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Abstract: As the main undesirable output of the transportation sector, carbon dioxide (CO2) emission
is the key point to achieving carbon balance in the whole sector. In this paper, the bounded adjustment
measure (BAM) data envelopment analysis method is used to measure the total factor production
(TFP) efficiency of transportation system and the source of its inefficiency. Based on this, we use
the global Malmquist index combined with the BAM to analyze the key factors of environmental
productivity change from 2004 to 2019 in terms of dynamic changes in technology level, production
scale and management efficiency. The results show that the main reasons for the low efficiency of
carbon emission production in China’s transportation sector are unreasonable energy utilization,
excess labor resources and excessive CO2 emission caused by low technology level. Further analysis
shows that China’s overall environmental production efficiency has begun to show a slow rising
trend. Improvement of management level is the biggest driving force for the growth of total factor
productivity of China’s transportation sector, while the improvement of scale and technology should
be strengthened for the improvement of overall production efficiency. There are spatial differences in
the production efficiency of China’s transportation sector. In the future, different provinces should
focus on improving the production efficiency of transport industry.

Keywords: China’s transportation sector; CO2 emissions; BAM-TFP; Theil index

1. Introduction

Human activities are expected to have caused about 1.0 ◦C of global warming, com-
pared to the pre-industrial levels, and its possible value is between 0.8 ◦C to 1.2 ◦C. Ac-
cording to the Intergovernmental Panel on Climate Change (IPCC), it is expected that this
value could reach 1.5 ◦C between 2030 and 2052 if the increasing rate of global warming
remains the same [1]. Global carbon dioxide emissions have increased dramatically in
the last few decades and are expected to increase in the future [2]. As a major emitter of
carbon dioxide, China is under pressure both at home and abroad to cut emissions. In
September 2020, China’s carbon dioxide emissions should peak before 2030 and become
carbon-neutral by 2060, according to the Central Economic Work Conference. In its 13th
Five-Year Plan (2016–2020), the Chinese government announced another target for carbon
emissions to peak around 2030. In this context, China’s total transport energy consumption
will reach 1.03 billion tons of oil equivalent in 2023. Of the total, oil consumption will
reach 831 million tons, 1.71 times of China’s consumption of 488 million tons in 2013, and
accounting for 2.1 percent of China’s oil production in 2013 (3.95 billion tons). According to
the International Energy Agency (IEA), the transportation sector is the world’s third largest
source of carbon dioxide emissions, behind manufacturing and electricity production [3]. It
is predicted that in 2030, it will reach more than four times that in 2000. How to effectively
control the carbon emission of transportation industry has become one of the important
aspects in China’s energy-saving reduction. China’s systematic energy conservation and
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emission reduction is still facing various problems, and there is increasing pressure on this
energy conservation and emission reduction. China’s transportation industry is energy
inefficient and carbon emission intensive, so it is very important to analyze the productivity
of transportation system, find the source of production inefficiency and then improve pro-
ductivity to meet these serious challenges [4,5]. In this context, calculating and analyzing
the level of inefficiency and energy saving, production efficiency and its dynamic changes
in the transportation industry can help scholars and decision makers clarify gains and
losses, output feedback mechanisms for subsequent policy adjustment and improvement
and determine the appropriate direction and focus of future work. In this paper, the dy-
namic and static changes of total factor production efficiency of carbon emissions in China’s
provincial transportation sector are calculated and are further decomposed. In particular,
we focus on the dynamic evolution of CO2 emissions at provincial levels. In addition, we
combine the Theil index to analyze the spatial differences.

The rest of this article is as follows: Section 2 reviews the related literature. Section 3
gives the methods and models. Section 4 provides an overview of the data set. Section 5 is
the empirical results and analysis. Section 6 gives the conclusion and suggestions.

2. Literature Review

Data envelopment analysis (DEA) is a non-parametric efficiency evaluation method [6].
Energy efficiency research can be divided into two categories depending on the type of
indicators used. One is the study of the single-factor index based on energy intensity.
The other is the study based on total factor index, which often uses DEA and stochas-
tic frontier analysis (SFA) to measure total factor productivity. At present, single-factor
and all-factor indicators have been widely used in the comparison of eco-environmental
assessment, the exploration of eco-environmental influencing factors and the prediction
of eco-environmental assessment between regions and industries [7]. However, in the
single-factor research framework, the relationship between the input and output of energy
consumption is obtained, and the potential substitution effect between other factors such as
labor intensity is ignored. In addition, the single-factor research framework differs greatly
from the actual production process, and the estimates based on this analysis method cannot
measure the actual production efficiency. Hu and Wang [8] developed a total factor analysis
method in accordance with the objective law in which multiple factors work together on
economic output. Song et al. [9] and Zhou et al. [6] extended the research framework of
total factor productivity to analyze such problems. This total factor framework is widely
used to measure regional, national and sectoral energy efficiency [10–12].

China’s transportation sector is a major driver of increased energy consumption and
carbon emissions in the coming decades and is the sector most likely to fail to reach peak
carbon emissions by 2030. It is very important to study the change of transportation
system productivity and its influencing factors. This can provide scientific guidance for
China’s transportation sector to formulate timely strategies to achieve the goal of “dual
carbon”. In fact, many studies have tried to do just that. Zhang et al. [13] estimated the
carbon emission efficiency of the transportation industry in 30 provinces of China during
2008–2017. Zhao et al. [14] used the epsilon-measure DEA model to estimate the CO2
emission efficiency of China’s provincial transportation sector. Xie et al. [15] calculated the
energy efficiency of the provincial transportation sector in China from 2007 to 2016 and
gave the energy saving and emission reduction potential of the provinces. Zha et al. [16]
used the provincial panel data over 2005–2016 to perform regression analysis. Existing
relevant research often uses an input-oriented analysis method or single output-oriented
model but ignores the analysis of the unified production efficiency of input and output,
and it is difficult to evaluate the objective comprehensive level of the development of the
transportation sector. Lei et al. [17] applied multidirectional efficiency analysis (MEA) to
measure the regional energy and production efficiency of China’s transportation sector.
Chang et al. [18] adopted the slackness-based measure (SBM) to analyze the environmental
efficiency. Cui and Li [19] proposed three-level virtual frontier data enveloping analysis
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(three-level virtual frontier data enveloping analysis) to evaluate transportation energy
efficiency, but they do not take into account unexpected outputs such as carbon dioxide. Wu
et al. [20] regarded the transportation system as a parallel system composed of passenger
and freight sub-systems and extended the parallel DEA method to evaluate the efficiency.
Stefaniecet et al. [21] introduced a systematic approach based on the triple bottom line to
evaluate inland transport, taking into account sustainability.

The economic development of China’s transportation sector is very different in dif-
ferent regions. For example, there is a big difference in production technology between
eastern and western regions. Many studies do not take this situation into full consideration,
which may lead to the estimation bias in the evaluation of production efficiency [19,22,23].
To fill this gap in the literature, Feng and Wang [24] tried to use the global meta-frontier
DEA method to eliminate the impact of such regional heterogeneity on energy efficiency.
Shi et al. [25] used the Moran ‘I index and the Getis-Ord Gi index to analyze the temporal
dynamic changes and spatial autocorrelation of carbon emission production efficiency in
the transportation industry. Li et al. [26] analyzed the efficiency differences among different
economic regions in China. It is concluded that technological progress and technological
efficiency are the key to improve the efficiency of carbon emission and energy emission
in China. In addition, Wang et al. [27] used super-efficiency DEA and the Theil index to
analyze the differences and changes of regional energy efficiency in China’s transportation
sector. Xia et al. [28] used a meta-frontier DEA-based decomposition approach to measure
the spatial carbon intensity inequality.

