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Abstract: Onshore wind turbines are primarily installed in high-altitude areas with good wind
energy resources. However, in winter, the blades are easy to ice, which will seriously impact their
aerodynamic performance, as well as the power and service life of the wind turbine. Therefore, it
is of great practical significance to predict wind turbine blade icing in advance and take measures
to eliminate the adverse effects of icing. Along these lines, three approaches to supervisory control
and data acquisition (SCADA) data feature selection were summarized in this work. The problems
of imbalance between positive and negative sample datasets, the underutilization of SCADA data
time series information, the scarcity of high-quality labeled data, and weak model generalization
capabilities faced by data-driven approaches in wind turbine blade icing detection, were reviewed.
Finally, some future trends in data-driven approaches were discussed. Our work provides guidance
for the use of technical means in the actual detection of wind turbine blades. In addition, it also gives
some insights to the further research of fault diagnosis technology.

Keywords: wind turbine; SCADA; data-driven approaches; blade icing detection

1. Introduction

With the rapid growth of the economy and population, global energy consumption
is expected to be doubled by 2050, and more severe energy challenges will arise in the
future [1]. For the sustainable development of humanity and the protection of the eco-
logical environment, China has already formulated the goal of carbon neutrality in 2060.
Simultaneously, some of the world’s largest countries are also beginning to take the concept
of carbon neutrality seriously and practice it. To solve the above-mentioned problems, it
is urgent to develop renewable energy sources. Under this perspective, wind energy is
regarded as the most widely used renewable energy in the world. The total number and
annual growth of global wind turbine assemblers since 2015 are depicted in Figure 1 [2].
As can be observed, from 2015 to 2021, the global total installed capacity continued to grow
steadily, with a cumulative global installed capacity of 837 GW by 2021. From 2015 to 2019,
the global annual growth of wind turbines was about 50 GW. After 2019, the annual growth
of wind turbines reached 90 GW. Thus, it is foreseeable that wind energy will play a more
critical role in the future.

To make full use of wind energy, wind farms are usually located in high-altitude areas,
which are normally far away from human communities. Within 1000 m above sea level,
the wind speed is increased by approximately 0.1 m/s for every 100 m of altitude gain,
while the wind energy is proportional to the cube of the wind speed [3]. With the increase
in altitude, the temperature will also decrease, and the density of the cold air is higher
than that of the warm air, as a result, the wind energy potential in the alpine region is
10% higher than in other areas [4]. However, it is challenging to operate wind turbines in
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areas over 1000 m, and some problems are often encountered, such as the failure of the
measuring instruments [5]. In winter, wind turbines in alpine regions are easily exposed to
low-hanging clouds in which blades are very prone to icing. A close-up of a wind turbine
blade icing up is displayed in Figure 2 [6]. Nowadays, about one-third of the wind turbines
around the world operate in cold environments [7], and most of them suffer from the
blade icing problem. The most intuitive impact of blade icing is the reduction of the power
generation of the wind turbines. Pérez et al. [8] analyzed 517 wind turbines in Spain and
found that the power loss caused by the blade icing effect reached as much as 18 GWh in 29
months, which was estimated to be 550 GWh of the annual power loss due to blade icing
over the country, that is equivalent to the electricity consumption of 200,000 households.
In addition, Lehtomäki et al. [9] studied the wind turbine data at two sites in Canada and
Sweden and concluded that blade icing increased the transverse fatigue load on the tower
base and affected the service life of the wind turbines. Otherwise, the icing of the blades
could increase noise pollution and affect the life of the surrounding staff. On top of that,
ice shed and ice throw may destroy equipment, even causing people injury and death [10].
Therefore, early detection of blade icing is considered of great importance in ensuring the
safe operation and power production of wind turbines.
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Figure 1. Global total installed wind turbines and annual growth from 2015 to 2021. [2].
Sustainability 2022, 14, x FOR PEER REVIEW 3 of 22 
 

 

Figure 2. Close-up of wind turbine blade icing (adapted from [6]). 

At present, the icing environments of wind turbines are defined as when the temper-

ature is below 0 °C and the relative humidity is over 95% [11]. However, Laakso et al. [12] 

found that in most cases, when the temperature was lower than the value of 0 °C, and the 

relative humidity was higher than 95%, the blades did not ice. In actual operation, the 

deviation between the actual power and the theoretical power of the wind turbine is used 

by the staff as the criterion for blade icing. When the deviation reached a specific value 

(i.e., 15% in usual), an alarm was triggered, and the wind turbine was then stopped. How-

ever, when the alarm was triggered, there was already a relatively large area of ice on the 

blade [13,14]. Although many wind turbines have been equipped with de-icing systems, 

the challenge in practice is to detect early the icing effect accurately and turn on the de-

icing system in time. Later, the implementation of sensors was reported in the literature 

to detect changes in the physical properties of blades to determine whether the blades 

were iced. More specifically, Berbyuk et al. [15] used controlled acoustic waves propagat-

ing in the wind turbine blades to detect early icing. Interestingly, when the blade starts 

icing, the Fourier transform, amplitude attenuation, and the root mean square of the 

guided wave propagation changed significantly. Muñoz et al. [16] proposed a non-contact 

infrared sensor method to examine if blades were iced since the emitted thermal radiation 

signals by the blade surface are significantly different from those emitted during non-icing 

conditions. Kim et al. [17] detected the icing condition of the blade by arranging optical 

fiber optic sensors on the blade. The transition in Fresnel reflection due to the icing effect 

gives unusual intensity variations, which are used to identify the ice on the wind turbine 

blades. Although the above-mentioned methods are highly accurate in detecting blade 

ice, they are complex and highly dependent on expertise. Moreover, the majority of wind 

turbines in service do not have those specific sensing elements and often require addi-

tional installation costs. Therefore, these specialized ice identification methods are not 

used on many large-scale wind turbines in practice. 

