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Abstract: This study was conducted in a temperate mixed oak–pine forest of Central Himalaya, India
to (i) evaluate altitudinal and seasonal variations in the microbial biomass carbon (C), nitrogen (N)
and phosphorus (P) and (ii) analyse the relationships between soil microbial biomass C, N and P and
physico-chemical properties of soil. Three permanent plots were established in natural forest stands
along an altitudinal gradient, three replicates were collected seasonally from each site, and microbial
biomass (C, N and P) were determined by a fumigation extraction method. Microbial biomass C, N
and P decreased significantly (p < 0.01, correlation coefficient 0.985, 0.963, 0.948, respectively) with
increasing altitude having maximum values during rainy season and minimum values during winter
season. Microbial biomass C, N and P showed positive correlations with silt particles, water holding
capacity, bulk density, soil moisture, organic C, total N and P and negative correlations with sand
particles, porosity and soil pH. Microbial biomass C was strongly associated with soil microbial N
(r = 0.80, p < 0.01) and P (r = 0.89, p < 0.01) content and soil microbial biomass N and P also showed a
strong linear relationship (r = 0.92, p < 0.01). Soil microbial biomass exhibited weak seasonality and
was highly influenced by altitude and abiotic variables. The significantly high microbial C, N and P
during the rainy season (p < 0.01) and low microbial biomass during the winter season may be due
to higher immobilization of nutrients from decomposing litter by microbes as the decomposition
rate of litter and microbial activity are at their peak during the rainy period. The microbial C:N
ratio indicated that soil fertility is influenced by species composition. Our findings suggested that
high microbial biomass and low C:N ratios during the rainy season could be considered a nutrient
conservation strategy of temperate mixed oak–pine forest ecosystems.

Keywords: abiotic variables; altitude; immobilization; mineralization; mixed oak–pine forest

1. Introduction

Soil microbes play a critical role in carbon (C) and nutrient transformation in forest
soils [1]. The transformation ability of microbial biomass helps in conversion of complex
organic matter present in soil into inorganic compounds that can be reused by plants. As
such, biomass is both a source and sink of nutrients (carbon, nitrogen, phosphorus and
sulphur, etc.) contained in organic matter. In soils, the decomposition of organic matter by
microorganisms provides nutrients required by land plants [2,3]. It is the prime location of
the majority of biological activity in soil and comprises about 2–3% of total organic carbon,
and can be considered as a labile pool of essential plant nutrients such as nitrogen (N),
phosphorus (P) and sulphur (S), which are held in a form largely protected from loss due
to leaching or fixation [2].

In the cycling of important nutrients such as C, N and P, microbial activity is associated
with the mineralization of these nutrients [4]. The soil microbial biomass plays an important
role in soil processes such as N mineralization, and acts as a sensitive bio-indicator of on-
going climatic changes [5]. Moreover, the microbial biomass can easily react to changes in
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nutrients, moisture, temperature and the type and amount of soil organic matter within
a turnover time of less than a year [6]. Thus, soil microbial biomass acts as indicator of
changes in nutrient status [7,8], vegetative composition [9], and climatic conditions [10].

Forest vegetation affects the microbial processes of carbon and nitrogen cycling due to
differences in quality and quantity of litter, root exudates, and soil properties [11–15]. Tree
species have an impact on soil fertility and microbial community composition, which in turn
can affect the soil microbial biomass and microbial efficiency in carbon utilization [16–18].
The ratio of microbial biomass C to microbial biomass N is an indicator of the structure and
the state of a microbial community. Subsequently, a high microbial biomass C to microbial
biomass N ratio indicates that the microbial biomass contains a high proportion of fungi,
whereas a low value suggests that bacteria predominate in the microbial populations [19].

The activity of microorganisms in organic matter decomposition determines the min-
eralization and immobilization of nutrients, which affects the availability of nutrients in
soil for plant growth [20]. Moreover, patterns of availability of limiting nutrients such as
nitrogen and phosphorus in space and time influence plant communities and ecosystem
functioning [21–24].

