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Abstract: Due to the unavoidable operational risks and insufficient risk management capabilities
of beginner pilots in flight training, the challenge of risk control in aviation schools has become
increasingly prominent. To ensure the safety of flight training in aviation schools and to reduce
costs and increase revenue, the essential prerequisite for improving efficiency is risk management.
Therefore, it is necessary to explore risk identification and assessment methods. This paper adopts the
holographic modeling (HHM) method and risk filtering, rating and management (RFRM) theory. First,
the HHM idea is used to construct a risk identification framework (HHM-PAVE) for flight training.
Second, based on the dual criteria, multiple criteria and cloud model (CM) in the RFRM approach, an
improved risk assessment matrix-cloud model (IPC-CM) is proposed and combined with the N-K
model and Bayes’ theorem to propose a coupled risk scenario hazard measurement model (CR-HM)
based on the HHM-RFRM approach in risk assessment. In the assessment process, the impact of
risk factors on system stability as well as the uncertainty problem and coupling–risk quantification
problem in expert assessment are considered to obtain scientific and objective quantitative assessment
results. Finally, the risk identification and assessment experiments were conducted using HHM-
RFRM on the flight training. The results show that the method can more accurately identify critical
risk factors in a flight training system and provide a new perspective for risk prevention and control.

Keywords: safety engineering; flight training; HHM-RFRM; risk identification; risk assessment

1. Introduction

Safety is a top priority for the aviation industry. Aviation safety has significantly
improved from the development of the global aviation industry in the past seventy years.
From 2017 through 2021, the total number of accidents, the real accident rate and the
number of fatalities continued to decrease. However, the overall risk of death increased to
0.23 in 2021 due to the rise in fatal accidents in turboprops, and various types of accidents
still occur. Aviation Safety Network (ASN) data [1] indicated that 453 accidents have
occurred worldwide since 2020, causing widespread public concern as well as loss of
life and damage to property. Since 2010, 57% of the total accidents have been caused by
pilots. From the early training of pilots and throughout pilots’ lifecycles, pilot risk control
capability is lacking, and the risk control and management of flight training in flight schools
are becoming increasingly prominent. Therefore, it is crucial to perform comprehensive
and effective risk identification and assessment of risks in flight training, which is the key
to risk management for flight schools and pilots.

Risk management has always been an active area of research. It has penetrated all
walks of life. Evaluation methods have been developed and evolved in cross-discipline
integration. For example, Wenjun Zhang et al. [2] used the HHM-RFRM model in ship
navigation safety to analyze navigation risk management from the perspective of risk
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coupling. In addition, many studies [3,4] in various industries were conducted on risk
occurrence mechanisms, risk probabilities, and baseline risk functions. In civil aviation
flight safety, flight risk identification and assessment are critical to aviation risk manage-
ment, which is a topic with significant theoretical and practical significance. Domestic and
foreign scholars have conducted research on the theoretical model of risk management. The
current flight safety risk management is mainly based on several existing theoretical mod-
els of accident causation [5–10], such as the Software, Hardware, Environment, Liveware
model (SHEL), Reason’s “Swiss cheese” model, the functional resonance analysis method
(FRAM), the holographic modeling method and risk filtering, rating and management
theory (HHM-RFRM), and Event Tree Analysis (ETA). Based on those theoretical models,
scholars have researched the critical aspects of flight safety risk management. In the risk
identification part, Shi et al. [11] used data mining methods to identify and classify risk
factors in accident reports in the safety management system, which solved the cumbersome
and subjective problems of manual identification. Still, there are limitations in the overall
risk factor identification framework. Wu et al. [12] adopted the ETA method to identify
single risk factors affecting flight safety and established a risk factor identification system.
Paltrinieri et al. [13] proposed an atypical accident identification method, which showed
promising results in identifying uncommon and complex coupled risk scenarios. In the risk
assessment section, Gray et al. [14] utilized the 1% rule to assess the risk of aircrews with
established medical problems, classifying them into risk classes with red/amber/green
(RAG) colors. Tamasi et al. [15] proposed a methodology to determine risk qualitatively
and quantitatively, using a risk assessment matrix combined with the ETA model. However,
it still suffers from high uncertainty and lack of objectivity. Yong Gang et al. [16] used the
N-K model to analyze the coupling effect of flight operation risk factors and systematically
analyze the flight operation coupling while on the ground and in the air based on the
coupled risk values.

The above research indicates the presence of two challenges in current flight training
risk management. On the one hand, in the area of risk source identification, from the
perspective of risk identification objects, some studies [17,18] have focused on the impact
of single risk factors on the overall system risk, which is helpful for general system risk
assessment. Still, for complex system risks [19,20], it is easy to ignore the impact of multi-
factor coupling on flight training safety. For example, when the environment is poor and
there is a human factor of pilot error, coupling these two risk factors increases the likelihood
of an accident. Still, the risk of this multi-factor coupling has not been studied heavily.
Relevant researchers have proposed a scenario-based risk response framework [21], but
specific methods and measures for risk management are lacking. On the other hand, in the
area of risk assessment, from the perspective of qualitative assessment, the risk assessment
matrix [22] is an assessment method based on expert experience and cognitive level with
natural uncertainties and is greatly influenced by assessors. From the perspective of
quantitative evaluation, some studies [23–25] have only focused on the impact of coupling
risk. Still, few have analyzed the specific coupling risk sub-scenarios under the coupling
risk scenario.