In recent years, SCADA systems have evolved the standard configuration of large-

scale wind turbines. Moreover, the SCADA system contains many state monitoring data 

of the wind turbine’s components or subsystems, such as environmental parameters, 

working conditions, and control parameters, which can comprehensively monitor the 

state of the wind turbines through an economical and convenient method [18]. Further-

more, improvements in data mining techniques have made it possible to detect blade icing 

based on the application of data-driven approaches. 

Therefore, this paper reviewed and summarized the recent research on the data-

driven approaches diagnosis of wind turbine blade icing. In the second section, the data-

driven approaches and the feature selection were introduced and data imbalance issues 

were considered when modelling. In the third section, the time series information of 

Figure 2. Close-up of wind turbine blade icing (adapted from [6]).



Sustainability 2023, 15, 1617 3 of 20

At present, the icing environments of wind turbines are defined as when the tempera-
ture is below 0 ◦C and the relative humidity is over 95% [11]. However, Laakso et al. [12]
found that in most cases, when the temperature was lower than the value of 0 ◦C, and
the relative humidity was higher than 95%, the blades did not ice. In actual operation,
the deviation between the actual power and the theoretical power of the wind turbine is
used by the staff as the criterion for blade icing. When the deviation reached a specific
value (i.e., 15% in usual), an alarm was triggered, and the wind turbine was then stopped.
However, when the alarm was triggered, there was already a relatively large area of ice
on the blade [13,14]. Although many wind turbines have been equipped with de-icing
systems, the challenge in practice is to detect early the icing effect accurately and turn
on the de-icing system in time. Later, the implementation of sensors was reported in the
literature to detect changes in the physical properties of blades to determine whether the
blades were iced. More specifically, Berbyuk et al. [15] used controlled acoustic waves
propagating in the wind turbine blades to detect early icing. Interestingly, when the blade
starts icing, the Fourier transform, amplitude attenuation, and the root mean square of the
guided wave propagation changed significantly. Muñoz et al. [16] proposed a non-contact
infrared sensor method to examine if blades were iced since the emitted thermal radiation
signals by the blade surface are significantly different from those emitted during non-icing
conditions. Kim et al. [17] detected the icing condition of the blade by arranging optical
fiber optic sensors on the blade. The transition in Fresnel reflection due to the icing effect
gives unusual intensity variations, which are used to identify the ice on the wind turbine
blades. Although the above-mentioned methods are highly accurate in detecting blade
ice, they are complex and highly dependent on expertise. Moreover, the majority of wind
turbines in service do not have those specific sensing elements and often require additional
installation costs. Therefore, these specialized ice identification methods are not used on
many large-scale wind turbines in practice.

In recent years, SCADA systems have evolved the standard configuration of large-
scale wind turbines. Moreover, the SCADA system contains many state monitoring data
of the wind turbine’s components or subsystems, such as environmental parameters,
working conditions, and control parameters, which can comprehensively monitor the state
of the wind turbines through an economical and convenient method [18]. Furthermore,
improvements in data mining techniques have made it possible to detect blade icing based
on the application of data-driven approaches.

Therefore, this paper reviewed and summarized the recent research on the data-driven
approaches diagnosis of wind turbine blade icing. In the second section, the data-driven
approaches and the feature selection were introduced and data imbalance issues were
considered when modelling. In the third section, the time series information of SCADA
data was explored. In the fourth section, the focus led on the semi-supervised learning
methods, as well as the implementation of unlabeled data. Finally, in the fifth section, the
application of the transfer learning method in blade icing detection was introduced.

2. Data-Driven Approaches in Blade Icing Detection

Data-driven fault diagnosis approaches is considered a method that can complete
the fault diagnosis of the system by analyzing and processing the process operation data
without knowing the accurate analytical model of the system [19]. Particularly, the data-
driven turbine blade icing diagnosis approaches mainly focuses on the use of artificial
intelligence algorithms to learn hidden information in the historical data to detect blade
icing. According to the output variables, the data-driven icing diagnosis research can be
divided into regression and classification tasks.