We can see that DEA has become a mainstream method to measure production ef-
ficiency and energy efficiency. The above scholars focus on traditional models, such as
traditional radial models such as CCR and BCC, as well as non-radial models such as
SBM and RAM. The traditional radial model is input-oriented and assumes that all inputs
should be scaled to achieve maximum efficiency. This assumption is contrary to the actual
production operation. It is difficult for various elements to expand or decrease in the same
proportion. Compared with the CCR and BCC models, the BAM model has the charac-
teristics of non-radial and undirected, that is, the input (output) variables may change
proportionally. Li and Hu [29] calculated the total factor energy efficiency of 30 regions in
China by using the SBM model of undesired output. Zhang and Choi [30] used three DEA
models to evaluate China’s regional economy from 2001 to 2010, avoiding the limitations
brought on by the radial model with decreasing factor proportion. Li et al. [31] constructed
the Super-SBM model under the condition of output accident, which solved the problem
with multiple decision-making units simultaneously, reaching the optimal production effi-
ciency. Huang et al. [32] proposed a model combining cutting-edge production technology,
poor output and super-efficiency SBM to further explore the dynamic changes of regional
eco-efficiency in China. Wang et al. [33] used the global DEA model to study China’s energy
efficiency from static and dynamic perspectives. Compared with relax-based measures (i.e.,
relax-based measures, SBM), the BAM model significantly avoids the setting of subjective
parameters and ensures the objectivity of efficiency scores. Emrouznejad and Yang [34]
used the global MLP index based on RAM to evaluate the CO2 emission efficiency of
China’s light industry. Miao et al. [35] proposed a range adjustment metric (RAM) based on
additive structure to measure changes in management level, technical efficiency and pure
efficiency. Note that we distinguish among energy and non-energy inputs in the analysis.
Different from RAM, the BAM model has a strong ability to discriminate low efficiency
scores, that is, the BAM model of different DMUs has a large difference in low efficiency. In
addition, BAM works with any return to scale, whereas traditional RAM may not have a
solution with constant return to scale.

Although the BAM-DEA model can objectively reflect energy efficiency and environ-
mental production efficiency due to its unique advantages, as a data envelopment analysis
method, it can only measure the static inefficiency rather than the dynamic change in time.
To overcome these shortcomings, this paper combines the BAM-DEA method with the
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Malmquist productivity index to measure dynamic change. Table 1 gives the comparison
of research methods on carbon emission in China’s transportation sector.

Table 1. Comparison of research methods on carbon emission in China’s transportation sector.

Authors Method Malmquist Used Inefficiencies Heterogeneity

Chang et al. [18] SBM-DEA No No No
Zhou et al. [22] DDF-DEA No Yes No

Feng and Wang [24] DEA, meta-frontier Yes No Yes
Xie et al. [15] SFA No No No
Lei et al. [17] Ratio-based parallel DEA No No No

Chen et al. [36] BAM-DEA No Yes No
Zhang et al. [13] Metaglobal frontier DEA model Yes No No

Zha et al. [16] Super-efficiency DEA Yes No No
Stefaniec et al. [21] Triple bottom line-based network DEA No Yes No

Zhao et al. [14] EBM-DEA No No Yes
This study BAM-DEA Yes Yes Yes

Note: DEA—Data envelopment analysis; SBM—slack-based measure; BAM—bounded-adjusted measure; EBM—
epsilon-based measure; SFA—stochastic frontier analysis; DDF—directional distance function.

3. Materials and Methods
3.1. Environmental Production Technology

The expression of production technology is mainly characterized by input and output.
In the production activities related to carbon emission, they mainly include effective output
and undesirable output. Undesired outputs are mainly related to energy inputs, so we
divide the input into energy inputs and non-energy inputs. It is technically unfeasible for
an enterprise to try to reduce the undesirable output alone, and it needs to pay a certain
economic cost to reduce the undesirable output. The production technology is described
by the following set of production possibilities:

TE=
{
(x, y, b) ∈ RN+M+J

+ : xcanproduce (y, b)
}

. (1)

This is the case for a producer who employs a vector of inputs X = (x1, . . . , xN) ∈ RN
+

to produce a vector of desirable Y = (y1, . . . , yN) ∈ RM
+ and undesirable outputs

B = (b1, . . . , bN) ∈ RJ
+. The original data set S is defined as S = ∪T

t=1(Xt, Yt, Bt), and
the yearly specific data set is defined as St = (Xt, Yt, Bt), t = 1, 2, . . . T.

We further describe the production of desired and undesired outputs following two
commonly used assumptions [37–39]:

Assumption 1. Null-jointness assumption

If (x, y, b) ∈ TE and b = 0, theny = 0.

Assumption 2. Weakly disposable assumption

If (x, y, b) ∈ TE and 0 ≤ θ ≤ 1, then
(
x, θy, θb

)
∈ TE.

Assumption 1 implies that the undesirable output is a by-product of the production of
the desired product, and that if the undesirable product were to be eliminated completely,
the desired output would also be eliminated. Assumption 2 shows that the reduction in
unexpected output comes at the cost of a simultaneous proportional reduction in desired
output, and this hypothesis can reasonably reflect the cost of the need to eliminate unex-
pected output. With these two assumptions as the premise, production technology Ti can
realistically simulate the joint production process of a sector i based on production activities.
For each sector, suppose K regions (k = 1, . . . , K) are under evaluation. In empirical studies,
in order to better represent the production technology, a non-parametric linear method
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is usually given to model the technology. The environmental production technology is
defined as

T = {(x, y, b) : ∑
k

λkxk ≤ x, ∑
k

λkyk ≥ y, ∑
k

λkbk ≥ b, λk ≥ 0, k = 1, . . . , K}. (2)

where λ denotes intensity variable.

3.2. Measure of Production Efficiency

BAM-DEA was proposed by Cooper et al. [40] and extended by Chen et al. [36], in
which a new method was formulated to separate unexpected outputs from the BAM model.
Inefficiency is indicated by ρo for DMU under evaluation (xo, yo, bo) (o = 1, . . . , K) and is
related to the maximization of slack variables sx

n; sy
m; sb

j . The BAM-DEA model is as follows:

ρo = max
[∑N

n=1
sx

n
Lx

n
+ ∑M

m=1
sy

m
Uy

m
+ ∑J

j=1
sb

j

Lb
j
]

N + M + J
(3)

s.t.xnk′ =
K

∑
k=1

λKxnk + sx
n, n = 1, 2, . . . , N (4)

ymk′ =
K

∑
k=1

λKymk − sy
m, m = 1, 2, . . . , M. (5)

bjk′ = ∑K
k=1 λKbjk + sb

j , j = 1, 2, . . . , J (6)

∑K
k=1 λKxnk ≥ minxnk, n = 1, 2, . . . , N (7)

K

∑
k=1

λKymk ≤ maxymk, m = 1, 2, . . . , M (8)

∑K
k=1 λKbjk ≥ minbjk, j = 1, 2, . . . , J (9)

K

∑
k=1

λK = 1 (10)

λK, sx
n, sy

m, sb
j ≥ 0 (11)

where ρo; sx
n; sy

m; sb
j are respectively the efficiency score, excess input, expected output deficit

and excess of unexpected output. Potential emission reduction per decision-making unit is
estimated by slack variable sb

j , as it emits more carbon than the optimal decision-making

unit. (Lx
n, Uy

m, Lb
j ) represents the difference between the maximum input value, ideal output

and non-ideal output and itself, specifically as follows:

Lx
n = xnk −min(xnk) (12)

Uy
m = max(ymk)− ymk (13)

Lb
j = bjk −min(bjk) (14)

We can find that when the ith input meets xnk = min(xnk), the production technology
frontier cannot be reached by increasing or decreasing the input (i.e., sx

n
Lx

n
= 0). Similarly, the

element of output satisfies this property. While max(ymk) = ymk, bjk = min(bjk), we obtain
sy

m
Uy

m
= 0,

sb
j

Lb
j
= 0.
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According to Cooper et al. [41], we adopt the same decomposition idea. Since the
method in this paper and SBM belong to the same additive model, the decomposition
method is also applicable to the BAM model. We can obtain the inefficiency score of each
variable as follows:

Inefficiency in the inputs: IEx =
∑N

n=1
sx
n

Lx
n

N+M+J .