We conducted a field study in a natural mixed oak–pine temperate forest in Central
Himalaya, India, with the following objectives: (i) to evaluate the altitudinal and seasonal
variations in microbial biomass C, N and P; and (ii) to analyse the relationship between
soil microbial biomass C, N and P and physico-chemical properties of soil. Two hypothesis
were tested: (i) that altitude plays a major role in determining microbial biomass C, N and
P by modifying climatic and soil characteristics, and (ii) that at the same altitude, microbial
biomass C, N and P are affected by seasonal variations due to changes in microbial activity.

The purpose of the study was to provide information on altitudinal and seasonal
variation in soil microbial biomass C, N and P in an annual cycle in a mixed oak–pine forest
ecosystem to understand the role of microbes in annual nutrient flux.

2. Materials and Methods
2.1. Site Description

This study was conducted in the Kumaun Himalayan region near Nainital town in Ut-
tarakhand State, India (29◦19′29◦28′ N latitude and 79◦22′79◦38′ E longitude). Three natural
forest sites dominated by Chir pine (Pinus roxburghii Sarg.) and Banj oak
(Quercus leucotrichophora A. Camus) were selected, covering a 200 m vertical transition zone
with elevations around 1500 m, hill base (HB), 1600 m, hill slope (HS) and 1700 m, hill
top (HT), having similar topographic and environmental factors, such as slope, aspect and
forest type. The dominant shrub species were Hypericum cernuum and Indigofera heterantha
at the HB; Rumex hastatus and Pyracantha crenulata at the HS; and Rubus ellipticus and
Berberis asiatica at the HT.

The mean monthly minimum temperature varied from 4 ◦C (January) to 17 ◦C (June)
while the mean monthly maximum temperature ranged from 11 ◦C (February) to 26 ◦C
(June) during the study period. The total precipitation was recorded at about 2527 mm and
ranged from nil precipitation (November) to 842 mm (July) (Figure 1).

Geologically the study sites were located in the lesser Himalayan zone. According to
Valdiya [25], the rocks are a complex mixture of sedimentary, low grade metamorphosed
and igneous rocks and belong to the Krol series of the lesser Himalaya. A sequence
of limestones, grey and greenish-grey and purple slates, siltstones, and in the upper
part massive dolomites that follow the Blaini without a perceptible break was named by
Medlicott [26] as the Krol series after the Krol mountains. The Baliani rock consists of
conglomerates and siltstones. The Krol formation consists predominantly of carbonates,
limestones, marl and slates in the lower part and dolomites on the upper part [25].
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Figure 1. Meteorological data during the study period (Source: ARIES, Nainital).

2.2. Experimental Design

Soil was sampled from surface layer (0–15 cm) because most of the microbial activ-
ity is confined to this region [27,28]. Soil samples were collected randomly from each
forest stand in rainy, winter and summer seasons in triplicate by digging soil monoliths
(10 cm long × 10 cm wide × 15 cm deep). In order to randomize the samples, we kept a
minimum distance between the soil samples at each site of at least 50 m. The collected
soil samples were kept in a dry ice box and were brought to the laboratory for analysis of
physical, chemical and biological properties. Soil texture was analysed following the Indian
standard [29], and soil moisture using a gravimetric method. Soil pH was determined
(1:5 water suspension) using a pH meter. The bulk density of the soil (g cm−3) was cal-
culated using mass and volume. Pore space was calculated using the bulk and particle
density. Soil organic C was estimated by the rapid titration method [30,31], total N by the
micro-Kjeldhal digestion technique [32] and total P using a spectrophotometer [31].