The regression task predicts state variables of the wind turbines, such as the active
power on the grid side, the rotor speed, etc. The operating parameters closely related to
the prediction variables are used as the model’s inputs, while the normal SCADA data are
utilized to train the model. Then, the model’s predicted values are compared with the actual
measured values, and the judging criteria are set according to the statistical knowledge or
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algorithm. If the residual error between the predicted and the actual measured values does
not meet the judging criteria, the unit may be in the icing state. Guo et al. [20] analyzed
the influence of the blade icing effect on the operation parameters of wind turbines. More
specifically, the power, rotor speed, and ambient temperature were selected to detect blade
icing. The normal behavior models of power and rotor speed were constructed by using
the extreme gradient Boosting (XGBoost) method, and the sequential probability ratio test
(SPRT) was introduced to analyze the model prediction residuals to identify the abnormal
changes in the output power and rotor speed. Blade icing warnings were issued when
the residual difference between the predicted and actual values of power and rotor speed
were detected to be above the threshold at the same time and the ambient temperature was
below zero. The authors found that the proposed blade icing detection method can warn
wind turbines 5 h before the shutdown moment by icing. The principle of this technique is
illustrated in Figure 3. Similarly, Fan et al. [21] established power and rotor speed models
by using by adaptive boosting (AdaBoost) algorithm and introduced the exponentially
weighted moving average method to analyze residuals.
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The operational parameters of the wind turbines predicted by the regression tasks are
continuous variables. The classification task outputs are discrete variables that characterize
if the SCADA data refers to icing. The typical evaluation indexes include accuracy, precision,
recall, F1 score, etc. During the classification task, if the massive high-dimensional SCADA
data are directly input into the learning model, too much redundant information will affect
the model’s performance. Moreover, most wind turbines work under normal conditions,
resulting in a significant imbalance in the SCADA data. Therefore, feature selection and
data imbalance must be considered in constructing the model.

2.1. Feature Selection Problem

In practice, the SCADA system records many state monitoring data of the wind
turbine components or subsystems with hundreds of dimensions. Hence, the selection
of the effective characteristics that can characterize the icing effect of wind turbines is
a problem worthy of consideration. Although some variables have been selected in the
literature according to relevant field knowledge, redundant information still prevents the
model from achieving the desired effect. Because of the above-mentioned problems, the
SCADA data feature selection has been examined in the literature. Li et al. [22] considered
the actual situation of wind turbine icing by selecting two sensitive features, namely
wind speed and power. The non-principal component direction value of the wind speed
and power were the input of the classifier and by using logistic regression, the optimal
model was found by setting different discriminant thresholds. Based on expert knowledge,
Zhou et al. [23] selected the wind speed, power, environment temperature, and nacelle
internal temperature from the SCADA data. The authors constructed four derived variables
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including residuals of the normal fit speed and the generator speed, the residuals of the
actual power and the theoretical power, the residual between the environment and the
internal temperature, as well as the non-principal component direction values of the wind
speed and power as the input of the support vector machine, whereas the particle swarm
optimization was used to establish an icing detection model. Zhang et al. [24] selected wind
speed and power as two essential characteristics and constructed six characteristics, such
as: average wind speed (V); average power (P); the degree of deviation of P(C); the average
rate of change of C (∆C); the maximum value of C (max C); and the cumulative value of
∆C (sum ∆C), which were then used the random forest to detect blade iced. Additionally,
Ma et al. [25] proposed a blade icing detection method based on a deep belief network
(DBN) by selecting six different features, such as wind speed, power, and environment
temperature, according to the relationship model between icing, and the wind turbine
performance.

Nevertheless, the aforementioned method of manually extracting features is labor-
intensive and strongly dependent on expert knowledge and skills [26]. The good or bad
feature extraction affect also dramatically the performance of the model. Later, features
were filtered based on algorithms. Ye et al. [27] proposed a feature screening method by
combining the chi-square test and principal component analysis (PCA). The chi2 algorithm
was used to select the top 10 feature parameters, and then the PCA algorithm was used to
reduce the dimension of the feature parameters after the preliminary screening to reduce
the redundancy between features. Besides, Peng et al. [28] extracted three features, yaw
position, internal temperature, and generator speed, by using the highest correlation with
wind turbine blade icing through dynamic PCA and Elman neural network. Then, they
were input into the back propagation (BP) neural network for clustering judgment. From the
experimental results, it was demonstrated that the prediction value of the Elman artificial
neural network was better than that of support vector regression for the discrimination of
the BP artificial neural network clustering. Li et al. [29] obtained the characteristic variables
related to blade icing by using the extraction algorithm of the reward extremum and then
a blade icing detection model was established based on a logistic regression algorithm
from many historical monitoring data denoised by the wavelet transform method. Jia
et al. [30] used a slow feature analysis (SFA) algorithm to extract the slow features of the
original SCADA data as input from a support vector machine (SVM). The slow feature
contained temporal information more in line with the wind turbine icing process. For a
single wind turbine, when the number of slowly varying features was five, the model error
rate in this paper’s test set was 23.4%, while the minimum error rate of the SVM trained
directly with the original SCADA data was 31.7%. It is also worth noting that if the data
dimension was improperly selected, the model’s performance worsened. When the feature
dimension was reduced to three, the model’s error rate reached 54.7%. Zhang et al. [31]
proposed a feature extraction method based on MIV-tSNE. The mean impact value (MIV)
algorithm was also used to eliminate variables with a MIV index of less than one. Then,
the t-distributed stochastic neighbor embedding (tSNE) algorithm was employed to map
the selected characteristic variables to specific dimensions as the input of the recurrent
neural network. The model’s accuracy on the test set can reach about 72% for a single
wind turbine. Interestingly, compared to traditional recurrent neural networks (RNN), the
prediction accuracy was improved by about 150%, and the model run-time was reduced by
about 45%.