Inefficiency in the good outputs: IEy =
∑M

m=1
sy
m

Uy
m

N+M+J .

Inefficiency in the bad outputs: IEb =
∑J

j=1

sb
j

Lb
j

N+M+J .
Therefore, the expression of productivity and production inefficiency of provincial

transportation system is E = 1− ρo, IE = IEx + IEy + IEb = ρo.

3.3. The Global Malmquist Index Based on BAM

The Malmquist index is a widely used method for measuring productivity and de-
composing efficiency/productivity changes. In order to make the calculation results of
the index cyclic and avoid the infeasibility of linear programming, a global Malmquist
index used to decompose the changes in productivity and efficiency is adopted, motivated
by [42]. Here, let Pt and PG respectively represent the same period and global production
frontier technology. Let T be the study period. Concretely, Pt and PG can respectively be
written as follows:

Pt =
{
(yt, bt)

∣∣xt can produce (yt, bt)
}

(15)

PG = P1 ∪ P2∪, . . . ,∪PT (16)

The expression of Malmquist exponential function from t to t + 1 is

Mt,t+1 = [
1− ρt+1(xt+1, yt+1, bt+1

∣∣CRS)
1− ρt+1(xt, yt, bt|CRS)

×
1− ρt(xt+1, yt+1, bt+1

∣∣CRS)
1− ρt(xt, yt, bt|CRS)

]

1
2

(17)

where 1− ρt+1(xt+1, yt+1, bt+1
∣∣CRS) and 1− ρt+1(xt, yt, bt

∣∣CRS) are the total factor
production efficiency in periods t + 1 and t, respectively, referring to Pt under CRS;
1− ρt(xt+1, yt+1, bt+1

∣∣CRS) and 1− ρt(xt, yt, bt
∣∣CRS) are the total factor production ef-

ficiency in periods t + 1 and t, respectively, referring to Pt under CRS.
By introducing the global concept, the GM index to estimate the change of productivity

efficiency during t and t + 1 can be written as

GMt,t+1 =
1− ρG(xt+1, yt+1, bt+1

∣∣CRS)
1− ρG(xt, yt, bt|CRS)

(18)

where 1− ρG(xt+1, yt+1, bt+1
∣∣CRS) and 1− ρG(xt, yt, bt

∣∣CRS) are the total factor produc-
tion efficiency in periods t + 1 and t, respectively, referring to global leading production
technology ρG under CRS. The factorization of GM index is expressed as follows:

GMt,t+1 = GTCHt,t+1 × GPCHt,t+1 × GSCHt,t+1 (19)

GTCHt,t+1 =
1− ρG(xt+1, yt+1, bt+1

∣∣CRS)
1− ρt+1(xt+1, yt+1, bt+1|CRS)

\
1− ρG(xt, yt, bt

∣∣CRS)
1− ρt(xt, yt, bt|CRS)

(20)

GPCHt,t+1 =
1− ρt+1(xt+1, yt+1, bt+1

∣∣VRS)
1− ρt(xt, yt, bt|VRS)

(21)

GSCHt,t+1 =
1− ρt+1(xt+1, yt+1, bt+1

∣∣CRS)
1− ρt(xt, yt, bt|VRS)

\
1− ρt(xt, yt, bt

∣∣CRS)
1− ρt(xt, yt, bt|VRS)

(22)
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where GTCHt,t+1, GPCHt,t+1 and GSCHt,t+1 denote technological changes, pure efficiency
changes and scale efficiency changes, respectively. Technical change (GTCH), pure efficiency
change (GPCH) and scale efficiency change (GSCH) are decomposed by the GM index.
Zhou et al. [6] showed that a GTCH value greater than 1 indicates technological progress
compared with the previous period. A GPCH value greater than 1 indicates an increase in
net efficiency compared to the previous period. A GSCH value greater than 1 indicates that
the scale efficiency is improved compared with the previous period, while a value less than
1 indicates that the scale efficiency is reduced.

3.4. The Theil Index Decomposition Analysis

The Theil index can be used to evaluate the regional difference of an index. The higher
the value, the greater the regional difference. Tian et al. [43] applied The Theil index to
analyze the imbalance of regional carbon emission intensity in China. In this paper, the
Theil index is used to measure the overall difference of GM index of carbon emissions from
the transportation industry in 30 provincial administrative regions, which is decomposed
into the difference between three economic zones and the difference within the region.
Among them, the three major economic zones include the eastern, central and western
regions. The Theil index and its decomposition can be calculated as

Ip =
1

np
∑N

i=1

Gpi

Gp
ln

Gpi

Gp
(23)

Iw = ∑M
p=1(

np

n
Gp

G
)Ip (24)

IB = ∑M
p=1

np

n
(

Gp

G
)ln

Gi

Gi
(25)

I = IB + Iw =
1
n ∑N

i=1
Gi

G
ln

Gi

G
(26)

where I represents the overall Theil index of the 30 provincial administrative regions, based
on the GM index within the research scope, which can be broken down into the difference
between the three major economic regions IB, and the difference between the provinces
in each major economic region Iw. Gi is the GM index value of the ith province, G is the
average value of the GM index of each province, Gpi is the GM index of each province in
the p region and Gp is its corresponding average value. Ip is the Theil index of the GM
index of provinces in the p region.

4. Data Source and Description

The data set used in this paper includes 16-year input and output data of the transport
industry in 30 provinces of the Chinese mainland (2004–2019). The raw data contain
three inputs: labor, capital stock and fuel consumption, as well as desirable output (gross
sector value added) and undesirable output (CO2). Table 2 provides a summary statistic of
inputs and outputs. In this study, regional groups are determined according to geographical
distance and economic level, and the research objects are divided into three regional groups:
east, central and west (as shown in Figure 1).

Table 2. Summary statistics of inputs and outputs.

Variable Unit Observations Mean Min Max Std.

Labor 1000 persons 480 716.27 20.11 641.73 110.52
Capital Billion CNY 480 499.25 3.55 3003.75 521.83

Fuel consumption 1000 TCE 480 1001.96 31.56 3814.82 666.56
Value-added Billion CNY 480 82.29 3.05 365.8 69.94

CO2 10,000 tons 480 2325.64 77.93 8562.12 1564.51
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Figure 1. Map of China.

(1) Labor: The total labor force in each province is the labor input. The data used are
from the China Statistical Yearbook (2005–2020).

(2) Fuel consumption: Fuel consumption is expressed in tons of standard coal equiv-
alent (TCE). Conversion factors are acquired from the China Energy Statistical Yearbook.
The energy consumption data are gathered from all provincial statistical yearbooks.