2.3. Analyses of Soil Microbial Biomass

The fresh soil samples were divided into two equal halves/sets; one set was imme-
diately extracted (0.5 M K2 SO4 for microbial C and N or 0.5 M NaHCO3 for microbial P),
and the other set was fumigated with chloroform and then extracted [33,34]. Soil microbial
biomass C (SMBC) was determined by modified the Walkley–Black method and calculated
following Jenkinson and Ladd [35]:

Microbial C = KEC × 0.45

Microbial biomass N was determined by the micro-Kjeldahl method and calculated by
Brookes et al. [34]:

Microbial N = KEN × 0.54

and microbial biomass P was determined by the ammonium molybdate stannous chloride
method and calculated by Brookes et al. [33]:

Microbial P = KEP × 0.40

where, KEC, KEN and KEP are the differences between C, N and P extracted from fumigated
and non-fumigated soils.

2.4. Data Processing

The raw data was statistically analysed to check the significance between the studied
parameters using SPSS software (version 25). One-way analysis of variance (ANOVA)
following Duncan’s post hoc test was performed to study the variations in soil physico-
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chemical properties across the sites. Two-way ANOVA was performed to analyse the
effect of altitude, season and their interactions on soil microbial biomass C, N and P.
Pearson’s correlation analysis was conducted to determine relationship between measured
parameters. Excel statistical software was used for the principal component analysis (PCA).

3. Results
3.1. Soil Characteristics

The soil was sandy loam with 70 to 78% sand, 10 to 13% clay and 12 to 18% silt. Soil
moisture ranged from 11 to 22%, soil pH was 5.6–6.1, soil organic carbon was 3.24–5.24%,
soil total N was 0.17–0.38%, total P was 0.041–0.092%, bulk density was 42–65 g cm−3, and
C:N ratio varied from 9.8 to 18.2 (Table 1).

Table 1. Characteristics of the studied forest stands. Values are site means (± SE, when provided).

Site

Parameter Stand I (HB) Stand II (HS) Stand III (HT) ANOVA

Soil F Value p Value

sand (%) 70 a ± 0.88 78 b ± 0.88 78 b ± 0.88 48.077 0.000
silt (%) 18 b ± 0.88 12 a ± 0.88 12 a ± 0.58 11.645 0.009
clay (%) 13 a ± 1.76 11 a ± 0.33 10 a ± 0.33 1.837 0.239

bulk density (g cm−3) 0.65 b ± 0.01 0.60 b ± 0.09 0.42 a ± 0.01 66.690 0.000
WHC (%) 45.65 b ± 0.43 42.76 ab ± 0.61 41.47 a ± 0.69 6.201 0.035

moisture (%) 22.48 c ± 0.37 14.70 b ± 0.19 11.36 a ± 0.35 68.044 0.000
porosity 75.35 a ± 0.33 77.23 a ± 3.28 84.28 b ± 0.33 11.986 0.008

pH 5.67 a ± 0.03 5.87 b ± 0.03 6.13 c ± 0.03 30.659 0.001
organic C (%) 5.24 c ± 0.09 3.75 b ± 0.07 3.24 a ± 0.04 1008.148 0.000

total N (%) 0.38 b ± 0.01 0.38 b ± 0.01 0.17 a ± 0.01 85.809 0.000
total P (%) 0.09 c ± 0.00 0.06 b ± 0.00 0.04 a ± 0.00 324.328 0.000

C:N 13.4 a ± 0.17 9.8 b ± 0.13 18.2 c ± 0.15 743.831 0.000

Vegetation

Tree species richness

05 (Boehrmeria regulosa,
Myrica esculenta, Pinus

roxburghii, Quercus
leucotrichophora,
Rhus valagaris)

03 (Boehrmeria regulosa,
Pinus roxburghii,

Quercus leucotrichophora)

02 (Pinus roxburghii,
Quercus

leucotrichophora)

Tree density (stems ha−1) 670 590 570
Basal area (m2 ha−1) 32.39 27.73 27.20

Different small letters after the mean values in each row represent the significant difference (p < 0.05) in trait
values following Duncan’s post hoc test.