In addition, compelling features were extracted from the original SCADA data set
based on domain knowledge and algorithms. Furthermore, Chen et al. [32] combined
the mechanism model by using the decision tree for feature screening and selecting eight
features, such as wind speed and power, and used a convolutional neural network (CNN)
to construct an icing detection model for the wind turbine blades. Based on domain
knowledge and the wrapper method, Di et al. [33] performed feature selection on the wind
turbine SCADA data, and selected 10 features, such as power, generator speed, temperature
difference environment and nacelle, and wind speed, while the XGBoost was applied to
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construct a wind turbine blade iced detection model. Meng et al. [34] proposed a feature
selection method based on the implementation of a recursive feature elimination -random
forest (RF) method. According to the influencing factors of wind turbine icing and artificial
experience, four different features of wind speed, power, internal nacelle temperature,
and environment temperature were selected for the cross-feature construction. Then, the
proposed method was used to screen the original and the newly constructed features, and
the top 12 feature attributes were selected as the model’s input. From the experimental
results, it was suggested that the accuracy of the model test set increased after feature
selection. Hai et al. [35] combined the Makkonen and the rotating object icing models. After
performing PCA analysis, the wind speed (v) and the power, environment temperature,
v3
ω + 1/2v2

P (vw refers to the directional component of the velocity of the water droplet on
the surface of the accumulated ice in the rotating coordinate system normal to the surface,
and vP represents the rotating speed for wind blade), and the Pa/v3 (Pa stands for the
work absorbed by the blades from the wind energy) were selected as inputs to the support
vector machine for the particle swarm optimization. Nie et al. [36] selected four essential
features, such as wind speed and power, and the original feature set was expanded by
feature crossover. The recursive feature elimination algorithm was also used to select 19
features with high weight scores, such as the wind speed and environment temperature, as
the model’s input. The data coupling was significantly reduced by PCA, and the improved
sparrow search algorithm was introduced to establish the long short-term memory (LSTM)
network icing detection model. Tang et al. [37] formulated 13 sensitive features, such as
the wind speed power ratio and blade angle average, by performing a qualitative analysis
of the icing mechanism and merging them with 26 features of the original dataset. Then,
they were the recursive feature elimination cross validation algorithm was used to select 15
features, such as the generator speed, active power, and yaw position as the input of the
fully connected neural network.

As far as feature engineering problems are concerned, the reviewed works in the
literature can be classified into three types: mechanism-based feature selection, algorithm-
based feature selection, and mechanism+algorithm-based feature selection. Table 1 displays
a categorization of these works by their methodological method.

Table 1. Categorization of feature selection solutions by methodology.

Methods References Base Features Advantages Disadvantages

Mechanism-based method

Li et al. [22]
Zhou et al. [23]
Zhang et al. [24]

Ma et al. [25]

Wind speed, power, etc.
The residuals of actual power and the

theoretical power, etc.
Degree of deviation of P(C), the

maximum value of C (max C), etc.
Wind speed, power, environment

temperature etc.

The extracted features are
highly accurate and relatively

simple to model.

Manual extraction of features
is labor-intensive and overly

dependent on domain
knowledge.

Algorithm-based method

Ye et al. [27]
Peng et al. [28]

Li et al. [29]
Jia et al. [30]

Zhang et al. [31]

Generator speed, pitch angle, motor
temperature, etc.

Yaw position, internal temperature,
generator speed, etc.

Yaw position, Wind Speed Face (Upwind
speed), pitch angle, etc.

Dimensionality reduction of raw
26-dimensional SCADA data using the

SFA algorithm works best at dimension 5.
Pitch1_ng5_tmp, Generator speed,

Pitch2_moto_tmp, etc.

Selecting features from the
algorithm level reduces labor

and decreases model
complexity and run time.

May be losing useful
information.

Mechanism+algorithm-based
method

Chen et al. [32]
Di et al. [33]

Meng et al. [34]
Hai et al. [35]
Nie et al. [36]

Tang et al. [37]

Angle_avg (the average of three pitch
angle), etc.

Power, generator speed, etc.
Wind speed, power, internal nacelle

temperature, environment temperature,
etc.

Wind speed, power, environment
temperature, etc.

Wind speed, power, etc.
The wind speed power ratio, blade angle

average, etc.

Avoid the impact of manual
feature selection and the loss
of some information, more

comprehensive consideration,
required.

More labor-intensive,
potentially increasing the
complexity of the model.
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2.2. Data Imbalance Problem

In the supervised learning mode, the classification tasks need to learn the hidden
information of the normal and iced data in the training stage. However, most of the
working time of the unit is in the normal state, and only a few of the time is in an icing
state. Therefore, the data recorded by SCADA show a great imbalance. The model trained
with unbalanced data gives a biased prediction [38]. The sample imbalance of SCADA
data has been also explored in the literature, and the solutions can be roughly divided into
two categories. One is data-based, such as large sample under-sampling or small sample
over-sampling. In the previously reported work, Chen et al. [32] eliminated the influence
of sample imbalance by using 28 s average under-sampling normal samples. Ye et al. [27]
used the synthetic minority over-sampling technique (SMOTE) algorithm to oversample a
few samples for the problem of sample imbalance, whereas the Tomek links algorithm was
employed to clean the noise samples and boundary samples in the data set. Finally, the
authors used the random forest algorithm to establish the icing classification model. On top
of that, Xu et al. [39] first removed some samples that were obviously not iced according to
the actual situation of the blade icing effect, and then an under-sampling algorithm was
proposed based on the similarity function to remove the redundant normal samples. The
SMOTE algorithm was also to generate iced samples to ensure data balance. Similarly,
Zhang et al. [24] utilized the SMOTE algorithm to increase the number of iced samples.