(3) Capital stock: Capital input is calculated using the perpetual inventory method.
According to the provincial fixed asset investment price index, the nominal fixed asset
investment of the whole society is adjusted to the constant price in 2008 to obtain this
value. We use the perpetual inventory method to estimate the capital amount, which can
be expressed as Kt = (1− δt)Kt−1 + Mt, where Kt and Kt−1 mean the DMU’s capital stock
in years t and t − 1, respectively. Mt denotes the investment in the fixed asset in year t,
and δt denotes the depreciation rate, which is 10.96% [44]. We use fixed asset investment
in 2008 as the equity for the beginning year. Data are collected from the China Statistical
Yearbook (2005–2020).

(4) Desirable output: We use each province’s value-added as a measure of expected
output and adjust it to constant 2004 prices based on each province’s value-added deflator,
which are required from the China Statistical Yearbook (2009–2020).

(5) Undesirable output: According to the carbon emission accounting method pro-
vided by IPCC, this paper adopts the fuel-based carbon calculation model and conversion
factor to calculate carbon emission. Carbon dioxide emissions are calculated by the
following formula:

CO2emissions = ∑
l

Al × CCFl × HEl × COFl ×
44
12

(27)

The carbon dioxide emission is equal to the product of the amount burned of all
carbonized fuels (A), the carbon content factor (CCF), the thermal equivalent (HE), the
carbon oxidation factor of carbonized fuels (COF) and the number (44/12).
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5. Empirical Results and Discussion
5.1. Analysis on the Inefficiencies

Based on the improved BAM-DEA model, we calculate the total factor productivity
of the transportation sector in 30 provincial regions of China in the whole sample period.
This paper lists the inefficiency (IE) of the input variable (X), the transport added value (Y)
as the desirable output variable and the CO2 emission (b) as the undesirable output for the
period 2004–2019. Results are obtained using Python 3.7.2 (Continuum Analytics, Austin,
TX, USA). Table 2 shows the result of efficiency scores assuming CRS.

As can be seen from Table 3, the average annual production efficiency of 30 provincial-
level regions in China during 2004–2019 is 0.53.

Table 3. The productivity of transportation sectors in China during 2004–2019.

Region and Province
Productivity

2004 2005 2006 2007 2008 2009 2010 2011

Eastern region

Beijing 0.5556 0.5511 0.4880 0.4425 0.3641 0.3488 0.3930 0.3875
Tianjin 1.0000 1.0000 0.7359 0.7157 0.7205 0.6745 0.7263 0.7319
Hebei 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Liaoning 0.5316 0.4786 0.4677 0.4693 0.4264 0.4075 0.3831 0.3855
Shanghai 0.5846 0.6070 0.5789 0.5310 0.4890 0.4120 0.4721 0.4312
Jiangsu 0.4930 0.5964 0.6494 0.6982 0.6854 0.6294 0.6065 0.9024

Zhejiang 0.5485 0.5643 0.6032 0.6407 0.6124 0.5740 0.6269 0.5943
Fujian 1.0000 1.0000 1.0000 1.0000 1.0000 0.7290 0.6827 0.5930

Shandong 0.5563 0.7359 1.0000 1.0000 1.0000 1.0000 0.4847 0.5639
Guangdong 0.5652 0.6000 0.6224 0.6370 0.4288 0.3766 0.3703 0.3843

Hainan 0.4276 0.4689 0.2477 0.2451 0.2293 0.1980 0.1949 0.1928

Central region

Shanxi 0.5812 0.5222 0.5636 0.6296 0.5744 0.4250 0.4052 0.3935
Jilin 0.5524 0.4707 0.4945 0.4639 0.4078 0.3797 0.3756 0.3858

Heilongjiang 0.4165 0.4043 0.3778 0.3780 0.3331 0.2805 0.2844 0.2607
Anhui 1.0000 1.0000 1.0000 1.0000 1.0000 0.8802 1.0000 1.0000
Jiangxi 0.4784 0.5404 0.5718 0.5860 0.5211 0.4769 0.4741 0.4679
Henan 0.6035 0.6473 0.7307 0.8015 0.6832 0.6749 0.6281 0.6207
Hubei 0.4176 0.4442 0.4641 0.4633 0.4410 0.4594 0.5121 0.4992
Hunan 0.5158 0.5544 0.5761 0.5893 0.5881 0.5485 0.5515 0.5258

Western region

Inner
Mongolia 0.6357 0.4790 0.4908 0.4842 0.4730 0.4511 0.4339 0.4242

Guangxi 0.4020 0.3805 0.3597 0.3492 0.3468 0.3351 0.3661 0.3757
Chongqing 0.4075 0.4509 0.4991 0.4461 0.4512 0.4506 0.4570 0.4512

Sichuan 0.4613 0.4797 0.4986 0.4828 0.4107 0.3647 0.3326 0.3155
Guizhou 0.2567 0.2739 0.2760 0.2911 0.2983 0.2775 0.2814 0.2761
Yunnan 0.4183 0.2907 0.3514 0.3680 0.2882 0.2801 0.2809 0.2753
Shaanxi 0.3775 0.4052 0.4488 0.4357 0.4137 0.3809 0.3867 0.3861
Gansu 0.3160 0.3502 0.4075 0.3898 0.4109 0.3739 0.4817 0.5021

Qinghai 0.6047 1.0000 1.0000 1.0000 0.6618 0.5938 0.5919 0.5900
Ningxia 0.7221 0.4696 0.6484 0.6586 0.8763 0.6068 0.5997 0.5980
Xinjiang 0.3206 0.2727 0.2609 0.2680 0.2491 0.2359 0.2335 0.2165

Average 0.5583 0.5679 0.5804 0.5822 0.5462 0.4942 0.4872 0.4910

Region and Province
Productivity

2012 2013 2014 2015 2016 2017 2018 2019 Average

Eastern region

Beijing 0.3636 0.3802 0.3944 0.3784 0.4177 0.4241 0.4400 0.4569 0.4241
Tianjin 0.6418 0.6654 0.6091 0.5003 0.5908 0.5306 0.5139 0.6200 0.6860
Hebei 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Liaoning 0.3941 0.3964 0.3948 0.4135 0.4877 0.4687 0.4961 0.5319 0.4458
Shanghai 0.4220 0.4460 0.4990 0.5281 0.6102 0.6431 1.0000 1.0000 0.5784
Jiangsu 1.0000 0.9000 0.8806 0.6647 0.7485 0.6970 0.7107 0.7303 0.7245

Zhejiang 0.5710 0.5908 0.5904 0.5955 0.6628 0.6221 0.6004 0.7542 0.6095
Fujian 0.5783 0.5460 0.5360 0.5305 0.5833 0.5454 0.5298 0.6254 0.7175

Shandong 0.5917 0.6102 0.6632 0.5915 0.6876 0.8283 0.7859 0.6745 0.7358
Guangdong 0.4033 0.3877 0.3978 0.5862 0.6229 0.4143 0.4136 0.6869 0.4936

Hainan 0.1944 0.1944 0.1952 0.1987 0.4554 0.1995 0.1965 0.3983 0.2648

Central region

Shanxi 0.4082 0.3667 0.3671 0.3807 0.4041 0.4214 0.4873 0.5448 0.4672
Jilin 0.3972 0.3925 0.3793 0.3677 0.3664 0.3286 0.3225 0.3167 0.4001

Heilongjiang 0.2674 0.2622 0.2818 0.2832 0.2860 0.2709 0.2635 0.2529 0.3065
Anhui 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9925
Jiangxi 0.6006 0.5547 0.5498 0.5102 0.5771 0.5834 0.6758 0.7704 0.5587
Henan 0.7032 1.0000 0.8795 1.0000 1.0000 1.0000 1.0000 1.0000 0.8108
Hubei 0.5159 0.5503 0.5781 0.5734 0.5848 0.5716 0.5887 0.6600 0.5202
Hunan 0.5676 0.5573 0.5600 0.5520 0.5868 0.5617 0.5581 0.5864 0.5612
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Table 3. Cont.