When the flight instructor does not interfere as much as possible, and the flight student
has a certain knowledge of risk management theory, this paper proposes a coupled risk
scenario identification and assessment model based on HHM-RFRM theory. This model
utilizes the advantages of the CM and N-K models to solve the above-mentioned issues in
risk identification and assessment. First, in the risk identification section, the HHM method
is used to find risk factors hierarchically and systematically, emphasizing the concept of
coupled risk scenario and outputting flight training-related risk factors. Second, the risk
assessment proposes the coupled risk scenario–hazard measurement model (CR-HM). The
risk correction coefficient combines the multiple judgment criteria in RFRM with the risk
assessment matrix–cloud model (PC-CM), which considers system resistance problems and
human cognition’s ambiguity and randomness to screen out the critical risk factors. With
the IPC-CM model, the numerical characteristics of the risk factor cloud model (Ex, En,
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He) are output. Then, a new set of evaluation ideas is formed using the N-K model and
Bayesian theory to evaluate the coupled risk scenario quantitatively and output the final
risk values. The flow of the research method is shown in Figure 1. Finally, taking the flight
training of a domestic aviation school as an example, high-risk factors and key coupled
risk scenarios are identified and evaluated.
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2. Research Method
2.1. HHM-RFRM Method

The HHM-RFRM methodology [9] is a combination of hierarchical holographic mod-
eling (HHM) [26] and risk filtering, rating and management (RFRM) [27,28] and embodies
a philosophy of distinguishing “primary and secondary conflicts”, filtering secondary risks
through qualitative and quantitative assessment analysis and identifying primary risks.
This paper focuses on the HHM approach and the five main stages of the RFRM approach,
namely (1) scenario identification, (2) dual criteria filtering and rating, (3) multi-criteria
assessment, (4) quantitative assessment, and (5) risk management. Although the classical
HHM-RFRM method can help pilots better understand the possible risks in flight, it is
difficult to achieve a scientific qualitative and quantitative risk assessment. Therefore, it is
necessary to use the N-K model to filter out the key coupled risks by the probability of risk
factors. Using the cloud model, a more accurate quantitative assessment is achieved by the
numerical characteristics of the cloud model. In conclusion, the advantages of each model
are utilized to improve the traditional HHM-RFRM to obtain better risk assessment results.
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2.1.1. Risk Scenario Identification

Initially proposed by Kaplan and Garrick et al. [29], risk scenario identification is a
critical step in HHM-RFRM and consists of three components: risk scenario, probability of
occurrence and damage level. A comprehensive risk factor analysis is the starting point for
risk identification.

The analysis of flight risk factors is the basis of risk identification. This paper uses
the HHM model and the risk identification framework [30] (Pilot-in-Command, Aircraft,
Environment, External Pressures—PAVE) to identify risk sources, which requires construct-
ing a risk scenario framework for the risks encountered in flight. Based on the iterative
idea of the hierarchical holographic modeling process and the Delphi method, this paper
constructs the HHM-PAVE framework to identify the risk factors in flight training. The
specific process is shown in Figure 2:
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Based on the construction of the HHM-PAVE framework in Figure 2, individual risk
factors are identified. However, in in-flight safety system risk, there is not only single-factor
risk but also multi-factor coupled risk. This paper emphasizes the multi-dimensional
risk factor coupling in flight training safety, as detailed in Section 2.3, the N-K model.
Assume that Tn(X1, X2 . . . Xm) denotes an N-dimensional risk scenario consisting of M risk
elements, which are defined as follows:

Tn(X1, X2 . . . Xm) = X1 � X2 � . . .� Xm (1)

where � represents the coupling effect, and the algorithm satisfies the commutative law
X1 � X2 = X2 � X1, T2(a, b) represents a risk scenario where the risk factors within the
two-dimensional risk subsystem a and b are coupled.

(1) Single-factor coupling risk
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Single-factor coupling risk refers to the risk caused by the coupling effect and influence
between the risk factors belonging to a single subsystem that affects flight training safety.
For example: T1(a); T1(b); T1(c); T1(d) . . .

(2) Two-factor coupling risk
Two-factor coupling risk refers to the risk caused by the coupling effect and influence be-

tween two subsystems that affect flight training safety. For example: T2(a, b); T2(a, c); T2(a, d);
T2(b, c); T2(b, d) . . .

(3) Multi-factor coupling risk
Multi-factor coupling risk refers to the risk caused by the coupling effect and influence of

three or more risk factors that affect flight training safety. For example: T3(a, b, c); T3(a, b, d);
T3(a, c, d), T3(b, c, d) . . .

2.1.2. Risk Scenario Assessment

Risk scenario assessment is the core part of the RFRM method. It systematically
evaluates and screens risk scenarios to screen out high-risk factors and their coupled risk
scenarios continuously. It mainly includes two assessment methods: double filtering criteria
and multiple judgment criteria, and the assessment steps are as follows:

Step 1: Double Filtering Criteria—Risk Assessment Matrix (PC)
The dual filtering criteria make up the first filtering step in the RFRM method, which

aims to initially screen and rank the risk factors according to the dual criteria. The double
filtering criteria and the civil aviation risk assessment matrix assess the probability and
severity of an accident. In this regard, this paper adopts a risk assessment matrix that is
more applicable to civil aviation [15] to obtain the distribution of likelihood (P), consequence
(C) and the corresponding five risk levels (R), as shown in Tables 1–3 below.

Table 1. Risk probability class distribution (P).

Possibility Description Almost
Impossible Rare Occasional Possible Frequent

Probability level A B C D E

Qualitative description Almost
never happen Rarely happen Occurs by

chance, infrequently
Very likely
to happen

Occurs
frequently

Table 2. Risk consequence degree distribution (C).

Consequence Description Ignorable Slight General Serious Catastrophic

Consequence level 1 2 3 4 5
Consequence score 0–0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–1.0

Table 3. Risk rating (R).

