumefaciens
GV3101/pXB93

Zinc-finger transcription
factor Enhanced Cd tolerance Chen et al. [126]

Beta vulgaris St GCS-GS A. tumefaciens
EHA105/pGWB2 StGCS-GS Increased Cd, Zn, Cu

tolerance Liu et al. [127]

Rice TaPCS1 A. tumefaciens
EHA105/pBI121

Phytochelatin synthase,
non-protein thiols Cd hypersensitivity Wang et al. [128]

Arabidopsis thaliana L. AtABCC3 A. tumefaciens
GV3101/pER8 Phytochelatin Increased Cd tolerance Brunetti et al. [129]

Brassica napus BnNRAMP1b
ycf1 (Y04069), zrc1

(Y00829), smf1 (Y06272),
BY4741/pYES2

Transport functions Enhanced uptake of Cd,
Zn, Mn Meng et al. [130]

Indian mustard gshI, gshII and
APS1 pFF19

γ-Glu-Cys synthetase,
glutathione Synthetase,

and ATP sulfurylase
Enhanced Se, Banuelos et al. [131]

Arabidopsis thaliana L. OASTd A. tumefaciens
CV50/pBI121 Cysteine synthase Tolerance to Cd Dominguez-Solis et al. [132]

Arabidopsis thaliana BnPCS A. tumefaciens
CV50/pBI121 Phytochelatin Tolerance to Cd Bai et al. [133]

Brassica napus CKX2 A. tumefaciens GV3101 Cytokinin content Tolerance to Cd, Zn Nehnevajova et al. [134]
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4.6. Transgenic Approaches for Vaccine Production

The expression of antigens using biotechnology in plants has opened up a new field for
the production of plant-based vaccines. Advances in transgenic research have made use of
plants to serve as a bioreactor for the production of certain vaccines for curing diseases [135].
Several plant-based vaccine antigens have been successfully expressed in plant tissues as a
result of a stable expression or transient expression of genes [136] (Table 4). Plant-based
vaccines are cost-effective, easy to carry, have less chance of contamination and degradation,
require no medical professionals, high-tech machines, or preservation, and are less costlier
than cell culture bioreactors [137]. By conceiving the idea of an edible vaccine, the antigens
genes encoding Rabies Capsid proteins such as HBsAG, and HIVgag have been successfully
expressed in transgenic tomatoes [138]. Exciting progress in achieving a high level of protein
expression was achieved in transgenic carrots by Daniell et al. [139]. Later, Scotti and their
research [140] team obtained chloroplast-based production of pharmaceuticals, vaccines,
and antibodies. Transgenic N. benthamiana plants were successfully expressed with D
antigen (PV3) to use a vaccine against polio diseases Marsian, et al. [141].

Table 4. Representative transgenic plant-based vaccines.

Plants Antigen/Virus Diseases Method of Administration Reference

Transgenic potatoes Hepatitis B surface antigen
(HBsAg) Hepatitis B Oral Richter et al. [142]

N. tabacum cv. Samsun
Virus glycoprotein and

nucleoprotein fused with
A1Mvcoat protein

Rabies Parenteral Yusibov et al. [143]

Potato, Maize kernels
Potato E. coli LT-B Diarrhea Oral Tacket et al. [144]

Potato Norwalk virus like particles
(rNV) Diarrhea, nausea Oral Mason et al. [145]

N. benthamiana D antigen (PV3)/Poliovirus polio Intraperitoneal injections Marsian, et al. [141]
N. benthamiana H1, H5/Influenza virus Influenza NA Makarkov et al. [146]

Peanut and tobacco
Glycoproteins hemaglutinin

(H), Hemaglutinin
neuraminidase (HS)

“cattle plague” and “Goat
plague” NA Abha Khandelwal et al. [147]

N. benthamiana VP2,VP3,VP5,VP7/African
horse sickness virus (AHSV) African horse Intramuscular Dennis et al. [148]

N. benthamiana influenza HAC1 H1N1 “swine” influenza Intramuscular Yusibov et al. [149]
N. benthamiana Protective antigen (PA) Anthrax Subcutaneous Watson et al. [150]

Maize Spike protein Swine transmissible
gastroenteritis virus Oral Lamphear et al. [151]

Potato
CTB-gpl20 (HIV-1 gp 120V3

cholera toxin B subunit fusion
gene)