Region and Province
Productivity

2012 2013 2014 2015 2016 2017 2018 2019 Average

Western region

Inner
Mongolia 0.4361 0.4365 0.4643 0.4578 0.5174 0.4943 0.4886 0.5603 0.4830

Guangxi 0.3706 0.4021 0.3860 0.3784 0.4168 0.3913 0.3805 0.4256 0.3792
Chongqing 0.4128 0.3877 0.3960 0.3750 0.4045 0.3912 0.3912 0.4593 0.4270

Sichuan 0.3141 0.3296 0.3649 0.3548 0.4061 0.3777 0.4077 0.4575 0.3974
Guizhou 0.2666 0.2851 0.2961 0.3239 0.3394 0.3103 0.3170 0.3711 0.2963
Yunnan 0.3102 0.3342 0.3520 0.3483 0.3952 0.4015 0.4301 0.4878 0.3508
Shaanxi 0.4150 0.4020 0.4329 0.4186 0.4756 0.4484 0.4412 0.5218 0.4244
Gansu 0.4438 0.4729 0.2993 0.2987 0.2849 0.2813 0.2382 0.2614 0.3633

Qinghai 0.7910 0.5907 0.5911 0.5928 0.3993 0.3933 0.3905 0.3908 0.6364
Ningxia 0.3995 0.5986 0.5979 0.5992 0.6624 0.7975 0.7932 0.5938 0.6388
Xinjiang 0.2497 0.2606 0.2966 0.3099 0.3130 0.3047 0.3614 0.3882 0.2838

Average 0.5010 0.5100 0.5078 0.5037 0.5429 0.5234 0.5408 0.5842 0.5326

At the regional level, the efficiency of the three regions is significantly different. The
eastern region efficiency score is 0.58, the central region is 0.55 and the western region is 0.40,
which shows that the changes of total factor productivity between regions are not balanced
and there are certain spatial differences. Hebei, Henan, Anhui and Shandong provinces
scored more than 0.7 points in productivity during the study period. On the contrary,
Qinghai, Hainan, Gansu and Xinjiang provinces scored relatively lower on productivity. In
general, there is a large spatial imbalance in the total factor productivity of carbon emissions
in China’s transportation industry, which is mainly affected by the economic development
status and policies of various provinces.

From the sources of inefficiency in Table 4, overall, the average productivity ineffi-
ciency in mainland China is as high as 0.47. This means that the transportation sector in
mainland China is less productive. The overall inefficiency of industry added value is
close to zero (0.01). This shows that the whole department still pays more attention to
economic benefits, ignoring the improvement of production technology. This also agrees
with China’s output performance. In fact, its average GDP growth between 2004 and 2019
was between 6 and 10 per cent. If the transportation sector still blindly pursues economic
development, regardless of the improvement of the overall factor production efficiency,
the potential of economic growth will soon be restricted. Input efficiency (0.32) and CO2
emission efficiency (0.13) were relatively high, accounting for 69.6% and 28.2% of the overall
efficiency, respectively. This means that China’s transportation sector has great potential
to reduce investment, labor and CO2 emissions. Excessive emissions of environmental
pollutants such as CO2 remain the biggest cause of low productivity in the transport sector
in mainland China.

At the regional level, input-induced inefficiency in western China is 0.41, which is
significantly higher than that in eastern China (0.25) and central China (0.30). This is
mainly because China has been developed in processing and manufacturing for many
years and has a large population. During the year we studied, China had a very high
proportion of labor-intensive industries. Especially in the central and western regions, as
the technology and equipment are obviously inferior to the central and eastern regions, a
large number of enterprises mainly rely on manual labor to create profits. Therefore, the
Chinese mainland has a large number of redundant labor force phenomenon. China is a
major emitter of carbon dioxide, with relatively high carbon dioxide emissions per unit
of GDP and relatively low carbon dioxide emissions per capita. China’s carbon efficiency
is at a low level.

5.2. Analysis of Efficiency Changes

In this section, we analyze the key factors that lead to changes in productivity over
time by looking at changes in the GM index and its decomposition index. The GM index of
transportation carbon emissions in 30 provincial administrative regions in China from 2004
to 2019 was calculated, and the results are shown in Table 5.
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Table 4. Inefficiencies for China’s province-level regions.

Region and Province Sources of Inefficiency

IE IEx IEy IEb

Eastern region

Beijing 0.5759 0.4049 0 0.1710
Tianjin 0.3140 0.2054 0 0.1086
Hebei 0 0 0 0

Liaoning 0.5542 0.3893 0 0.1648
Shanghai 0.4216 0.2799 0 0.1417
Jiangsu 0.2755 0.0938 0.1222 0.0595

Zhejiang 0.3905 0.2814 0 0.1092
Fujian 0.2825 0.2033 0 0.0793

Shandong 0.2642 0.0928 0.1082 0.0632
Guangdong 0.5064 0.2698 0.1125 0.1241

Hainan 0.7352 0.5585 0.0023 0.1744

Central region

Shanxi 0.5328 0.3720 0 0.1608
Jilin 0.5999 0.4218 0 0.1781

Heilongjiang 0.6935 0.5024 0 0.1912
Anhui 0.0075 0.0034 0 0.0040
Jiangxi 0.4413 0.3184 0 0.1230
Henan 0.1892 0.1519 0 0.0374
Hubei 0.4798 0.3303 0 0.1494
Hunan 0.4388 0.3069 0 0.1319

Western region

Inner
Mongolia 0.5170 0.3561 0 0.1609

Guangxi 0.6208 0.4441 0 0.1768
Chongqing 0.5730 0.4031 0 0.1699

Sichuan 0.6026 0.4364 0 0.1662
Guizhou 0.7037 0.5066 0 0.1971
Yunnan 0.6492 0.4723 0 0.1769
Shaanxi 0.5756 0.4141 0 0.1615
Gansu 0.6367 0.4408 0 0.1959

Qinghai 0.3636 0.2905 0.0053 0.0678
Ningxia 0.3612 0.2097 0.0014 0.1500
Xinjiang 0.7162 0.5193 0 0.1969

Average 0.4674 0.3226 0.0117 0.1331

During the study period, 53% of the measured provinces saw an increase in total factor
productivity of carbon emissions from the transport industry. It is clear that the total factor
productivity of the transport sector in mainland China increased significantly from 0.5583
to 0.5842 during the period 2004–2019. The average annual GM index of carbon emissions
from the transport industry in China was 1.0034, that is, the average annual increase in total
factor productivity of carbon emissions from the transport industry from 2004 to 2019 was
0.34%. Among them, the total factor productivity increased from 2016 to 2019, indicating
that the low-carbon development policy implemented at the national level has improved the
carbon emission efficiency of the national transportation industry as a whole. The provinces
with TFP growth mainly concentrated in southeast coastal and southwest provinces, while
the TFP in central and northeast provinces generally declined, indicating that the changes
of TFP between regions were not balanced and there were certain spatial differences. The
five provinces with the highest mean value of the GM index are Ningxia, Guizhou, Hubei,
Jiangxi and Shaanxi, and the growth rate of total factor productivity during the study period
is more than 20%, which also indicates that the optimal value of efficiency progress has
no obvious regional spatial distribution. The inter-provincial variation rate of total factor
productivity of carbon emissions in China’s transportation industry has a large spatial
imbalance, which is mainly related to the economic development of the provinces.