Level Description Ignorable Slight General Serious Catastrophic

Rank I II III IV V
Risk value 1 3 5 7 9

Risk level matrix
I II II II II
I II III III IV
I III III IV V
II III IV IV V
II IV IV IV V



Step 2: Multiple Judgment Criteria
The above risk assessment matrix only assesses the possibility and severity of the

consequences of risk factors from the perspective of the assessment object. However,



Sustainability 2023, 15, 1693 6 of 20

it puts specific restrictions on the overall assessment. In this paper, the screened risk
factors are further analyzed from the perspective of global systems thinking. From a
systems theory perspective, the analysis focuses on the system’s resistance and resilience
to risk characteristics: stability, robustness and redundancy. Risks are further avoided by
comparing the risk resistance nature of the system. This paper introduces the 11 criteria
proposed by Matalas and Fiering et al. [31] revised on the defensive capability of risky
scenario knockdown systems. Based on the content of the criteria, the judging rules [26],
and the expert empirical determination, a multiple judgment matrix was obtained as shown
in Table 4, where Xi is the risk factor (Rf); I, II, III..., and XI is the standard serial numbers
(St) and Ax

a is the score of the risk factor x under the criteria.

Table 4. Multiple judgment matrix.

St\Rf X1 X2 . . . Xm Xm−1

I AX1
1 AX2

1 . . . AXm−1
1

AXm
1

II AX1
2 AX2

2 . . . AXm −1
2

AXm
2

III AX1
3 . . . . . . . . . AXm

3

IV AX1
4 . . . . . . . . . AX1

4

. . . . . . . . . . . . . . . . . .

X AX1
10 . . . . . . . . . AXm

10

XI AX1
11 . . . . . . . . . AXm

11

2.2. Cloud Model

In classical HHM-RFRM methods and risk assessment matrices, which often include
qualitative risk assessment processes, there are inevitably two of the most critical uncertain-
ties inherent to human cognition: randomness and ambiguity [32]. This paper applies a
new cognitive model-cloud model (CM) proposed by Li et al. [33], which can synthetically
describe the randomness and fuzziness of concepts, instantiate the uncertainty transforma-
tion between qualitative ideas and their quantitative concepts, and realize the uncertainty
transformation between qualitative concepts and their quantitative ones.

Three values represent the overall characteristics of qualitative concepts in the CM:
Expectation (Ex), Entropy (En), and Hyper Entropy (He). Ex represents a measure of the
elemental certainty of a qualitative picture, which can best represent the characteristics of
a qualitative concept. En represents a measure of the uncertainty range of the qualitative
concept, determined by the vagueness and randomness of the qualitative concept, and
reflects the degree of deviation of the actual affiliation Ex.He is a measure of En uncertainty,
reflecting the degree of cohesion of cloud drops of tension in the discourse world, which is
determined by the vagueness and randomness of En [33].

Improved P-C Cloud Model (IPC-CM)

Based on the above risk assessment matrix, multiple criteria, and the CM method, this
paper proposes an improved risk assessment matrix-cloud model (IPC-CM), which aims to
provide more accurate assessment results for quantitative risk assessment and obtain the
cloud model of each risk factor after screening. The IPC-CM model is the core assessment
model in the whole HHM-RFRM model. It mainly includes the above four steps, as shown
in Figure 3. Steps 1 and 2, the P-C concept cloud and rule base, are described detailed in
the literature [34,35]. This paper focuses on the uncertainty inference of the CM and the
optimization of the CM, where the uncertainty inference steps are as follows:



Sustainability 2023, 15, 1693 7 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 21 
 

ij

i
i

i

P







 
=  
 

 (9) 

'

xi xi iE E P=  (10) 

' 2

ni ni iE E P=  (11) 

' 2

ni ni iH H P=  (12) 

where Pi represents the correction coefficient under scenario i; ai represents the safety and 

reliability of scenario i in the past period; i  represents the safety and reliability of sce-

nario i in the current period; 
ij  represents the risk coefficient ratio between factors i and 

j; Exi, Eni, and Hni represent the original parameter values under scenarios i; Exi’, and Eni’, 

and Hni’ represents the corrected value of the parameter. 

Step 1: Cloudization of P-C-R 

concepts and level distribution

Step 2: P-C rule base construction

Step 3: Uncertain inference based 

on cloud model

Step 4: Cloud model digital feature 

optimization

 

Figure 3. Steps to improve the cloud model. 

2.3. N-K Model 

Flight training is a complex system risk often involving multiple risk factors. There-

fore, this paper introduces the concept of coupling. In physics, the phenomenon of two or 

more systems or two forms of motion interacting through various interactions to unite is 

called “coupling” [37]. Flight training risk coupling refers to the degree of mutual influ-

ence and dependence between or among various risk factors affecting aircraft flight dur-

ing flight training. The coupling between or among risk factors changes the local or overall 

state of aircraft operation safety, resulting in flight accidents. 

The N-K model consists of two parameters. N is the number of constituent factors in 

the system; and K is the number of inter-factor dependencies, reflecting the system’s 

adaptability. If the system consists of N factors, and there are n states of factors, then there 

are Nn  possible combinations of all the elements, the factors are combined in a certain 

way to form a network, and the range of K is [0, N−1]. Based on the evolutionary theory 

Figure 3. Steps to improve the cloud model.

(1) Generate two-dimensional random numbers
Equation (2) is used to generate a two-dimensional random value

(
Xp, Xc

)
with a

two-dimensional normal distribution. At the same time, for each rule in the rule base,
Equation (3) is used to generate a two-dimensional random value

(
Xnpi, Xnci

)
(

xp, xc
)
= NORMINC

(
Rand(),

(
Exp, Exc

)
,
(
Enp, Enc

))
(2)(

Enpi, Enci
)
= NORMINC

(
Rand(),

(
Enp, Enc

)
,
(

Hep, Hec
))

(3)

(2) Calculate the activation strength µ matrix
Using

(
Xp, Xc

)
by Equation (2), the

(
Enpi, Enci

)
corresponding rules caused by Equa-

tion (3) are substituted into Equation (4) to find the activation intensity when the conditional
input of each direction in the rule base is

(
Xp, Xc

)
. A total of 25 rules generated 25 µ values,

which constitute the matrix µ.