3.2. Microbial C, N and P

The microbial C, N and P were recorded maximum was at the HB forest stand and
the minimum at the HT forest stand. The microbial biomass C ranged between 730 µg g−1

and 751 µg g−1 at HB, 718 and 737 µg g−1 at HS, and 681 and 697 µg g−1 at HT. The values
of microbial biomass N were 111 to 143 µg g−1 at HB, 93 to 111 µg g−1 at HS and 73 to
99 µg g−1 at HT. The microbial biomass P was estimated between 53 and 72 µg g−1 at HB,
38 and 49 µg g−1 at HS, 23 and 36 µg g−1 at HT. (Table 2). Similar seasonal variation was
recorded at all the stands with maximum values of microbial C, N and P during the rainy
season and minimum values during the winter season (Table 2).
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Table 2. Microbial C, N and P in the soils of forest stand I, II and III (µg g−1 soil ± S.E.).

Stand I (HB) Stand II (HS) Stand III (HT)

Microbial biomass carbon (MBC)
Rainy 751 ± 2.58 737 ± 1.02 697 ± 0.55
Winter 730 ± 0.86 718 ± 1.32 681 ± 1.81

Summer 738 ± 1.39 725 ± 1.18 685 ± 2.01
Annual mean 739.67 ± 6.12 726.67 ± 5.55 687.67 ± 4.81

Microbial biomass nitrogen (MBN)
Rainy 143 ± 8.54 111 ± 4.43 99 ± 2.14
Winter 111 ± 1.78 93 ± 1.41 73 ± 1.38

Summer 120 ± 1.45 103 ± 1.42 89 ± 1.07
Annual mean 124.67 ± 9.53 102.33 ± 5.21 87.00 ± 7.57

Microbial biomass phosphorus (MBP)
Rainy 72 ± 3.03 49 ± 3.69 36 ± 1.86
Winter 53 ± 1.57 38 ± 1.53 23 ± 1.55

Summer 65 ± 1.79 45 ± 1.91 26 ± 1.73
Annual mean 63.33 ± 5.55 44.00 ± 3.21 28.33 ± 3.93
Microbial C:N

Rainy 5.25 ± 0.33 6.63 ± 0.26 7.04 ± 0.15
Winter 6.57 ± 0.10 7.72 ± 0.13 9.33 ± 0.19

Summer 6.15 ± 0.08 7.03 ± 0.07 7.69 ± 0.08
Annual mean 6.16 ± 0.39 7.23 ± 0.32 8.19 ± 0.22
Microbial C:P

Rainy 10.66 ± 0.40 14.31 ± 1.21 19.71 ± 0.98
Winter 13.81 ± 0.41 18.41 ± 0.74 35.89 ± 2.42

Summer 11.42 ± 0.33 16.43 ± 0.70 27.56 ± 1.75
Annual mean 11.96 ± 0.95 16.38 ± 1.18 27.72 ± 1.54
Microbial N:P

Rainy 1.98 ± 0.11 2.26 ± 0.10 2.75 ± 0.18
Winter 2.09 ± 0.09 2.45 ± 0.13 3.17 ± 0.28

Summer 1.85 ± 0.06 2.29 ± 0.11 3.42 ± 0.19
Annual mean 1.97 ± 0.04 2.33 ± 0.08 3.11 ± 0.15

The microbial C:N ratio in the present study varied between 5.25 and 9.33, which
indicates the dominancy of a fungal community. The microbial biomass C:N ratio increased
with increasing altitude (Table 2). The microbial C:P ranged from 10.66 to 35.89. Moreover,
the microbial biomass C:P ratio and N:P ratio also showed a similar trend as described for
C:N ratio (Table 2).

Two-way analysis of variance (ANOVA) indicated a significant effect (p < 0.01) of
season and altitude on all the studied parameters; however, the interactive effects of season
and altitude showed insignificant variations in the parameters except for C:N, C:P and N:P
ratios (Table 3).
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Table 3. Two-way ANOVA showing effect of altitude, season and their interaction on soil microbial
properties in mixed oak–pine forest.