In order to study the influencing factors of total factor productivity (TFP) of carbon
emissions in each province, this paper further decomposed the GM index into the pure
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technical efficiency change index (GPCH), scale efficiency change index (GSCH) and tech-
nology change index (GTCH). The dynamic changes of the GM index and decomposition
index are shown in Table 6. In order to study the changing characteristics of efficiency over
time, we mainly analyzed the changes of the GM index and its decomposition index in
2004 and 2019. As can be seen from Table 5, the cumulative GM value of China’s transport
industry during 2004–2010 and 2011–2019 is 1.0048 and 1.0022, respectively. The results
show that China’s transport efficiency decreased by 0.48% during the 11th Five-Year Plan
period but increased by 0.22% in the first four years of the 12th Five-Year Plan and 13th
Five-Year Plan period. As can be seen from Table 6, the increase in production efficiency in
2004 was mainly due to pure technical efficiency (GPCH = 1.0165 > 1), but technological
progress (GTCH = 0.8581 < 1 ) was not so ideal. The increase in production efficiency in
2019 was mainly due to the increase in pure technical efficiency (GPCH = 1.1219 > 1) and
scale efficiency (GSCH = 1.0080 > 1), but technological progress (GTCH = 0.9205 < 1) was
not as good. During the study sample period, the GM index improved significantly, from
0.8618 to 1.0130. This shows that the overall efficiency of our transportation system has
changed from negative growth to positive growth. The factors that cause the increase in
overall efficiency are the same: both scale efficiency and pure technical efficiency play a
role. Overall, total factor efficiency in China’s transport sector has been increasing steadily,
but not significantly, and is showing signs of slowing down, which is closely related to
China’s efforts to meet its carbon emission targets.

At the regional level, the total factor productivity of carbon emissions in the trans-
portation industry increased annually in each region, and the change direction and change
range of each decomposition index were different to some extent. The results are shown
in Table 7.

In the eastern region, all indexes increased, among which pure technical efficiency
and scale efficiency increased by 1.84% and 1.28% annually, respectively, which had a
significant effect on the improvement of productivity. The eastern region has the best
economic resources and technological base in the Chinese mainland, which has promoted
the relatively fast technological progress and improved the productivity of carbon emission
in the eastern region. At the same time, due to the abundance of capital in the east,
improved management has boosted productivity across the region. In the central region,
technological progress and scale efficiency decreased by 0.24% and 0.52%, respectively,
while pure technical efficiency increased by 1.27%. In the western region, technological
progress and pure technical efficiency increased by 1.50% and 1.51%, respectively, and
scale efficiency decreased by 1.27%. The central and western regions have not yet formed
a relatively mature market mechanism, resources have not been effectively used and the
management level needs to be improved. The decrease in total factor productivity of CO2
in the central and western regions is caused by the decline of scale efficiency. In recent
years, driven by the “One Belt One Road” policy and in order to establish connectivity
network with countries along the “Silk Road Economic Belt”, the western region has
actively promoted the construction of transportation infrastructure and increased road
network density, which will contribute to the continuous improvement of carbon emission
scale efficiency in the transportation industry.

5.3. Analysis of Differences in Regional Heterogeneity

Based on Equations (23)–(26), this paper calculates the Theil index to further analyze
the carbon content of China’s transportation industry from 2004 to 2019.

The regional differences of the GM index and its changes are analyzed, and the main
sources of regional differences are discussed. Among them, the calculation results of the
Theil index are shown in Table 8. The overall Theil index of a certain year is the overall
difference of GM index values of each province from the previous year to that year, which
can be decomposed into the difference between eastern, central and western regions and
the difference between provinces within the three regions.
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Table 5. Provincial transportation sectors’ GM index during 2004–2019.

Provinces 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012

Beijing 0.8737 0.8958 0.9643 0.9272 0.9756 1.1285 1.0204 0.8390
Tianjin 0.6637 1.0595 1.0299 1.0600 0.9133 1.0613 1.0724 0.8529
Hebei 0.7356 1.1045 1.1489 1.0713 0.9907 0.9826 1.0272 0.9812
Shanxi 0.7995 1.0223 1.1214 0.9908 0.8611 0.9773 1.0095 0.9936

Inner Mongolia 0.7026 1.0475 1.0338 1.0458 0.9369 0.9528 1.0280 0.9842
Liaoning 0.7697 1.0009 1.0322 1.0097 0.9900 0.9692 1.0355 0.9809

Jilin 0.7858 1.0318 0.9984 0.9670 1.0222 1.0028 1.0922 0.9869
Heilongjiang 0.8562 0.9398 1.0629 1.0608 0.9301 1.0737 0.8978 1.0154

Shanghai 0.9882 0.9870 0.9277 0.9337 0.8559 1.1396 0.9689 0.9248
Jiangsu 1.1122 1.0806 1.0890 1.0984 0.9626 1.0622 1.0510 0.9822

Zhejiang 0.9984 1.0492 1.0390 1.0019 0.9534 1.0980 1.0014 0.9250
Anhui 0.9324 1.0207 0.9948 1.0563 0.8872 0.9616 0.9869 0.8985
Fujian 0.7732 1.0616 1.2183 0.7989 0.8963 0.9558 0.9386 0.9397
Jiangxi 1.0607 1.0556 1.0458 1.0170 0.9797 0.9751 1.0417 1.1342

Shandong 0.9024 1.1476 1.0193 1.4275 0.6988 0.9465 1.0562 0.9568
Henan 0.9664 1.1190 1.0892 0.9525 1.0236 0.9216 1.0190 1.0560
Hubei 0.9469 1.0427 1.0181 1.0204 1.0695 1.1472 1.0055 0.9875
Hunan 0.9210 1.0287 1.0654 1.1369 0.9759 0.9835 0.9987 1.0234

Guangdong 0.9405 1.0324 1.0559 1.0564 0.8970 0.9973 1.0082 0.9868
Guangxi 0.8736 0.9518 1.0449 1.1249 1.0201 1.0478 1.0680 0.9581
Hainan 0.5136 1.0256 1.0437 0.9854 0.9901 1.0819 1.1045 1.0866

Chongqing 1.0438 1.1173 0.9902 1.0783 0.9784 1.0002 1.0342 0.8885
Sichuan 0.9344 1.0297 1.0168 0.9735 0.9063 0.9040 1.0135 0.9728
Guizhou 1.1706 1.0909 1.1520 1.0279 0.9618 0.9917 1.0815 0.9809
Yunnan 0.7078 1.2040 1.0966 0.8635 0.9959 0.9918 1.0534 1.0656
Shaanxi 0.9788 1.1114 1.0179 1.0645 0.9480 0.9994 1.0353 1.0257
Gansu 1.0655 1.1307 1.0533 1.1267 0.9724 1.2516 1.0646 0.9544

Qinghai 0.4989 1.0012 1.0017 1.0008 1.0240 1.1092 1.0304 1.0202
Ningxia 0.5002 2.0217 0.5357 1.1858 1.2803 1.2637 1.0965 1.0283
Xinjiang 0.8381 0.9923 1.1054 0.9890 0.9972 0.9867 0.9919 1.1278
Average 0.8618 1.0801 1.0338 1.0351 0.9631 1.0322 1.0278 0.9853