µi = exp

[
−
(
Xp − expi

)2

2
(
Enpi

′)2 − (Xc − exci)
2

2(Enci
′)2

]
(4)

(3) Calculate cloud droplets (y, µ)
First, take the largest and second largest µi in the matrix. Then, use Equation (5) to

generate the hierarchical cloud model’s one-dimensional standard random value (EnR
′).

Use Equation (6) to calculate the four y values for the µ1 and µ2 conditions to obtain four
groups (y, µ)

EnR
′ = NORMINC(Rand(), EnR, HeR) (5)

µ = exp

[
− (y− Ex)

2

2(Ex ′)
2

]
(6)

(4) Build virtual cloud
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First, select the two closest cloud droplets (y1, µ1) and (y2, µ2) and construct a virtual
concept with geometric methods. The three numerical characteristics of the virtual cloud are
(Ex, En, He), where (Ex,En) are calculated by geometric forms using Equations (7) and (8).
Ex can be designated as a critical parameter reflecting the risk value.

Ex =
y1
√
−2 ln µ2 + y2

√
−2 ln µ1√

−2 ln µ2 +
√
−2 ln µ1

(7)

En =
|y1 − y2|√

−2 ln µ2 +
√
−2 ln µ1

(8)

where x∈U, x is the expectation of Ex, and Ex
’ is a standard random variance number.

The CM obtained based on the risk assessment matrix is not quantitatively analyzed
from the perspective of system stability. In this regard, In this paper, the new optimization
method is proposed to use the correction coefficient Pi [36] combined with the multiple
judgment matrix to correct the numerical characteristics of the cloud model under the risk
assessment matrix to form the final IPC-CM, which can achieve the different scientific rank-
ing of risk scenarios under the same risk level. The correction factor in Equations (9)–(12)
is as follows:

Pi =

(
αi
βi

)εij

(9)

Exi
′ = Exi × Pi (10)

Eni
′ = Eni × Pi

2 (11)

Hni
′ = Hni × Pi

2 (12)

where Pi represents the correction coefficient under scenario i; ai represents the safety and
reliability of scenario i in the past period; βi represents the safety and reliability of scenario
i in the current period; εij represents the risk coefficient ratio between factors i and j; Exi,
Eni, and Hni represent the original parameter values under scenarios i; Exi

’, and Eni
’, and

Hni
’ represents the corrected value of the parameter.

2.3. N-K Model

Flight training is a complex system risk often involving multiple risk factors. Therefore,
this paper introduces the concept of coupling. In physics, the phenomenon of two or more
systems or two forms of motion interacting through various interactions to unite is called
“coupling” [37]. Flight training risk coupling refers to the degree of mutual influence and
dependence between or among various risk factors affecting aircraft flight during flight
training. The coupling between or among risk factors changes the local or overall state of
aircraft operation safety, resulting in flight accidents.

The N-K model consists of two parameters. N is the number of constituent factors
in the system; and K is the number of inter-factor dependencies, reflecting the system’s
adaptability. If the system consists of N factors, and there are n states of factors, then there
are nN possible combinations of all the elements, the factors are combined in a certain
way to form a network, and the range of K is [0, N−1]. Based on the evolutionary theory
of biology, the interaction information between factors is calculated based on the N-K
model to measure the coupling risk, and the coupling risk hazard is calculated according to
Equations (13)–(15).

T4 = T(A, B, C, D) = ∑
i

∑
j

∑
k

∑
m

Pijkm log2

(
Pijkm/

(
Pi... × P.j.. × P..k. × P...m

))
(13)

T3 = T(A, B, C) = ∑
i

∑
j

∑
k

Pijk log2

(
Pijk/

(
Pi... × P.j.. × P..k.

))
(14)
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T2 = T(A, B) = ∑
i

∑
j

Pij log2
(

Pij/
(

Pi... × P.j..
))

(15)

i ∈ {0, 1} , j ∈ {0, 1} , k ∈ {0, 1} , m ∈ {0, 1}

where i, j, k, m represent the status values of A, B, C, and D risk factors, respectively;
status value 0 means that the risk factor has not broken through the defense system, and
status value 1 means that the risk factor has broken through the defense system; Pijkm
represents the changing risk of the mutual coupling of ABCD risk factors probability;
Tx represents the coupling of X risk factors; T(A, B, C) represents the risk of the mutual
coupling of risk factors A, B, and C. A defense system is a complex system consisting of
“human–machine–environment–management” subsystems that prevent unsafe events or
accidents from occurring.

2.4. Quantitative Model Based on Bayes’ Theorem

Bayes’ theorem is a general form of the product rule for calculating the probability of
two (or more) independent events [38].

Assuming that there is a risk coupling between the two risk factors A B, without
considering the risk of B, the probability that risk factor A causes an accident is prior
probability P(A). The likelihood of occurrence of risk B with a known intelligence A risk
factor is conditional probability P(B|A). At the same time, considering the risk factor B,
P(A|B) is the posterior probability. The Bayesian Equations (16)–(18) are as follows:

P(AB) = P(A)P(B|A) = P(B)P(A|B) (16)

P(A|B) = P(A)P(B|A)

P(B)
(17)

P(A) = P(A|B)P(B) + P
(

A
∣∣B)P(B) (18)

From the perspective of quantitative risk assessment, this paper introduces Bayes’ the-
orem for quantitative calculation from the two dimensions of consequence and possibility,
which are defined as follows:

Drisk = Crisk × Prisk (19)

Based on the modified consequence level Crisk of the IPC-CM, the posterior probability
Prisk of each risk scenario is calculated by combining the coupling relationship between the
risk factors in flight training. Associating Equation (19), the final coupled risk scenario’s
hazard values are calculated.