Variables Source Sum of
Squares Df Mean

Square F Sig.

MBC S 1598.06 2 799.03 113.52 0.000
A 13274.20 2 6637.10 942.92 0.000

S × A 25.87 4 6.47 0.92 0.474
MBN S 2818.66 2 1409.33 38.63 0.000

A 6575.10 2 3287.55 90.10 0.000
S × A 237.36 4 59.34 1.63 0.211

MBP S 1162.40 2 581.20 40.27 0.000
A 6135.68 2 3067.84 212.58 0.000

S × A 73.51 4 18.38 1.27 0.317
Microbial C:N S 10.59 2 5.30 56.13 0.000

A 18.88 2 9.44 100.06 0.000
S × A 1.66 4 0.42 4.40 0.012

Microbial C:P S 330.30 2 165.15 26.51 0.000
A 1238.75 2 619.37 99.44 0.000

S × A 218.53 4 54.63 8.77 0.000
Microbial N:P S 1.28 2 0.64 8.89 0.002

A 10.18 2 5.09 70.63 0.000
S × A 1.34 4 0.33 4.65 0.009

Where, S—Seasons, A—altitude, MBC—microbial biomass carbon, MBN—microbial biomass nitrogen,
MBP—microbial biomass phosphorus.

3.3. Microbial Biomass and Abiotic Variables

The microbial biomass C, N and P showed significant positive correlations with
altitude, silt particles, water-holding capacity, soil moisture, organic carbon, total nitrogen
and total phosphorus (Table 4). The microbial biomass C, N and P showed positive
correlations with bulk density but were negatively correlated with sand particles, soil
porosity and soil pH. The microbial N and P exhibited a significant negative correlation
with sand particles and soil pH (Table 4). Soil microbial biomass C and total soil C, soil
microbial biomass N and total soil N, and soil microbial biomass P and total soil P were
strongly and linearly related (Table 4). However, the present study also indicated that
microbial biomass C was strongly associated with soil microbial N (0.80, p < 0.01) and
P (0.89, p < 0.01) content. This strong relationship among all elements indicates that soil
microbial biomass C depends on soil N and P to maintain the required microbial element
stoichiometry. Soil microbial biomass N and P also showed a strong linear relationship
(0.92, p < 0.01). The soil-moisture content could be a better indicator of seasonal variation in
soil microbial biomass C, N and P as indicated by significant positive correlations between
the microbial biomass C, N or P and moisture content (Table 4).

Table 4. Correlation coefficients for the relationship of microbial biomass (C, N and P) with altitude
and abiotic variables.

Altitude Sand Silt Clay WHC bD Mo Po pH C N P

MBC 0.985 ** −0.720 * 0.685 * 0.455 0.822 ** 0.819 ** 0.916 ** −0.819 ** −0.967 ** 0.897 ** 0.939 ** 0.908 **
MBN 0.963 ** −0.905 ** 0.907 ** 0.496 0.928 ** 0.650 0.987 ** −0.649 −0.890 ** 0.992 ** 0.734 * 0.992 **
MBP 0.948 ** −0.957 ** 0.898 ** 0.624 0.920 ** 0.619 0.987 ** −0.619 −0.884 ** 0.987 ** 0.685 * 0.984 **

* Significant at (p < 0.05) and ** Significant at (p < 0.01).