Since the SMOTE algorithm can synthesize a few classes of samples indiscriminately,
it leads to some redundancy in the synthesized samples, which can induce the boundary
confusion problem. For this reason, some novel oversampling algorithms have been
introduced for solving the data imbalance problem. Ge et al. [13] proposed an improved
SMOTE algorithm to conquer the data imbalance. More specifically, by introducing the
concept of sample density and dividing the concentration region to balance the sample
distribution, the mini-batch k-means algorithm (MBK-SMOTE) can avoid the redundancy
of the synthesized samples by using the SMOTE algorithm. The author used the random
forest to construct a model to detect when the wind turbine blades are iced. It was found
that the prediction effect of MBK-SMOTE was better than that of the other SMOTE methods.
Peng et al. [40] also proposed an over-sampling balancing algorithm, namely the safe circle
synthetic minority oversampling technology (SC-SMOTE) to optimize the data set, and an
improved k-nearest neighbor (KNN) method was used to construct a wind turbine blade
icing fault diagnosis model. By carrying out extensive experiments, the authors proved
that compared with the SMOTE algorithm, the SC-SMOTE algorithm had a better fault
diagnosis accuracy, which was 10.3% better than the SMOTE algorithm. Tang et al. [37]
utilized SVM-SMOTE to oversample a small number of iced samples and randomly under-
sampling most normal samples to balance the data set of the iced data with normal data.
Jiang et al. [41] used the adaptive synthetic method to oversample the wind turbine blade
icing (minority class) samples and improve the unbalanced data set of wind turbines. The
other was algorithm-based, such as using cost-sensitive or ensemble learning to reduce the
impact of data imbalance. In addition, Chen et al. [42] proposed a deep neural network
based on triplet loss. This method mapped SCADA data to a hypersphere, and after triplet
loss learning, the distance of similar data was near but further for different data in the
reconstruction space. By using such processing methods, the impact of data imbalance can
be significantly reduced. The local and global features of the data were also considered to
introduce skip connections in the deep neural networks (DNN) model, and the SCADA
data of two other wind turbines were verified. The accuracy of this model can reach more
than 80%, the recall rate reached about 60%, and the overall performance of the model was
better than the traditional artificial neural network. The model framework is depicted in
Figure 4.
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In addition, Peng et al. [43] introduced a focal loss function to replace the traditional
cross-entropy loss function. As a result, the impact of the data imbalance was weakened by
reducing the weight of the simple sample loss during the training process since focusing on
the training of samples with less data that are difficult to predict. Tong et al. [44] proposed
a novel adaptive weighting strategy to eliminate the influence of data imbalance from the
perspective of sample distribution information by using the support vector data description
method. The authors combined it with the traditional fixed weighting strategy to develop
an adaptive weighted kernel extreme learning machine (AWKELM) algorithm. Moreover,
the superiority of the AWKELM algorithm was verified on two wind turbines, with a 23%
improvement in the F1 score performance over WKELM. Ding et al. [45] combined the
ideas of under-sampling and ensemble learning to under-sample normal data to obtain
several subsets and assign icing data to each subset so that each subset was class balanced.
Then, several classification models were obtained by training each subset using temporal
convolutional networks (TCN). Finally, the prediction results of all models were averaged
as the final prediction results of the samples. The model framework is displayed in Figure 5.
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In summary, to solve the problem of data imbalance, data-based and algorithm-based
methods are proposed, as presented in Table 2. The flow of the wind turbine blade icing
classification model is roughly shown in Figure 6. First, the historical data recorded by the
SCADA system was selected features and processed for data imbalance. Then, the model
was modelled by using artificial intelligence algorithms. Finally, the model was evaluated
and optimized by using the test set.
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Table 2. Categorization of data imbalance solutions by methodology.

Methods References Characteristics

Data-based

Ge et al. [13]
Zhang et al. [24]

Ye et al. [27]
Chen et al. [32]
Tang et al. [37]
Xu et al. [39]

Peng et al. [40]
Jiang et al. [41]

This method eliminates the effects of data
imbalance, but incorrect down-sampling

can lose helpful information, and incorrect
oversampling can lead to overfitting

problems.

Algorithm-based

Chen et al. [42]
Peng et al. [43]
Tong et al. [44]
Ding et al. [45]

This method eliminates the effects of data
imbalance but may suffer from

hyperparameters or thresholds that are
difficult to determine.
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3. Research on the Time Dimension of SCADA Data