Cholera Kim et al. [152]

Potato HEV CP (HEV capsid
proteins) Hepatitis E Oral Maloney et al. [153]

4.7. Transgenic Approach for Increased Biofuel Capacity in Plants

Lignocellulosic biomass from non-food crops has been considered a potential source of
biofuel. Lignin, a major component of plant cell walls is considered a hindrance to cellulosic
biofuel production. The application of biotechnology for biofuel production is gaining
more interest, especially from the lignocellulosic biomass [154]. Recently, several studies
have reported the successful cloning of genes responsible for increased biomass and sugar
accumulation and higher production of biofuels in transgenic lines [155]. Several studies
have reported the expression of genes in plants that are responsible for the degradation of
the plant cell wall for more efficient biofuel production [156]. A low amount of lignin was
reported by downregulating the lignin biosynthetic gene 4-hydroxycinnamoyl CoA ligase
(4CL) [157]. In another study, the amount of lignin synthesized decreased to facilitate higher
biofuel production in transgenic Miscanthus sinensis [70]. Overexpression of expansin genes
which helps in loosening of cell walls [158] and successfully generated a transgenic plant
with a suppressed debranching enzyme that produces soluble phytoglycogen. Vanden
Wymelenberg et al. [156] reported the involvement of several genes in the breakdown
of lignin from the Phanerochaete chrysosporium genome. Moreover, several other studies
reported an alteration of lignin biosynthesis in the plant without affecting the vascular
structure of plants [55]. They reported downregulating 4-hydroxy cinnamoyl CoA ligase



Sustainability 2023, 15, 1722 11 of 25

(4cl) responsible for the reduction of the lignin composition and an increase in the biomass
of plants. Ralph et al. [159] reported a drastic decrease in the lignin content and structure
by decreasing the expression of 4-coumarate 3-hydroxylase (C3H) in alfalfa. A similar
result was also observed by Chabannes et al. [160] in transgenic tobacco by deducting
the expression of cinnamoyl CoA reductase (ccR). Furthermore, the suitability of biofuel
production in transgenic lines of tobacco has been investigated by downregulating O-
methyl-transferase (OMT) enzyme by Blaschke et al. [161]. They observed an increase
in biomass and reduction in the lignin contents in the transgenic lines of tobacco. Other
emphasizes the improvement of the fatty acid composition of plants to enhance biofuel
production. Moreover, as compared to the WT plants, the transgenic line showed an
increase in biofuel production in soybean by expressing diacylglycerol acyltransferase
2A (DGAT2A) from Umbelopsis sps fungus [162]. Furthermore, an increased caprylic acid
and capric acid was observed in transgenic rapeseed by over-expressing a laurate-specific
LPAAT gene from coconut [163]. Another approach for increasing biofuel is to increase the
biomass production of plants by genetic transformation approach. Manipulation of ADP
glucose pyrophosphorylase resulted in an increased starch content and biofuel yield [164].
They observed an increase in photosynthesis and biomass by overexpressing two enzymes
from Cyanobacteria in the tobacco plant. Jing et al. [165] reported an increase in the plant
height and biomass by expressing the glutamine synthase gene (GSi).

4.8. Increased Stress Resistance Capacity in Plants

The excessive use of herbicides and pesticides is causing serious hazards on croplands,
which makes cultivating land unsuitable for farming in the future. Recently, the introduc-
tion of GMOs has not required the use of these products. Some genetically modified crops
are highly tolerant to one herbicide, instead of the multiple types of herbicides used in
the field to prevent environmental damage. For example, genetically modified Roundup
Ready corn is not only a glyphosate-tolerant GM corn but also is as safe and nutritious
as conventional corn grain [166]. Bt rice KND1 expressing Cry1Ab protein show high
levels of resistance to insects and possess no toxic effects on human health [167]. Similarly,
insect-resistant crops include wheat, potatoes, rice, and sugarcane [168]. Researchers have
increased the level of lignin content, monolignol levels, and syringyl (S)/guaiacyl (G) in
transgenic Ipomoea batatas [L.] Lam., cv. Xushu 29 to enhance stress tolerance [69]. The
introduction of Bt corn effectively controls the application of chemical pesticides, thereby
controlling the environmental pollution caused by pesticides and reducing the cost of
growing crops in the field [169]. Plants that can tolerate high salinity and long periods of
drought have been reported [170], which can help people to grow crops in cold and less
irrigated areas.