Provinces 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 Average

Beijing 1.0343 1.0177 1.0056 1.0252 1.0536 1.0209 0.9821 0.9843
Tianjin 1.0159 0.9508 0.9584 1.0058 1.0077 1.0329 0.9502 0.9757
Hebei 0.9484 1.0746 1.0000 0.8485 1.1525 1.0226 0.8903 0.9986
Shanxi 0.9054 0.9914 1.0328 0.9992 1.0665 1.1131 1.0243 0.9939

Inner Mongolia 0.9791 1.0531 1.0004 1.0829 1.0155 0.9878 1.0336 0.9923
Liaoning 0.9793 0.9742 1.0475 1.0738 0.9966 1.0441 0.9993 0.9935

Jilin 0.9724 0.9618 0.9661 1.0023 1.0022 1.0101 0.9630 0.9843
Heilongjiang 0.9434 1.0476 0.9787 0.9650 1.0392 1.0977 0.8413 0.9833

Shanghai 0.9859 1.0586 1.0319 1.0144 1.0175 1.0803 1.0031 1.0432
Jiangsu 0.8885 0.9550 0.8975 0.9756 0.9538 0.9594 0.9073 0.9984

Zhejiang 0.9956 1.0026 1.0119 1.0283 1.0256 0.9893 1.1070 1.0151
Anhui 0.9754 0.9748 0.9599 0.9934 1.0066 1.0936 1.0136 0.9837
Fujian 0.9279 0.9884 1.0094 1.0111 1.0249 1.0043 1.0354 0.9723
Jiangxi 0.8959 0.9927 0.9769 0.9876 1.0760 1.0232 1.0385 1.0200

Shandong 0.9405 1.0400 0.9805 0.9870 0.9343 0.9655 0.9684 0.9981
Henan 1.0032 0.9708 0.9845 1.0046 1.0503 1.0270 0.9656 1.0102
Hubei 1.0122 1.0333 0.9965 0.9571 1.0485 1.0523 1.0282 1.0244
Hunan 0.9440 0.9931 0.9889 0.9978 1.0379 1.0141 0.9592 1.0046

Guangdong 0.9502 0.9682 0.9352 0.9030 0.9503 0.9646 1.4908 1.0091
Guangxi 1.0909 0.9324 1.0191 1.0176 1.0231 0.9711 1.0142 1.0105
Hainan 1.0211 1.0645 1.0597 1.0199 1.0404 1.0282 1.0978 1.0109

Chongqing 0.9174 1.0170 0.9672 1.0112 1.0938 1.0013 1.0338 1.0115
Sichuan 1.0914 1.0164 0.9930 1.0405 0.9998 1.1000 1.0168 1.0006
Guizhou 1.0091 1.0105 1.0109 1.0248 1.0647 1.0406 1.0100 1.0418
Yunnan 1.0579 1.0025 1.0348 1.0441 1.0865 1.0751 1.0002 1.0186
Shaanxi 0.9754 1.0544 1.0072 1.0340 1.0180 1.0096 1.0331 1.0209
Gansu 0.9410 0.7185 0.9476 0.9555 1.0412 1.0080 1.0364 1.0178

Qinghai 1.0211 1.0513 0.9707 1.0074 1.0199 0.9923 0.9889 0.9825
Ningxia 0.9374 0.9295 0.9134 0.9130 0.9411 1.0170 0.9517 1.0344
Xinjiang 0.9747 1.0696 0.9750 0.9955 1.0487 1.1565 1.0063 1.0170
Average 0.9778 0.9972 0.9994 0.9975 1.0279 1.0301 1.0130 1.0034
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Table 6. Provincial transportation sectors’ GM index and its decomposition in 2004 and 2019.

GM and Its Decomposition in 2004 GM and Its Decomposition in 2019

Provinces GM GTCH GPCH GSCH GM GTCH GPCH GSCH

Beijing 0.8737 0.8809 1.0043 0.9876 0.9821 0.9457 1.0576 0.9819
Tianjin 0.6637 0.6637 1.0000 1.0000 0.9502 0.7875 1.0727 1.1248
Hebei 0.7356 0.7356 1.0000 1.0000 0.8903 0.8903 1.0000 1.0000
Shanxi 0.7995 0.8898 0.9460 0.9499 1.0243 0.9163 1.1288 0.9903

Inner Mongolia 0.7026 0.9324 0.7590 0.9928 1.0336 0.9014 1.1499 0.9972
Liaoning 0.7697 0.8550 0.9027 0.9973 0.9993 0.9319 1.0862 0.9872

Jilin 0.7858 0.9222 0.9313 0.9149 0.9630 0.9808 1.1115 0.8834
Heilongjiang 0.8562 0.8820 1.0200 0.9517 0.8413 0.8765 0.9189 1.0445

Shanghai 0.9882 0.9518 1.0980 0.9457 1.0031 1.0031 1.0000 1.0000
Jiangsu 1.1122 0.9193 1.1165 1.0835 0.9073 0.8829 0.9890 1.0390

Zhejiang 0.9984 0.9705 1.0203 1.0083 1.1070 0.8814 1.5860 0.7920
Anhui 0.9324 0.9324 1.0000 1.0000 1.0136 1.0136 1.0000 1.0000
Fujian 0.7732 0.7732 1.0000 1.0000 1.0354 0.8771 1.1775 1.0025
Jiangxi 1.0607 0.9390 1.1585 0.9750 1.0385 0.9110 1.1917 0.9566

Shandong 0.9024 0.6822 1.0000 1.3228 0.9684 1.1283 1.0000 0.8583
Henan 0.9664 0.9010 0.9952 1.0778 0.9656 0.9656 1.0000 1.0000
Hubei 0.9469 0.8901 1.0730 0.9914 1.0282 0.9171 1.1202 1.0008
Hunan 0.9210 0.8570 1.0836 0.9918 0.9592 0.9130 1.0564 0.9945

Guangdong 0.9405 0.8861 1.0000 1.0615 1.4908 0.8977 1.8032 0.9210
Guangxi 0.8736 0.9230 1.0144 0.9330 1.0142 0.9067 1.1341 0.9863
Hainan 0.5136 0.4683 0.8802 1.2459 1.0978 0.5417 1.0000 2.0264

Chongqing 1.0438 0.9434 1.1584 0.9552 1.0338 0.8806 1.1648 1.0079
Sichuan 0.9344 0.8985 1.0475 0.9927 1.0168 0.9061 1.1266 0.9960
Guizhou 1.1706 1.0968 1.2787 0.8346 1.0100 0.8629 1.1586 1.0102
Yunnan 0.7078 1.0185 0.7718 0.9003 1.0002 0.8819 1.1267 1.0066
Shaanxi 0.9788 0.9120 1.0963 0.9790 1.0331 0.8736 1.1688 1.0119
Gansu 1.0655 0.9616 1.2191 0.9089 1.0364 0.9444 1.2359 0.8879

Qinghai 0.4989 0.3017 1.0000 1.6536 0.9889 0.9879 1.0000 1.0010
Ningxia 0.5002 0.7691 1.0000 0.6503 0.9517 1.2712 1.0000 0.7486
Xinjiang 0.8381 0.9854 0.9201 0.9243 1.0063 0.9367 1.0925 0.9834

Average 0.8618 0.8581 1.0165 1.0077 1.0130 0.9205 1.1219 1.0080

Table 7. GM index and its decomposition in the three regions.