Wind turbine blade icing is considered a gradual process, and there is a correlation
between before and after in the time dimension. Hence, the SCADA data are essentially
time series data, which is mostly ignored by the previously-mentioned works. In addition,
to solve the data imbalance problem, the SMOTE algorithm has been also used to generate
icing samples that will destroy the characteristics of the SCADA data in the time dimension.
Wang et al. [46] constructed time variation features based on the original data to solve
this problem, while the DBN was used to construct the blade icing detection model. By
considering the time dimensional information of the SCADA data, Li et al. [47] used a
sliding window to intercept time series segments from the original data as the training
samples. In this way, each training sample represents the state of the wind turbines over
a period of time rather than a moment in time, making it thus easier for the algorithm to
learn the hidden knowledge of the SCADA data. To better learn the information between
the time sequence fragments, Yuan et al. [48] proposed a wavelet-based fully convolutional
neural network (FCNN), namely Wavelet FCNN. The model framework is illustrated in
Figure 7. The time-frequency domain information of SCADA data was learned by enforcing
an orthogonal discrete wavelet transform. Based on this approach, the detection model
was constructed by using the ensemble learning and CNN, and the global pooling layer
was used instead of the fully connected layer to achieve the deep mining of SCADA time
series samples. To further improve the robustness of this model, an anomaly monitoring
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algorithm combining the sliding windows and majority voting was designed during the
simulation deployment stage. After the model predicted the real-time data, the multi-
voting mechanism was used to determine whether the current data were abnormal by
considering the wind turbine’s state over a while.
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Compared with the traditional FCNN model, the accuracy, precision, and F1 score
were remarkably improved after the wavelet transform method, and the recall was slightly
decreased. However, there was only a 28.4% (precision) probability that the predicted
iced samples were accurate, which was not enough for applying to the wind turbine
blade icing detection. According to the literature [49,50], the FCNN architecture does not
adequately learn the time dependency of the SCADA data. Therefore, Wang et al. [49]
proposed a wavelet-based multi-scale long LSTM network, namely Wavelet LSTM, for
learning the global and local features of multivariate SCADA data. The LSTM network
is a kind of neural network that is used to learn sequential data in deep learning. It can
detect the long-term dependence of SCADA data and avoid the gradient disappearance
of the RNN. After using the LSTM structure and the wavelet transform, the accuracy and
recall rate of the model reached more than 90%, and the accuracy reached 37.6%, which
was nearly 32% higher than that of Wavelet FCNN. Tian et al. [51] also proposed a parallel
network architecture composed of LSTM and CNN to improve the model’s ability to extract
SCADA data in both temporal and spatial dimensions, as can be observed from Figure 8.
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At the same time, by considering that the time series samples still have the problem of
sample imbalance, a data enhancement algorithm was proposed. During the sampling
process, through the non-overlapping segmentation of the normal data, the overlapping
segmentation of the icing data increased the number of icing samples to balance the data.
The model scored more balanced precision and recall on the test set for individual wind
turbines than Wavelet FCNN, reaching 63% and 61%, respectively.
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By considering the efficiency and complexity of the model operation, Li et al. [51]
introduced the gated recurrent unit (GRU) to construct the icing detection model. GRU
is a simplified version of LSTM [52]. Compared with the LSTM network, this structure
is simpler and more time-efficient. Moreover, the authors used BiGRU, where the model
introduced information about future moments in the learning process to better capture the
temporal dependencies and improve sensitivity to time.

The wind turbine blade icing is a gradual process that is correlated backward and
forward in the time dimension, while time-series models may be more suitable for the
problem. Hence, the application of 1D-CNN, LSTM, and GRU to wind turbine icing
detection was examined. Wavelet FCNN performs a wavelet transform on Scada data and
then uses the detail coefficients at different scales as the input features, which may not be
learned by CNNs. CNNs are concerned with the connections between different sensors,
whereas LSTMs are more of a metric for time steps. Compared to LSTM, GRU is somewhat
simpler in structure, and BIGRU can introduce information from future moments for the
model to learn, by capturing the temporal sensitivity better.

4. Semi-Supervised Learning Method in Blade Icing Detection

Most of the aforementioned data-driven icing detection approaches are supervised
learning and have the disadvantage of being overly dependent on labels. However, the
accurate labeling of large amounts of data can be very challenging. Under this direction, the
semi-supervised learning approach is a learning framework that addresses this problem. It
allows predictive models to be built by using a small amount of labeled data and a large
amount of unlabeled data [53,54]. In this regard, Yi et al. [55] proposed a graph-based
semi-supervised learning system. It first used mutual information to extract features from
data to eliminate redundant variables. Then, the graph data are constructed from processed
data and a small amount of labeled data is used to represent the relationship between the
samples. Finally, through the iterative operation of the label propagation algorithm of the
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graph, the initial label information is propagated to the data for classification. Autoencoder
(AE) is also an effective unsupervised learning method to learn the potential representations
of the input data [56]. Autoencoder have been also introduced for icing detection in wind
turbines. Yuan et al. [57] proposed a wavelet enhanced autoencoder model (Wavelet AE),
whose specific architecture is depicted in Figure 9. The input SCADA data were first
decomposed into multi-level wavelet detail coefficients. Then, at each scale layer, the
SCADA data or wavelet detail coefficients were passed through the CNN encoder and the
LSTM encoder, and the hidden states of the LSTM encoder were concatenated to form a
global code. In the decoding stage, the fully concatenated layer first mapped the global
code to the initial hidden state at each scale. Then the LSTM decoder and CNN decoder
reconstructed the SCADA data and wavelet detail coefficients as the way to learn the
low-dimensional representation of SCADA data, and then the encoder part was used as
a feature extractor. A SoftMax layer was added as a classifier to supervise the model’s
training using labels. Moreover, the method’s effectiveness was verified in real datasets,
and the model accuracy and precision metrics reached more than 80%. Additionally, Liu
et al. [28] applied deep auto-encoders to learn multilevel fault features from SCADA data
adaptively and used the idea of ensemble learning to construct an integrated icing detection
model by adding classifiers after each hidden layer of the network. This method has been
also tested on another wind turbine, on which the model’s accuracy was as high as 96%, and
the MCC coefficient was 0.783, which was better than RF, SVM, shallow neural networks,
and DNN.
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Similarly, Yi et al. [58] proposed a wind turbine icing fault detection method based
on discriminative feature learning. The stacked autoencoder (SAE) model trained by the
normal data was used to extract deep features of the sample (i.e., the original data, the
features extracted by SAE, and the error vector), and then the extracted deep features
were mapped to the low-dimensional space by sparse linear discriminant analysis for
classifier training. The better classification was attained when considering the time series
relationships. Cheng et al. [59] proposed a new depth class imbalance semi-supervised
model for icing detection. The specific principle is depicted in Figure 10. The method first
projected the imbalanced dataset with only partially labeled data into the feature space with
the feature encoder and then utilized the prototype network to calculate the prototypes
of each category (i.e., icing or non-icing) from labeled data. Finally, it updated the labeled
data prototype by comparing the distance between the unlabeled data prototype (unknown
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class) and the labeled data prototype (known class). This method used only unlabeled data
for training the optimization model. In the testing phase, each test sample was mapped to
the feature space by the feature encoder and then classified by the trained classifier.
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Supervised learning requires high-quality labeled data, whereas in the industry there
is a large amount of unlabeled data and a severe shortage of high-quality labeled data. As
a result, in this section, the application of semi-supervision was reviewed for leaf icing
detection. While for graph neural networks it is worth considering when constructing graph
data, for AE the implementation of AE unsupervised learning to SCADA low-dimensional
representations for distinguishing normal from icing data should be considered.