5. Disadvantages of Genetically Modified Plants and Products

The introduction of genetically modified food in the market has raised some serious
questions regarding human health, environmental economics, and legal issues. For in-
stance, it has been reported that the transfer of genes poses serious genetic hazards and is
associated with possible food toxicity [41]. Once GMOs are produced and released into the
environment, they can be difficult to control [171] and any harmful products produced by
these organisms will remain metabolically active as long as they survive and multiply [171].

5.1. Human Health Hazards

Despite the advantages of GMOs, there is increasing concern about food safety and
health risks. The transgene may cause undesirable developmental and physiological
effects on mammals, including humans. There is a likelihood that the transformed gene
may produce toxic protein or allergens or causes allergenic reaction in the human body.
Moreover, other potential concerns are incomplete digestion of GMO foodstuffs in the
gastrointestinal tract, which could result in the horizontal transfer of genes to the microflora
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and somatic cells of the intestine [172]. Others have emphasized that the transfer of genes
could cause infertility in animals, and result in allergic reactions [173].

5.2. Environmental Risks

The release of such products and their possible impacts on the environment regenerate
high monitoring of environmental biosecurity to reduce or complete eradication of risk in-
duced by them. Apart from direct effects on human health, GM plants have environmental
effects on non-target organisms such as fish, worms, bees, and insects, biodiversity loss,
and gene instability [174]. In other studies, Bt toxin produced by transgenic cotton killed
many species of insect larvae, causing an imbalance in the ecosystem and food chain [175].
It has been argued that GM crops have a serious impact on farmers and their indigenous
products because they compete with GMO products [176]. However, several previous
studies reported the no-targeted impacts of novel genes transformed into the plant genome.
For example, Bt maize showed potential hazards and toxic to monarch butterfly larvae that
feed on milkweed leaves contaminated with pollens from Bt strains and caused delayed
development, and increased maturity reported in Ostrinia nubilalis and Spodoptera littorals
ingested with corn leaves expressing Bt CryIAS toxins [177].

5.3. Gene Flow

The most serious problem associated with gene flow is the loss of biodiversity and
often cited as potential risk. Chances of accidental cross pollination between GM crops with
its wild relatives are very high, making them super-weeds that resist diverse herbicides and
become difficult to control. There are several examples where gene flow from crops to the
relatives weeds such as in Beta vulgaris [178], in Avena strigose [179], in Brassica napus [180].

5.4. Increased Antibiotic Resistance

GM products enter the human body through food, vaccines, bacteria, or viruses. There
is concern that the GM plants with bacterial resistance genes in their genome and might
act as the source of drug resistance genes to the bacteria of clinical importance. Moreover,
the possibility of developing antibiotic-resistant bacteria has been reported because of the
frequent use of antibiotics in the genetic transformation process [181]. Most GM products
contain marker genes and genes for certain useful traits. These marker genes can build
resistance to particular antibiotics, and constant consumption of these foods could result in
antibiotic resistance in the human body [182].

5.5. GMO Products Can Trigger Immune Reactions and Allergies

The introduction of new genes into plants can cause allergies by producing unexpected
products (proteins and metabolites) in the plants [183]. For instance, the immune systems
of rats respond more slowly to genetically modified potatoes than to normal plants [184]. In
other studies, Bt bacteria can effectively control insects that attack crops. However, there is
an equal chance of consuming Bt toxins and reacting to the mammals causing allergies [185].
Insects, birds, and other animals that feed on certain crops may not consume genetically
modified crops due to allergic reactions or poisonous products. As a result, a great number
of fauna can face starvation, affecting entire food chains and causing serious threats to
ecosystems [186].