3. Case Research

In the next section, this paper analyzes the accident investigation report of China’s
civil aviation safety management system from 2018 through 2021 and the aviation safety
briefing of an aviation school. Based on real data from actual scenarios, the flight school’s
risk focus is continuously adjusted in the event of unsafe events and accident experiences.
We take a flight school as an example and start from risk identification and assessment to
verify the risks in flight training.

3.1. Risk Identification
3.1.1. HHM Frame

Based on the accident report of China’s civil aviation safety management system and
the aviation safety briefing data, this paper completed the risk factor analysis through
Figure 2. From the pilot’s perspective, the PAVE framework [30] is adopted to cultivate the
critical thinking of pilot trainees. All risk factors are divided into four subsystems of P, A,
V, and E.

PAVE consists of four parts: P = Pilot-in-command (PIC); A = Aircraft; V = Environ-
ment; and E = External pressures.
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(1) P = Pilot-in-Command (PIC)
The pilot in command is one of the risk factors in flight. A pilot must conduct a multi-

faceted assessment of their risk profile as the controller of the aircraft. It mainly includes
the pilot’s physiological and psychological condition and provides comprehensive quality.

(2) A = Aircraft
As the carrier of the flight, the aircraft is also one of the risk factors in the flight. The

pilot must fully understand the aircraft’s performance, historical failures, and whether
the corresponding airworthiness instructions have been completed, and it must check the
maintenance of the aircraft.

(3) V = Environment
The flight environment is one of the flight risk factors, and the weather is a major

environmental factor. Terrain assessment is another essential component in analyzing the
flight environment, which is followed by airports, airspace, nighttime, and visual errors.

(4) E = External Pressures
External pressures are an effect outside of the flight, usually at the expense of safety,

that creates a feeling of pressure to complete the flight.
Based on the analysis of the above risk factors, this paper establishes the flight training

risk HHM-PAVE framework, as shown in Figure 4.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 21 
 

Flight Training Risk HHM-PAVE 

Framework

A-airplane V-environment
E-external 

pressures

P1-

physiologic

al condition

P2-psychological 

condition

P3-quality of 

personnel

P-pilot 

P4-

emergency 

response

P5-training 

status

P51-

theoretical 

knowledge

P52-

professional 

skill

P53-

situational 

awareness

A1-repair 

fault and 

condition

A2-airworthiness 

directive and 

assessment

A3- weight 

and balance

A4-engine 

fault

A5-metal 

fatigue

A6-fuel 

capacity and 

reserves

meteorological

V6-obstacle

V1-wind

V5-terrain

V2-cloud

V3-

visibility

V4-thunderstorm

V7-airspace

V8-

transportation

E1-external 

factor

E2-management 

factor

 

Figure 4. HHM-PAVE model block diagram. 

3.1.2. Coupling Risk Scenario 

According to the accident data of China’s civil aviation safety management system 

from 2018 through 2021, the coupling theory is used to obtain the count and frequency of 

risk coupling in recent years, as shown in Table 5 below, where single-factor coupling risk 

means only one risk factor is involved, two-factor coupling risk means two risk factors are 

involved in risk coupling, and multi-factor coupling risk means three or more risks are 

involved in risk coupling; 1000 means P risk coupling effect; 0100 means A risk coupling 

effect; and 1110 represents PAV three-factor coupling effect. 

Table 5. Number and frequency of risk coupling. 

Risk Factor Count and Frequency 

Single-factor coupling risk 0000 1000 0100 0010 0001  

Count 0 22 5 8 1  

Frequency 0.0000 0.4313 0.0980 0.1568 0.0196  

Two-factor coupling risk 1100 1010 1001 0110 0101 0011 

Count 0 8 4 0 0 1 

Frequency 0.0000 0.1568 0.0784 0.0000 0.0000 0.0196 

Multi-factor coupling risk 1110 1101 1011 0111 1111  

Count 0 1 1 0 0  

Frequency 0.0000 0.0196 0.0196 0.0000 0.0000  

Figure 4. HHM-PAVE model block diagram.

3.1.2. Coupling Risk Scenario

According to the accident data of China’s civil aviation safety management system
from 2018 through 2021, the coupling theory is used to obtain the count and frequency of
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risk coupling in recent years, as shown in Table 5 below, where single-factor coupling risk
means only one risk factor is involved, two-factor coupling risk means two risk factors are
involved in risk coupling, and multi-factor coupling risk means three or more risks are
involved in risk coupling; 1000 means P risk coupling effect; 0100 means A risk coupling
effect; and 1110 represents PAV three-factor coupling effect.

Table 5. Number and frequency of risk coupling.

Risk Factor Count and Frequency

Single-factor coupling risk 0000 1000 0100 0010 0001
Count 0 22 5 8 1

Frequency 0.0000 0.4313 0.0980 0.1568 0.0196

Two-factor coupling risk 1100 1010 1001 0110 0101 0011
Count 0 8 4 0 0 1

Frequency 0.0000 0.1568 0.0784 0.0000 0.0000 0.0196

Multi-factor coupling risk 1110 1101 1011 0111 1111
Count 0 1 1 0 0

Frequency 0.0000 0.0196 0.0196 0.0000 0.0000

3.2. Risk Assessment–Coupling Risk Scenario–Hazard Measurement Model (CR-HM)
3.2.1. Risk Assessment Matrix Filtering

Through the identification of risk scenarios mentioned above, this paper identifies
23 risk factors and 16 main risk coupling scenarios, theoretically including 1630 risk cou-
pling scenarios, from which key risk factors are identified, and the priority analysis of key
risks is performed. First, the 23 risk factors are analyzed qualitatively, and the two criteria
of likelihood and severity of consequences are filtered using a risk assessment matrix.
This filtering is accomplished by interviewing experts and administering questionnaires to
relevant people. Senior flight instructors made subjective judgments about the likelihood
and consequences of each factor based on their own flight experience and then asked the
opinions of 20 flight instructors based on a questionnaire asking for their judgments. The
results are shown in Table 6 below.