5. Transfer Learning Method in Blade Icing Detection

In some cases, obtaining a large amount of training data for the target domain is
difficult and expensive. Therefore, it is of great significance to learn from the relevant
source domain to transfer knowledge to the target domain and build a high-performance
model for the target domain, which is the motivation for transfer learning [60]. For wind
turbines, different geographical locations and environments lead to specific differences
in the operation data of wind turbines. The model based on a single wind turbine has
the problem of insufficient generalization ability when it is directly applied to other wind
turbines. Meanwhile, the retraining model for the target wind turbine has the problem of
inadequate data and label quality. Therefore, Zhang et al. [61] proposed a CNN detection
framework based on the inductive transfer learning (ITL) method. As shown in Figure 11,
the author used many source domain data to train FNN to construct a high-performance
icing detection model for wind turbine B. Based on the icing detection model of wind
turbine B, the author used a small amount of SCADA data (target domain data) of wind
turbine A to quickly update the model to construct the icing detection model of wind
turbine A. The authors also compared it with the direct application of FNN. Interestingly,
the inductive transfer learning based FNN can detect about 79% of the ice data, which is
14% more accurate than the direct application of FNN.

Yun et al. [62] proposed an adaptive inductive transfer learning (adaptive ITL) method
for detecting wind turbines. The underlying principle is displayed in Figure 12. First, the
source domain data was used to train the base classifier and to predict the target domain
data. Then, based on the prediction results, the predicted icing and non-icing data were
used to train the precision auxiliary classifier and recall auxiliary classifier, respectively.
The basic classifier first classified each test sample in the testing phase. Then, the samples
were fed into the auxiliary classifier based on the prediction results, and the output of the
auxiliary classifier was used as the final prediction result. The author used RF, AdaBoost,
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FNN, and other classifiers, to verify that the classifier’s performance was improved with
adaptive ITL.
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Similarly, Chen et al. [63] applied the TrAdaBoost algorithm, which is another transfer
learning algorithm, for constructing classifiers on a small amount of data in the target
field to detect wind turbines. The authors claimed that the generalization ability of the
TrAdaBoost algorithm in other wind turbines was better than that of the traditional machine
learning KNN and random forest algorithms. The principle was to iteratively update their
weights based on the contribution of each sample to the classification in the source and
target domain dataset. The weight updating strategy for the target domain samples was
the same as AdaBoost but the weights of sample models in the source domain were
updated by using different techniques [64]. Liu et al. [65] applied the idea of domain



Sustainability 2023, 15, 1617 15 of 20

adaptation in transfer learning to the icing detection of wind turbine blades and used
the temporal convolutional network to construct the model, namely domain adaptation
temporal convolutional network (DATCN). Domain adaptation alternately trained feature
extractors and domain discriminators to spontaneously learn a Nash equilibrium state
through the idea of confrontation, completed the transfer learning from the source domain
wind turbine to the target domain wind turbine, and reduced the influence of the different
wind turbines due to different geographical locations, environmental factors, and operating
conditions. Compared with the TCN model without migration, the DATCN model was
more adaptive.

ITL and adaptive ITL are essentially a way to achieve high performance in a target
task by transferring knowledge from the source task to the target task. TrAdaBoost is an
Instance-based TL, where a small amount of newly labeled data combined with weighted
old data are used to construct a high-quality classification model for the new data. Domain
adaptation is a more tightly constrained form of TL, which aims to use the well-labeled
data in the source domain to learn an accurate model that can be applied to a target domain
with no or little labeling. By considering the time cost of collecting data from multiple wind
turbines and the quality of the labels, it is still helpful to use transfer learning to achieve a
multi-wind turbine diagnostic model.