6. Biosafety Regulatory of GMO Foods and Products

Considering the importance of GMOs, several countries have managed to develop
biosafety regulatory systems for the safety of GM foods and products. The regulations
surrounding GMOs are complex and the rate of consumer acceptance is crucial, which
results in reduced usage of GMOs. GMOs and their products have been facing severe
controversies and hurdles from the public sector, NGOs, and environmental organiza-
tions [187]. Different governments have different approaches to tackling the products of
GMOs, which vary widely, and are country-specific [188]. Within the European Union (EU),
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Directive 2001/18/EL contains the biosafety regulation for the use of GMOs. It defines
and control environmental release (case by case) evaluation of the environmental risk of
GMOs [189]. Other directives such as 98/81/CE for the number of GM microorganisms,
directive 1946/2003 for transboundary movement of GMOs, 1829/2003 for GM food and
feed have been authorized [189]. GMO products have already been supplied to the EU mar-
ket with appropriate labelling and identification methods under the title NOVWL-FOOD
classification in May 1997 [190]. Currently, European Union-based legislation accepted the
products of natural gene transfer methods, such as conjugation, auto-cloning, and gene
transduction, and are considered non-genetically modified organisms [191]. However, EU
has banned the application of clustered regularly interspaced short palindromic repeats
genome (CRISPR-Cas9) editing technology, but the US has allowed the use of Cas9, which
enables geneticists and medical researchers to edit parts of the genome [192]. Similarly,
The Canadian Food Inspection Agency (CFIA) is responsible for regulating GM plants, a
field trial of GM crops, their approval and commercial release in Canada. It also plays a
major role in assessing impacts on biodiversity and environment, possible gene flow and
impacts on non-targeted organisms [193]. In India, safety guidelines for GMOs such as
research, field trails of GM foods and products assessment environmental risk assessment
have been adopted from Rules 1989 [193]. Ministry of Environment Forest, Forest and
Climate Change (MoEFCC) in association with the department of Biotechnology (DBT)
recently adopted new guidelines for the environmental risk assessment of GE plants in
India [194]. So far, Bt cotton (insect-resistant transgenic cotton) is the only GM plant to have
been approved for commercial cultivation in India. Over 20 different GM plants with insect
resistance, abiotic resistance, herbicidal resistance, enhance nutritional traits etc. have been
under field trials [195].

The adoption of biosafety regulations is strongly impacted by the economical and
political situation of countries. Despite their differences in approach and adoption of GMOs
regulations framework, countries such as Brazil, Argentina, Chile, Mexico, Honduras,
Costa Rica, and Uruguay were the first Latina America to approve GM crops [196,197].
Other Latin American nations such as Peru, Venezuela, and Ecuador implemented a
complete ban on the application/test and import of GMOs [198,199]. To harmonize the
regulations concerning GM products, Latin American countries such as Brazil, Argentina,
Paraguay, Uruguay and Chile singed a declaration which legalizes the application of gene-
edited products (case by case) amid strict regulation [200]. Countries such as Brazil and
Argentina are major exporters of GM crops (cotton, soybean and Maize) and recently
adopted legal provisions to allow the cultivation of GM crops [200], which not only play a
bigger role in their economy but also play a key role to rapid adaption of biosafety law and
regulations [200–203]. The Secretariat of Agriculture, livestock, fisheries and Food (SAGyO)
is responsible for the regulation of GMOs, for conducting field tests, release and commercial
application in Argentina [204]. While, national technological Biosafety committee (CTNBio),
is responsible for scientific research on GMOs, field tests, risk assessment and assessing
the safety of GMOs in Brazil [204]. Legal provisions of biosafety regulations are under
discussion in the countries such as El Salvador, Mexico, Peru, Costa Rica, The Dominican
Republic, and Ecuador. Other Latin American countries including Barbados, Dominica,
Guyana, Haiti, The Bahamas, and Belize has no legal provision to deal with GMOs so
far [205].

African nations can benefit from the adoption of the biosafety regulation to mitigate
the food crisis, nutrition and economic livelihood [206–208]. The rapid adoption of GM
crops regulations can address the existing food crises and ease hunger that exists in African
countries. Some African countries welcomed GM technology and rapidly proceed for adopt-
ing GM crops to enhance agricultural production efficiency and increase the nutritional
values of plants [209,210]. While, other African countries oppose GM technology stating
its safety concerns, environmental and human health issues, intellectual property rights
and ethical uncertainties [211–213]. However, several anti-GMO debates and controversies
related to the safety of GMOs, and their impacts on human health and environmental issues