3.4. Multivariate Analyses (PCA) of Microbial Properties of Soil

Principal component analysis (PCA) was carried out to differentiate forest stands by
physico-chemical and biological properties of soil (sand, silt, clay, WHC, soil microbial
biomass). The multivariate analysis indicated that F1 (active sites with 38.64% variation)
and F2 (active variables with 31.24% variation) components exhibited the maximum varia-
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tion with physico-chemical and biological properties of soil (Figure 2) and their cumulative
variability was about 70% (Table 4).
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Figure 2. Principal component analysis (PCA) of physical, chemical and microbial parameter of
soil in different stands of mixed oak–pine forest. PCA axis 1 (38.64%) and 2 (18.66%) represent
the first and second coordinates of sites, respectively (bD—bulk density, WHC—water-holding
capacity, e—void ratio, C—carbon, N—nitrogen, P—phosphorus, MBC—microbial biomass carbon,
MBN—microbial biomass nitrogen, MBP—microbial biomass phosphorus, HT1—Hill top 1, HT2—
Hill top 2, HT3—Hill top 3, HS1—Hill slope 1, HS2—Hill slope 2, HS3—Hill slope 3, HB1—Hill base
1, HB 2—Hill base 2, HB3—Hill base 3).

4. Discussion

Our values of microbial C were similar to the ranges of 61–2000 mg g−1 for various
temperate and tropical forest soils [36,37], and 978–2088 mg g−1 for sub-tropical forest [38].
Comparatively, microbial N also showed a similar trend with coniferous forest soils re-
ported by Martikainen and Palojarvi [39] as 52–125 mg g−1 and evergreen forest soils
reported by Diaz-Ravina et al. [40] as 42–242 mg g−1, but lower than that of broad-leaved
deciduous forest soils [40] (132–240 mg g−1). The microbial P values fell well within the
reported range of 5.3–67.2 mg g−1 for arable land, grassland and woodland soils [34], and
14–46 mg g−1 for sub-tropical moist forest reported by Arunachalam and Arunachalam [38].
Several studies have revealed the effects of different systems on microbial communities;
however, differences in combinations of variables, such as climate and soil type, have led
to different microbial responses in different systems [41,42].

4.1. Seasonal Variation in Microbial Biomass

The species composition of the three forest stands were different and this has a signifi-
cant effect on soil microbial biomass; however, the seasonal pattern of microbial biomass
was common at all three sites indicating that the seasonal pattern of soil microbial biomass
was regulated by climatic factors. The microbial C, N and P were significantly higher
during the rainy season (p < 0.01) and lower in the winter season (Table 2). This may
be due to higher immobilization of nutrients from the decomposing litter by microbes
as decomposition rates of litter and microbial activity are at their peak during the rainy
period. Various authors [43–47] have reported that due to high humidity and temperature,
growth of microorganisms increased during this season and contributed to the soil micro-
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bial biomass. In contrast, for tropical dry deciduous forest, savanna and temperate pastures,
Saratchandra et al. [47] and Singh et al. [2] reported maximum values of microbial biomass
during summers. Arunachalam and Arunachalam [38] reported maximum values during
winters. This may be due to differences in quality of litter and rainfall patterns in these
forest types. Low values of microbial C, N and P during the winter season in the present
study may be due to low activity of microorganisms and slow rates of decomposition of
litter in dry and cool periods. Diaz-Ravina et al. [48] reported that lack of water seemed
to limit the microbial biomass more than temperature because lower microbial biomass
content was observed in dry periods than in wet periods. The microbial populations altered
during the seasons [49]. During the rainy season, increased temperature and moisture
significantly promoted the growth of soil microbes [50].

4.2. Effect of Altitude

The hypothesis that the decrease in microbial biomass with increase in altitude in all
the seasons in central Himalayan mixed oak–pine forest was partly demonstrated in the
present study. During all the sampling seasons, microbial C, N and P decreased with the
increase in altitude (Table 2). Koch et al. [51] and Liu and Wang [52] also reported that
microbial biomass decreased with increasing altitude. According to Lipson et al. [1] at low
altitude, snow cover provides a protective effect during winter and before the beginning
of the growing season snow melt and leaching of nutrients from high altitudes provide
rich substrate inputs to low altitudes and results in higher microbial activity. Higher soil-
moisture content (Table 1), less exposure to sunlight, higher plant diversity [45] and better
quality of litter at HB resulted in better growth of microbes. Patel et al. [53] also reported
that microbial C, N and P were comparatively higher in forest stands situated at the foothill
than in forest stands located at higher elevation. However, Wardle [54] reported that there
are no consistent seasonally determined temporal patterns of microbial biomass change in
tropical and warm temperate ecosystems. With increasing altitude, the ratios of microbial
C, N and P to total soil organic C, total N and P increased. This indicates that microbial
biomass/nutrients (C, N and P) more frequently immobilized at high altitude, i.e., the
HT stand.