6. Research Gaps and Challenges

There are several essential issues to be considered about the application of data-driven
approaches in icing detection of wind turbines in the future:

The vast majority of the current models are offline predictions under conditions using
test sets to simulate the online monitoring phase and are not applied in reality. In the
future, it should be considered to deploy the model to wind turbines for online learning
and to continuously learn and update based on the new data generated by wind turbine
operation.

In terms of the feature redundancy and feature selection for SCADA data, although
some of the features in the SCADA data have a low level of contribution to icing prediction,
there is a high risk that some helpful information will be lost by artificially removing some
features and that the features will not be the same depending on the filtering algorithm.
Since humans do not know what the model needs, the model can be allowed to learn on
its own. When building the model, the attention mechanism is embedded in the deep
neural network. Through performing continuous iterative updates, the model learns to give
more weight to the robust features and less weight to the weak features [66]. For example,
Cheng et al. [67] proposed a temporal attention-based convolutional neural network, which
introduced the temporal attention module into the convolutional neural network to learn
the importance of sensors and time steps. Thus, discriminative features in the raw data can
be automatically identified. Of course, the location of the attention mechanism embedding
is also a question worth exploring.

The development of data-driven approaches based on a large amount of data is also
required, especially to build models with sufficient generalization capabilities, implying
that different wind farm data need to be accessed. The SCADA data contain vast infor-
mation and also involve the issues of commercial confidentiality of wind farms, resulting
in the sharing of data in the wind turbine domain not being well developed. In response,
Cheng et al. [68] proposed a federation learning (FL) based blade icing detection model and
also validated the model’s reliability on the data from two wind farms. As a distributed
machine learning paradigm, FL does not require network transmission of large amounts
of data, such as centralized learning, and there is a threat of data leakage. FL enables
participants to model jointly without sharing data, break data isolated islands technically,
and achieve AI collaboration [69,70]. The issue of surpassing the existing bottlenecks and
effectively protecting the privacy and ownership of wind turbine data is an important
research direction in the future.
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Artificial intelligence algorithms are generally regarded as “black boxes”, which
can make decisions alone. However, their poor interpretability is not well-understood.
Studying the blade surface icing mechanism from the mechanism level and combining the
blade icing mechanism model with the data-driven approaches to predict the manifestation
of an icing event in advance, prevent icing, and even eliminate icing, has high research
values.

To achieve the localization of blade icing, Hacıefendioğlu et al. [6,71] used pre-trained
models of classical convolutional neural networks from deep learning for the accurate
detection of blade icing by using image data and investigated the various visualization
techniques for locating the location of blade icing. The study demonstrated that Gradient-
weighted Class Activation Mapping for Resnet-50 outperformed the other combinations.
In order to clearly show the icing boundary, the image semantic segmentation network
U-NET was applied to detect wind turbine blades. SCADA data detected the status of wind
turbines from a global perspective, while the image data intuitively determined whether
the blades are iced from a local perspective. In the future, deep learning can be used to fuse
information from multiple sources to improve the accuracy of wind turbine fault detection
and to locate blade icing.

7. Conclusions

The fault detection of wind turbine blade icing is of great importance for wind farms to
improve the power generation efficiency and the operational life of wind turbines. With the
widespread use of wind turbine SCADA systems and the rapid development of artificial
intelligence algorithms, data-driven approaches show great potential in the fault diagnosis
of wind turbine blade icing.

In this work, the application of data-driven approaches to wind turbine blade icing
detection was reviewed and the problem of feature selection and category imbalance
in classification tasks with data-driven approaches was analyzed. In this regard, three
approaches to feature selection were summarized including mechanism-based, algorithm-
based, and mechanism+algorithm-based. The previously reported works in the literature
on data and algorithms that are used to deal with the category imbalance problem were
also reviewed. It should be also noted that SCADA data are essentially time series data,
which should be considered when icing detection models are developed. The success
of a wind turbine blade diagnostic model requires a relatively large number of labeled
samples, which is difficult to be satisfied in real applications. As a result, to bridge this gap,
semi-supervised learning has been introduced for icing fault diagnosis of wind turbines.
Due to the different geographical locations and environmental factors of the different
wind turbines, which lead to poor generalization of the model to other wind turbines, in
response, knowledge learned from one wind turbine was transferred to another, and TL
was introduced to the task of wind turbine icing fault diagnosis. Finally, the challenges of
data-driven approaches based on data were discussed, and an outlook for future research
was provided.
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Abbreviations

SCADA supervisory control and data acquisition
XGBoost extreme gradient Boosting
SPRT sequential probability ratio test
AdaBoost adaptive boosting
DBN deep belief network
PCA principal component analysis
BP back propagation
SFA slow feature analysis
SVM support vector machine
MIV mean impact value
tSNE t-distributed stochastic neighbor embedding
RNN Recurrent Neural Networks
CNN convolutional neural network
RF random forest
LSTM long short-term memory
SMOTE synthetic minority over-sampling technique
MBK-SMOTE mini-batch k-means smote
SC-SMOTE safe circle smote
KNN k-nearest neighbor
DNN deep neural networks
AWKELM adaptive weighted kernel extreme learning machine
TCN temporal convolutional network
FCNN fully convolutional neural network
GRU gated recurrent unit
AE autoencoder
SAE stacked autoencoder
ITL inductive transfer learning
DATCN domain adaptation temporal convolutional network
FL federation learning
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