Sustainability 2023, 15, 1722 14 of 25

are major hindrances in adopting biosafety regulations among African nations [214,215].
Despite hindrances, the majority of African nations (47 countries) currently allow the culti-
vation of GMO crops [216]. South Africa is the first African nation to enact the regulatory
framework to allow the cultivation, export and import of GM crops [216], and other African
countries are interested in collaborating and harmonising the regulation concerning GM
crops (African Biosafety network of expertise ABNE, 2019 [217]. Successful confined field
trials have been conducted for maize, sorghum, cassava and Bt cotton with a wide range of
traits in Kanya [217,218]. It has been reported that early acceptance of biosafety regulation
has been hindered by inadequate GM technology knowledge in Kenya, and less awareness
and knowledge of GM technology in the countries like Ghana and Nigeria, [219]. Moreover,
a slow and delayed GM adoption rate in Tanzania have been reported [220]. The restrictive
regulations, lack of information and awareness of the GM crops regulations have played an
important role to obstruct the commercialization of GM crops in African nations [221,222].
In addition, opposition to biosafety bills, laws and regulations from NGOs, media, political
parties social and economic factors and multinational companies have further helped to
restrict the adoption of GM crops regulations in these countries [223–226].

Similarly, China adopts strict safety evaluation of GM plants and products and pro-
mulgated a whole set of biosafety laws, regulations and management systems considering
its national situation and international norms and regulations. For the implementation of
biosafety regulation, the Ministry of Agriculture (MOA) played a pioneering role in the
implementation of regulations, and administrative Measures for the Safety Assessment
of Agricultural GMOs [227], and developed the guidelines for safety inspection of field
trials, research, processing, import and exports of GM crops [228]. Recently, MOA has
promulgated a set of new regulations to shorten the process involved commercialization of
GM crops [229] and introduced biosafety guidelines to regulate gene-edited crops [230].
Similarly, Korea has released a set of laws and regulations guidelines for GMOs and GMO
products. To ensure biosafety, proper assessment of GMOs is carried out according to the
guidelines of the Korea Food and Drug Administration (KFDA) [231]. It is clear from the
above data that there exists a diverse range of regulations and frameworks supporting the
research and commercialization of GM crops. For the efficient and successful functioning
of these regulations, there is a need for a collective and synergetic approach, and closer
interaction among the different government, non-government agencies, and private sectors
which may play a diverse role in coordinating and harmonizing biosafety issues. Moreover,
for adopting unified biosafety regulations, regional and international agencies should focus
on the proper dissemination of information on biosafety regulations and public awareness
about biosafety measures.

7. Controversies of GM Foods and Products

GMOs have become a controversial topic from the beginning. The supporters of
GMOs including GM technologists, GM distributors, scientists and related regulatory
agencies emphasize that GM products are non-toxic and nutritious [232,233], and potential
to mitigate the global food crisis with no human health and environmental impacts. [234].
Moreover, several independent studies found no significant biological differences when GM
crops and products were fed to the animals [235,236]. Some studies reported the presence
of remnants of fragmented GM DNA in some parts of the gastrointestinal tracts, which
were not detected in the blood and tissues [237,238]. Moreover, the in vitro experiment
showed no horizontal transfer of GM DNA/genes to the microbes so far [237,238]. On
the other hand, environmentalist opposes and rejected such results citing that the results
were unacceptable due to methodological issues [190]. At the same time, opponents of GM
believe that their exist differences between genetically engineered crops and traditional
breeding plants. Moreover, Breckling et al. in their report pointed out a wide range
of potential risks from GMOs including vertical gene transfer, horizontal gene transfer,
hybridization, and resistance [239].
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The risks potentials of transgene escape is high due to contamination in gene pool
of crop landraces or wild relatives due to pollination of surrounding GM crops fields.
Unwanted and unintended gene flow from the transgenic lines to wild relatives may
produce genetically modified organism with unwanted traits that compete and displace the
native species causing loss of genetic information [240]. Critics claims that the application
of GMO can provoked the emergence of super weeds and pests that compel the use of more
herbicides and pesticides to eliminate them from the field [240,241]. Moreover, various
gene escape have been reported from oil rape to weedy relatives with glyphosate resistant
trait [242], in creeping bent grass, in turf grass [243]. The transgene escape have been
reported from Mexico in Maize landraces and cotton, that could change gene pool of maize
landraces permanently [244–246]. A similar controversy has been reported in eggplant and
its wild types [247].