Table 6. Risk assessment matrix.

Risk Assessment Matrix

Possibility
Seriousness

Negligible 1 Slight 2 Normal 3 Serious 4 Catastrophic 5
Almost impossible A A2

Rare B A6 P4, A3, A4, A5 V3, V4

Occasional C P2 A1, P53 V5, V6, V7, V8

Possible D E2 P3, P1, P51, P52, E1 V1, V2

Frequent E

Here, green represents risk level I, blue represents level II, yellow represents level III,
orange represents level IV, and red represents level V.

The risk assessment matrix gives an initial rating and filtering of each risk factor. The
risk factors for grades I, II, and III were filtered out. There are 16 risk factors, P1, P3, P51, P52,
P53, A1, V1, V2, V3, V4, V5, V6, V7, V8, E1, and E2, which were retained for further analysis.

3.2.2. Multi-Criteria Assessment of Flight Risk

According to the detailed scoring criteria and scoring rules of multiple criteria, the
16 risk factors mentioned above are further evaluated, and the evaluation criteria are
divided into three levels: high (H), medium (M), and, low (L), which were expressed by
the values of 1, 0.5, and 0.2, respectively. The final multiple judgment matrix was obtained
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as shown in Table 7 below, where St represents standard, Rf represents risk factor; and H,
M and L represent the evaluation level respectively.

Table 7. Risk factor multiple judgment matrix.

St/Rf V3 V4 A1 P53 V5 V6 V7 V8 E1 P3 P1 P51 P52 E2 V1 V2

I L L L H M L M M H H L H H H L L
II L M L H M M M M H L L M H H M L
III L L M M M M M M M M M H H H M H
IV M H L H M M M L M M M M M M H H
V M M H M M M H M M M M M H H M M
VI M M M M M M M M H H H H H H H H
VII M M M M M H M L L M H H H L H H
VIII M M H H M M M L M M M H H H H M
IX M M M L M M M L L L L H H H H M
X M H M H L M H M M M M M H M H L
XI L L L L L L L L L L L L L L L L

3.2.3. IPC-CM Assessment

The conventional risk assessment matrix, which assesses risk only qualitatively, has
the problem of boundary uncertainty, and the rating process has no scientifically sound
uncertainty reasoning mechanism. This paper adopts the IPC-CM model for risk grading.
The method further evaluates and sorts the screened risk factors.

This paper uses the IPC-CM model to cloud R, P, and C to generate the expectation
(Ex), entropy (En), and super-entropy (He) numerical features corresponding to each rank.
The softened scores of the index levels were achieved. The clouding results are shown in
Table 8, and the corresponding cloud model is shown in Figure 5.

Table 8. P, C, and R grade cloud model.

P

Rank A B C D E

Ex 1 3 5 7 9
En 1/3 1/3 1/3 1/3 1/3
He 0.02 0.05 0.05 0.05 0.02

C

Rank 1 2 3 4 5

Ex 0.15 0.35 0.55 0.75 0.95
En 0.1/3 0.1/3 0.1/3 0.1/3 0.1/3
He 0.02 0.02 0.02 0.02 0.02

R

Rank I II III IV V

Ex 1 3 5 7 9
En 1/3 1/3 1/3 1/3 1/3
He 0.02 0.05 0.05 0.05 0.02
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Based on the multiple judgment data in Table 4 and the IPC-CM model, the new
numerical features and rankings were obtained using Equations (2)–(13). The results are
shown in Table 9:

Table 9. Numerical characteristics of risk factors.

Rf Ex En He Rank

V7 6.9871 0.0335 0.015 9
V1 8.9926 0.0410 0.014 1
V5 5.9324 0.0563 0.015 12
P3 7.0000 0.0104 0.014 8
A1 7.7486 0.0574 0.014 6
V8 2.890 0.0727 0.015 16
V3 4.9558 0.0402 0.015 15
V4 6.1573 0.0137 0.014 11
V2 8.3141 0.0375 0.013 2
P53 8.0109 0.0251 0.013 5
E1 5.5060 0.0811 0.014 13
V6 5.0004 0.0377 0.014 14
P1 6.6985 0.0133 0.013 10
P51 7.4925 0.0156 0.013 7
P52 8.2033 0.0697 0.013 3
E2 8.0865 0.0292 0.012 4

The cloud model of the above 16 risk factors is sorted and screened, and the standard
cloud plots before and after filtering are shown in Figure 6.
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According to the sorting provided in Table 9 and the filtered data provided in Figure 6b,
the six most critical risk factors in flight training are selected, namely P3, P5, A1, V1, V2,
and E2. The other risk factors with low-risk values are screened out, which does not mean
that pilots are not concerned about them, but compared with risk factors with high-risk
values, pilots should follow the principle of attention distribution.

Based on this filtering, the coupled scenarios of key risk factors are further analyzed
and evaluated based on the HHM framework and holographic theory. The critical flight
risk HHM-PAVE sub-framework is shown in Figure 7.
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3.2.4. N-K Coupling Risk Scenario Assessment

Risk coupling is performed according to the six key risk factors under the above HHM
sub-framework. This paper considers the coupling of four subsystems and obtains 16
coupling scenarios. The coupling probabilities of risk factors are calculated by Table 5. The
results are shown in Table 10.

Table 10. One-factor, two-factor, multi-factor coupling probability.