4.3. Microbial Quotient

The microbial C:N ratios (5.25–9.33) reported in the present study are similar to the
range reported by Martikainen and Palojarvi [39] for various forest soils (6–9). The C:N
ratio of fungi is often 10–12 and that of bacteria is usually between 3 and 5. Because
C:N ratios in the present study are more than 5, the soils may be dominated by fungal
communities. In the present study, microbial biomass C:N ratios increased with increasing
altitude (Table 2). Arunachalam and Pandey [55] stated that microbial C:N ratio is an
indicator of ecosystem recovery as the lower the ratio, the shorter will be the time required
for build-up of the microbial population and their activity. An increase in microbial biomass
C:N ratio is considered an indication of changes in the microbial community, with the
possible dominance of fungi over bacteria; thus, it could be suggested that the soil at
HT is fungi-dominated as compared to HB and HS. It is possible that restoration of the
soil at HT would take much longer than restoration of the soil at HB as apparent from
the lower C:N ratio in the HB than in HS and HT (Table 2). The microbial C:P ratio
in the present study (10.66–35.89) falls well within the reported range of 10.6–35.9 by
Brookes et al. [34], but lower than the sub-tropical humid forest (33.2–98.5) reported by
Arunachalam and Arunachalam [38], which may be due to high microbial biomass P in
the present forest. Moreover, the microbial biomass C:P ratio and N:P ratio also showed
similar trends as described for C:N ratio (Table 2). Soil microbial quotient increased with
increasing altitude representing the occurrence of a less active nutrient pool in soils with
increasing altitude [56].
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4.4. Relationship between Microbial Biomass and Abiotic Variables

Comparing different soil types, topography, and drainage is primarily significant
when assessing their impacts on soil microbial communities because microbial populations
are drastically influenced by physical and chemical soil properties [57]. In the central
Himalayan region, the availability of soil moisture depends on rainfall. Any change in
the rainfall pattern may have an impact on the soil microbial biomass dynamics, which in
turn would influence C, N and P cycling in the region. Similar reports related to significant
positive correlation between soil moisture and soil microbial biomass in wet tropical
deciduous forests of India have also been reported by Devi and Yadava [44]. Microbial
biomass of soil is significantly influenced by soil organic matter [56–59]. Results of the
present study corroborate previous research showing strong correlations among microbial
biomass, soil C and nutrient availability [54]. Microbial composition and their abilities
respond to short-term changes in soil such as inorganic N availability as well as long-term
changes like SOM [60].

5. Conclusions

The high value of microbial biomass carbon, nitrogen and phosphorus in the hill base
forest stand as compared to other high-altitude forest stands indicated that this region
had a higher number of microorganisms which sustain better soil quality due to the more
diverse forest structure, higher soil-moisture content, better litter quality and less exposure
to sunlight. This site was also enriched with substrate input through rainwater, snowmelt
and leaching of nutrients from the hill top which favoured high microbial activity. At
each altitude, soil microbial biomass showed similar seasonal variation with a minimum
value during the winter season and maximum value during the rainy season, which can
be considered a nutrient conservation strategy. The soil microbial biomass C, N and P
exhibited significant negative correlations with altitude (p < 0.05). Several soil parameters
such as silt, water-holding capacity, moisture content, and total C, N and P showed positive
correlations, while sand, porosity and pH showed significant negative correlations with
soil microbial biomass C, N and P. Microbial C:N ratio in the present study revealed the
dominance of fungal communities over bacterial communities across all altitudes. The
microbial C:N, C:P and N:P ratios increased with increasing altitude indicating that soil
fertility is influenced by the species composition of the forest stand.
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