The huge concern about the GMO is the corporate control of agriculture. Social activities
from different parts of world believed that GM is private property, not national property [248].
The biotechnology companies has huge control over biotechnology process, genes and chemi-
cals involve in the GM production process. As a result, handful of companies started protecting
GM products, genes and chemical products through patents and licensing. For instance, Delta
and Land Pine Company of Scott, Mississippi acquired patent on GM seed terminator that
restricts unauthorized use of second generations’ seeds, thus, consolidating its control over
seed market for making huge profit. They claimed that seed terminator technique would solve
the contamination of gene pool of relative wild plant species [249]. The sterile seed produced
by the GM crops would not produce offspring. This will cause the non-availability crops
seeds to the farmers and prevent farmers re-planting seeds. As a result, the farmer would
be severely affected by patent rights, as they are required to sign contracts for replantation
every year and timely seed supply and seed conservation [250]. Lured by high yields, farmer
would quickly abundant traditional landraces causing huge loss in the biodiversity. Therefore,
risks assessment of transgene escape and its possible consequence of recombination in plant
genome, by monitoring the potential harmful effects on wild relatives is important steps in all
the GM crops.

In a report from Chile, controversies regarding biosafety regulation have emerged from
different sectors due to a lack of public access to regulatory information, and the location
of GM fields or farm sites [251]. Anti GM campaign was initiated in 2011 and supported by
coalition, organizations, farmers, “green” legislators, and anti-GM groups [251]. Similarly,
GM policy debates in Ghana were initiated after enacting biosafety regulations related to
GM (Biosafety Act 831, December 2011) [252]. Opponents of GMOs comprised of individu-
als, farmers, and civil society claimed that GM is discriminatory, with environmental and
human health issues [252]. In Mexico, a social movement made up of indigenous, peasant,
civil, cultural and scientific community organizations came together in an organized way
in defence of Biosafety and Genetically Modified Organisms Law in the year 2005 [253].
Recently, the government has initiated a ban on GM maize and restricted the approval of
new GM cotton seeds. Secretariat of Environment and Natural Resources (SEMARNAT)
cited concerns about the possibility of genetically modified varieties being crossed with the
native varieties of wild maize and cotton found in the country [253]. The rejection of GM
cotton release permits has had a significant reduction on the cotton plantation (dropped
by 30–35 per cent in 2020) and yield as growers can now only access poor yields of cotton
with ineffective protection against pests on cotton varieties and impacted heavily on textile
in Mexico. In some EU members such as Poland, the opposition to the distribution and
cultivation of GM crops is as high as 60% [254]. EU ban on GM rice import from China
was initiated after detecting GM rice in the tested sample. Illegal and large-scale plant-
ing and production of GM rice have been the practice before the certificate for GM rice
issued by the Chinese government. As result, GM rice has been detected in China market
without completing the proper experimental and biosafety test [255]. After detecting the
GM contamination of rice, the EU blocked the import of GM rice (Bt Shanyo 63) to enter
into its market and tightens its rules governing the imports of GM rice from China [256].
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Other countries such as Russia, Israel, Norway and Netherland restricted the cultivation
and commercialization of GM crops [256]. Other permissive countries such as South Korea,
New Zealand, France and China have more restrictive regulations and permit the least
number or no GM crops for commercial cultivation [257]. Similarly, a 2016 survey carried
out in China showed about 47% of people held a negative view of GM crops [258].

8. Final Considerations and Future Prospects

Biotechnology is emerging with new opportunities for the production of food and en-
ergy, especially in countries where food production is still insufficient. Greater advantages
of biotechnology will be established in the field of agriculture for the future demands of
food security. Biotechnology can also help in generating plant species rich in cellulose for
the production of biofuels, but also has many challenges. There are several advantages
related to the genetic transformation of plant species and their application in improving
medicinal value; plants resistant to abiotic and biotic stresses, plants with better nutritional
value, and biomolecules important for industrial and therapeutic products. The introduc-
tion of biotechnology that introduces exogenous genes has made it possible for breeders
to produce cultivars with improved genetic traits, which was not possible before. The
growing global demand around these sectors is essential for the application of genetic
transformation strategies for more plant species. The genetic transformation will help in the
advancement of plant species in the future; however, more research and detailed studies
are required. Despite the advantages of this technique, there is growing concern regarding
the establishment of regulations for the efficient and safe use of GM plant products, and
it is important to share knowledge concerning GM crops, including risks and benefits in
terms of human health and the environment.
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