O-C Pr O-C Pr O-C Pr O-C Pr

P0 . . . 0.2941 P1 . . . 0.7058 P..0. 0.6471 P..1. 0.3529
P.0.. 0.8824 P.1.. 0.1176 P . . . O 0.8431 P . . . 1 0.1569

T-C Pr T-C Pr T-C Pr T-C Pr

P00.. 0.1961 P01.. 0.0980 P10.. 0.6862 P11.. 0.0196
P0.0. 0.1176 P0.1. 0.1765 P1.0. 0.5294 P1.1. 0.1764
P0..0 0.2549 P0..1 0.0392 P1..0 0.5882 P1..1 0.1176
P.00. 0.5294 P.01. 0.3529 P.10. 0.1176 P.11. 0.0000
P.0.0 0.7451 P.0.1 0.1373 P.1.0 0.0980 P.1.1 0.0196
P..00 0.5294 P..01 0.1176 P..10 0.3137 P..11 0.0392

M-C Pr M-C Pr M-C Pr M-C Pr

P000. 0.0196 P001. 0.1765 P010. 0.0980 P011. 0.0000
P100. 0.5098 P101. 0.1765 P110. 0.0196 P111. 0.0000
P.000 0.4314 P.001 0.0980 P.010 0.3137 P.011 0.0392
P.100 0.0980 P.101 0.0196 P.110 0.0000 P.111 0.0000
P0.00 0.0980 P0.01 0.0196 P0.10 0.1569 P0.11 0.0196
P1.00 0.4314 P1.01 0.0980 P1.10 0.1569 P1.11 0.0196
P00.0 0.1569 P00.1 0.0392 P01.0 0.0980 P01.1 0.0000
P10.0 0.5882 P10.1 0.0980 P11.0 0.0000 P11.1 0.0196

Here, O-C represents one-factor coupling, T-C represents two-factor coupling, M-C rep-
resents multi-factor coupling, Pr represents probability, and P00.. represents the probability
of occurrence when the pilot and aircraft are not involved in the coupling.

According to the risk coupling probability data in Table 10 and Equations (14)–(16), the
risk values of each coupling scenario are calculated, respectively, as follows: T(PA) = 0.3635;
T(PV) = 0.4173; T(PE) = 0.0395; T(AV) = 0.1953; T(AE) = 0.0067; T(VE) = 0.0914; T(PAV) = 0.6939;
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T(PVE) = 0.4194; T(PAE) = 0.3572; T(AVE) = 0.2480. From the ranking result of risk coupling,
T(PAVE) > T(PAV) > T(PVE) > T(PAE) > T(AVE) > T(PV) > T(PA) > T(AV) > T(VE) > T(AE)
> T(VE), where the coupling risk value is the largest T4, followed by T3 and finally T2.

3.2.5. Quantitative Evaluation of Bayesian Probabilities

Based on the above-identified risk coupling situation, an example analysis is carried
out for a pilot of an aviation school to perform a specific flight mission. First, by collecting
relevant historical data and consulting the flight safety accident statistical database, the
frequency of various accidents and the influencing factors leading to them are analyzed
to determine the prior probability of risk factors. For example, the priori probability of a
flight accident occurring when a pilot is poorly trained is 0.80. Second, from the system
theory perspective, combined with the PAVE hazard identification framework and decision
makers, expert experience strengthens comprehensive judgment. When a pilot is well
trained, the likelihood of a flight accident due to operational error or lack of knowledge is
still higher, with a conditional probability of 0.25. According to Equations (17)–(19), the
posterior probability is calculated as 0.5714, and the posterior probabilities of the other risk
factors are obtained similarly, as shown in Table 11:

Table 11. Flight training risk probability.

Risk Factor Priori Probability Conditional Probability Posterior Probability

P5 0.80 0.25 0.5714
P3 0.35 0.04 0.0219
A1 0.80 0.15 0.4138
V1 0.65 0.30 0.4432
V2 0.55 0.25 0.2895
E1 0.40 0.04 0.0270

The coupling effect of the six risk factors under the HHH sub-frame is analyzed
through Table 11. This paper mainly evaluates the two-dimensional risk coupling scenario.
According to Equation (20), the risk degree of the two-dimensional risk scenario is obtained,
as shown in Table 12. Generally, a risk degree higher than 0.05 is considered high for
two-dimensional risk scenarios.

Table 12. Risk of two-dimensional risk coupling scenarios.

Risk Scenario Sub-Scene Dangerous Risk Scenario Sub-Scene Dangerous

P�A
P5�A1 0.23644

A�V
A1�V1 0.18339

P3�A1 0.00906 A1�V2 0.11979

P�V

P5�V1 0.25324 A�E A1�E1 0.01117
P5�V2 0.16542

V�E
V1�E1 0.01196

P3�V1 0.00970 V2�E1 0.00781
P3�V2 0.00634 P�E P5�E1 0.01542

P3�E1 0.00059

From the above calculation, it can be seen that there are five risk scenarios with a risk
degree exceeding 0.05, which, respectively, reflect the three main risk coupling scenarios
of risk management in this flight mission, namely pilot human factors–environmental
factors, human factors–aircraft factors, and aircraft factors–environmental factors. The
main risk scenario includes a total of five risk coupling sub-scenarios, of which the top
three key coupling sub-scenarios are P5�V1, P5�A1, and A1�V1, with risk degrees of
0.25324, 0.23644, and 0.18339, respectively. Pilot training, wind, and aircraft conditions are
the critical risk factors for coupling, indicating that in flight training, the quality of pilot
training will directly affect the risk value. In the case of poor flight training and other risks,
the risk value in this scenario is high, and flight accidents are very likely to occur.
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4. Results and Discussion

The proposed model firstly obtained all risk factors by risk identification, secondly
ranked risk screening by the IPC-CM model, and finally output the final risk values by the
N-K model and Bayesian formula. The following results were obtained and discussed.