Region GM GTCH GPCH GSCH

Eastern region 1.0015 1.0056 1.0184 1.0128
Central region 1.0006 0.9976 1.0127 0.9948
Western region 1.0134 1.0150 1.0151 0.9989

China 1.0034 1.0061 1.0154 1.0022

From 2010 to 2016, the overall difference of the carbon emission GM index of the
transportation industry in different provinces showed a trend of decreasing first and then
increasing. During the study period, the average contribution rate of inter-regional and
intra-regional differences to the overall differences was 7.63% and 92.37%, respectively.
The contribution rate of intra-regional differences is higher than that of inter-regional
differences year by year, indicating that intra-regional differences are the main factors
causing regional differences of the GM index of carbon emissions in China’s transport
industry. Among them, the difference of the GM index in 2008 and 2014 is almost all caused
by regional differences.

However, the difference of the GM index among provinces in eastern, central and
western regions was not stable from 2004 to 2019, and the average contribution rate of the
differences among the three regions to the overall difference was in the order of western,
eastern and central regions. Among them, the western region has the largest average
contribution rate because it has the largest number of provinces, and Sichuan and Qinghai
are the two provinces with the highest annual GM index and the lowest annual GM index in
the region. The total factor productivity of carbon emission of the two provinces increases
by 4.18% and decreases by 1.75% annually, respectively. The contribution rate fluctuation
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of the western region increased to 57.68% in 2004, then gradually decreased to 28.24% in
2012, and finally to 2.17% in 2019, indicating that the difference in the change rate of total
factor efficiency of carbon emissions in the transportation industry among provinces was
reduced. There is little difference between the average intra-regional contribution rate
of the eastern region and the western region, but the variation range is not very obvious
and has an expanding trend, and the intra-regional contribution rate in 2019 is as high as
81.74%. The intra-regional contribution in the central region decreased first, then increased,
and finally decreased, with a small range of change. This indicates that the total factor
productivity of carbon emissions in the region is relatively stable.

Table 8. The overall difference of the global Malmquist index and its decomposition contribution rate
during 2004–2019.

Year I Contribution
of IB

Contribution of Iw

Eastern Region Central Region Western Region Total

2005 0.0208 2.56% 33.77% 5.98% 57.68% 97.44%
2006 0.0123 11.10% 5.36% 2.08% 81.46% 88.90%
2007 0.0064 3.68% 15.14% 3.31% 77.87% 96.32%
2008 0.0052 0.49% 68.90% 7.34% 23.27% 99.51%
2009 0.0044 15.19% 33.92% 14.72% 36.17% 84.81%
2010 0.0035 3.64% 22.06% 16.12% 58.18% 96.36%
2011 0.0009 11.72% 36.55% 36.17% 15.56% 88.28%
2012 0.0024 15.52% 34.30% 21.94% 28.24% 84.48%
2013 0.0014 11.97% 25.98% 16.50% 45.56% 88.03%
2014 0.0023 1.89% 14.63% 4.57% 78.91% 98.11%
2015 0.0100 6.69% 55.79% 8.23% 29.29% 93.31%
2016 0.0011 5.04% 60.83% 3.33% 30.79% 94.96%
2017 0.0010 5.74% 57.61% 7.45% 29.20% 94.26%
2018 0.0010 13.49% 21.97% 17.90% 46.64% 86.51%
2019 0.0048 5.67% 81.74% 10.41% 2.17% 94.33%

Average 0.0052 7.63% 37.90% 11.74% 42.73% 92.37%

6. Conclusions

This paper introduces an improved bounded adjustment measure (BAM) to measure
dynamic and static efficiency scores in China’s transport sector. Unlike the traditional BAM
model, this method assumes that the output is maximized to approximate the efficiency
boundary, and the evaluation results reflect the true level of efficiency and its variation more
objectively than other methods. In addition, we decompose low productivity efficiency into
low input efficiency, low economic output efficiency and low environmental efficiency so
as to find out the source of the low productivity efficiency. Based on the global Malmquist
index, the key factors affecting productivity changes from 2004 to 2019 are analyzed from
the aspects of technological progress, production scale and management level. Finally, we
use the Theil index to evaluate regional differences in the GM index. According to our
analysis, the main findings are as follows:

From 2004 to 2019, the average productivity of the transport industry in 30 provincial-
level provinces on the Chinese mainland is 0.53, indicating that there is still a lot of room
for improvement in productivity, and regional development varies greatly. The main cause
of low productivity is excessive input of labor, energy and capital and excessive CO2 emis-
sions. The inefficiency caused by labor, energy and capital accounted for 69% of the total
inefficiency, indicating that there is still much room for improvement in China’s resource
input. It is worth noting that the inefficiency caused by economic output is very low, close
to 0, indicating that China’s transportation industry is still pursuing the improvement of
economic value. From the perspective of timeline, the production efficiency during the 13th
Five-Year Plan period (0.5478) is better than that during the 11th (0.5274) and 12th (0.5027)
Five-Year Plans, which indicates that the national policies on energy conservation, emission
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reduction and optimization of resource allocation have been effectively implemented, and
significant results have been achieved in the field of transportation.

During the period of 2004–2019, productivity in China’s transport sector has steadily
increased, especially in the first four years of the 13th Five-Year Plan. The values of GTCH
(1.0061), GPCH (1.0154) and GSCH (1.0022) are all greater than 1, making the value of
GM (1.0034) greater than 1. Technological progress, scale efficiency and the improvement
of the management level all promote the improvement of productivity, among which
the improvement of the management level is the main reason. However, at the regional
level, there are significant differences in efficiency between the three main regions and
implications for future improvements. GPCH in the eastern region (1.0184) was significantly
higher than the other two (1.0056 and 1.0128). The improvement of management efficiency
contributes the most to the growth of productivity in the east. For the western region,
both technological progress (1.0150) and improved scale efficiency (1.0022) contribute to
productivity improvement during the sample cycle. At the same time, economies of scale in
the western region decline significantly. These results have great implications for improving
productivity in various regions. In the eastern region, measures can be taken to eliminate
outdated production capacity, reduce excess capacity and control the scale of investment
to further improve economies of scale. To improve the economies of scale in the western
region, the “One Belt, One Road” strategy can be adopted. The central region should focus
on technological progress to enhance its linkage with the Belt and Road Initiative in the
west. In addition, unbalanced regional development is a major feature of China’s transport
industry. The contribution rate of regional difference to the overall difference reached
92.37%, which was the main factor leading to the difference of the GM index.

Based on the above findings, we can offer the following policy recommendations.
The Chinese government should promote the innovation and progress of carbon emission
reduction technology and establish an effective mechanism to promote each other with
operation management services; replace high energy consumption vehicles to reduce the
total energy consumption and energy intensity of the industry; and pay attention to en-
terprise management efficiency, give play to the scale effect to improve economic benefits
and further stimulate the driving force of technological innovation. Each region clearly
defines the key direction of regional low-carbon transportation development and scien-
tifically designs the overall improvement ideas according to local conditions. Exchanges
and cooperation between provinces within the region should be strengthened to guarantee
the coordinated development of green production efficiency in the industry. We should
improve infrastructure networks such as railways, roads, water transport, civil aviation
and postal and courier services and give priority to ecology. It is necessary to increase the
proportion of railway and waterway in comprehensive transportation. The transportation
department may improve the collection and distribution system of trunk railway and speed
up the construction of special railway lines for port collection and distribution and logistics
parks. Optimizing the organization of passenger and freight transportation and promoting
the integrated development of urban and rural transportation are also important ways to
improve production efficiency.
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