(1) Regarding the research involving screening filtering and ranking in the RFRM
method, the IPC-CM model is proposed, which abandons the traditional purely qualitative
way of risk matrix assessment and takes advantage of the cloud model in terms of the
uncertainty of subjective perception. Based on cloud theory, cloud vertices, ranges and
thicknesses are used to show the risk value of risk factors visually. The cloud model
obtained by this method is scientific, intuitive, and easy to understand. Figure 8 shows
the results based on the IPC-CM, which achieves a further division of the same level
in the traditional risk matrix assessment [15]. Figure 8a–f reflects the risk value of risk
factors under different levels. As a result, a preliminary screening assessment algorithm for
systemic risk is formed.
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(2) Regarding the quantitative assessment of coupling scenarios in RFRM, Table 13
shows that the risk value increases with the increase in coupling factors, T4 > T3 > T2.
Table 12 reveals the key coupled risk scenarios and their hazard levels in flight training risk
management. The results show that when P5�V1, P5�A1, and A1�V1 factors are coupled,
the risk values are large, 0.25324, 0.23644, and 0.18339, respectively—much higher than the
high-risk level of 0.05. Among them, the pilot and environment coupling have the highest
number and enormous risk value, which fully confirms that the pilot is still the primary
cause of current flight training accidents [39]. At the same time, the findings show that the
number of aircraft conditions involved is low, but the risk value is also high. Although
the leading cause of flight accidents is no longer early mechanical failures, the degree of
severe consequences caused by aviation equipment has not decayed in the slightest [40], so
the risk value is still high. In addition, when pilot-related risk values are high, the quality
of trainee flight training should be subsequently enhanced, and when environmental
involvement risk values are high, the meteorological safety of training flights should be
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strengthened. In conclusion, the assessment results guide the key direction of flight training
risk management.

Table 13. Risk coupling value at risk.

Risk Coupling Scenario Risk Value Risk Coupling Scenario Risk Value

T (a c) 0.4173 T (a b c d) 0.8257
T (a b) 0.3635 T (a b c) 0.6939
T (b c) 0.1953 T (a c d) 0.4194
T (c d) 0.0914 T (a b d) 0.3572
T (a d) 0.0395 T (b c d) 0.2480
T (b d) 0.0067

In terms of overall flight training risk management, according to the final assessment
results in Table 12, it is evident that the pilot training situation participates in a high number
of couplings and has an increased risk of the coupled with other threats, implying that
the management of the pilot training situation at the flight school is becoming more and
more critical. In the study results, wind and aircraft condition factors also have higher
risks of coupling with other threats. However, in the actual training process of domestic
flight schools, the focus is still only on the operational skills of the aircraft, and most of
the risks are often managed by the instructors on behalf of the pilots, although the risk
values are significant. The perspective is prone to cause pilot dependency psychology [41]
and to cause the Dunning–Kruger effect [42]. As China has entered the stage of high-
quality development, reducing costs, increasing revenue, and improving efficiency will
inevitably lead to the emergence of the adverse effects of risk overlap. In civil aviation
flight safety, without a set of scientific risk identification and assessment methods, it is
difficult to truly grasp the policy of moving forward the gate, controlling at source, and
implementing prevention-oriented and comprehensive management to conduct scientific
risk management. This paper fully demonstrates the existence of such critical risks from
risk management identification and assessment. It also reflects the inadequacy of risk man-
agement in domestic flight schools. The aim is to systematically learn risk identification and
assessment methods from the initial training theory stage, develop pilots’ risk management
capabilities, and enable them to autonomously identify risks, assess them, and eventually
control them. This paper provides a new risk identification and assessment methodology
to facilitate pilots’ scientific risk management. More importantly, as risk management is
one of a pilot’s core competencies for flight school, the method can provide a positive
reference for the development of risk management core competency of pilots by continuous
identification, screening and assessment.

5. Conclusions

In this paper, a new HHM-RFRM risk identification and assessment method has been
proposed. Based on the assessment results, the conclusions are as follows:

(1) Research on risk identification in HHM proposes the HHM-PAVE framework
construction method. HHM iterative ideas address the holistic, logical aspects of system
risk. The Delphi method reduces individual cognitive errors (randomness), while the
PAVE framework enables pilots to reduce their workload and identify risk factors more
clearly. The HHM-PAVE framework solves the fuzzy logic problem between risk factors
in the existing text classification, making the identified risk factors more comprehensive
and objective.

(2) Research on risk assessment, based on the uncertainty of qualitative evaluation and
system resistance, proposed the CR-HM model, which uses the IPC-CM model to complete
a more scientific ranking of risk factors and screening. The method based on risk factors
can more objectively integrate system resistance. This method takes into account not only
the likelihood of accidents caused by risk factors and the severity of the consequences but
also the resistance of the overall system to the risk factors. The CM model obtained by this
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method is significantly lower than the traditional CM algorithm in En and He, solving the
uncertainty of human cognition in the qualitative risk assessment matrix and making the
assessment results more scientifically segmented and intuitive. The introduction of the N-K
model and Bayes’ theorem in the coupled risk scenario is utilized to realize the quantitative
assessment of the coupled scenario hazard degree.

(3) A new HHM-RFRM methodology is proposed for the overall risk identification and
assessment. A case study including a flight training mission is conducted to identify key risk
factors and coupled risk scenarios, assess their hazard levels, and identify weaknesses in
risk management. The method can help pilots identify key risk factors; evaluate the degree
of risk; help pilots establish a scientific approach to risk management; effectively improve
the efficiency of risk prevention and control management; improve the development of
core competency of pilots; and enhance risk management in domestic flight schools.

Future research will start with the risk identification of specific scenarios and further
analyze the intrinsic mechanism of coupled risk scenarios and the impact on critical aspects
of pilots. Based on the digital risk management platform, a pilot-oriented risk assessment
and decision support model will be constructed to ensure flight training safety further.
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