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Abstract: Simulation of Water Balance Components (WBCs) is import for sustainable water resources
development and management. The Soil Water and Assessment Tool (SWAT) is a semi-distributed
hydrological model to estimate the WBCs by forcing the hydrological response unit (HRU) and
meteorological variables. The developed model simulates five WBCs viz. surface runoff, lateral flow,
percolation, actual evapotranspiration and soil water at sub catchment level. To demonstrate the
model compatibility a case study taken over Chittar catchment, Tamilnadu, India. The catchment was
divided in to 11 sub catchments. The ten year interval LULC (i.e., 2001 and 2011), twenty year daily
meteorological data (i.e., 2001–2020) and time invariant soil and slope data were used in developing
the water balance model. Developed model was calibrated and evaluated with river gauge monthly
discharging using SUFI-2 algorithm in SWAT-CUP. The model calibration performed in two stage
i.e., pre-calibration (2001–2003) and post-calibration (2004–2010). The model performance was
evaluated with unseen river gauge discharging data (i.e., 2011–2015). Then, results of statistical
outputs for the model were coefficient of determination (R2) is 0.75 in pre-calibration, 0.94 in post-
calibration and 0.81 in validation. Further strengthen the model confidential level the sub catchments
level monthly actual evapotranspiration were compared with gridded global data GLEAM v3.6a.
Finally, the developed model was simulate the five WBCs whereas, surface runoff, lateral flow,
percolation, actual evapotranspiration and soil water at sub catchment level during 2001–2020. The
sub catchment level WBCs trend helps to make fast and accurate decision. At all 11 sub catchments
a long drought was observed during 2016–2018 due to failure of northeast monsoon. The WBCs
were directly reinforced by their north east monsoon which gives the major portion of rainfall i.e.,
September to December. Hence all the WBCs were directly correlated with rainfall with or without
time lag. By understanding the sub catchment level of monthly WBCs over the Chittar catchment is
useful for land and water resource management.

Keywords: water balance components; SWAT; LULC; Chittar catchment

1. Introduction

A major threat to survival of living beings over developing nations in the 21st century
is water scarcity. The rising population and mismanagement of water resource lead to
water scarcity. Thereby, hydro meteorological phenomenon such as uneven distribution of
rainfall and soil water content (SW) that contributes on a large scale to water scarcity [1,2],
so it resolves by an understanding of hydrological responses. At regional scale, SW is a
limiting factor in crop production as crop water required often exceeds rainfall or irrigation.
Hydrological responses are the rainfall event that responds to form surface and subsurface
flow in the catchment. Surface and subsurface flow tells about the runoff, infiltration, SW,
interception, depression storage and percolation happen in the catchment by considering
evaporation and transpiration. These hydrological responses driving the surface and
subsurface water thus it is called as water balance components (WBCs). Catchment is
an area of land where all the rain water collected and drains into lowest elevation point
after meeting abstraction [3]. In tropical country like India, meteorological drought and
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cyclonic floods happens due to monsoon failure and retreating rainfall by the Inter Tropical
Convergence Zone; gives the gain and loss of water by means of hydrological response at
the catchment.

Water balance model delineate the spatiotemporal distribution of WBCs at catch-
ment [4,5]. Generally, water balance model is purely based upon the law of conservation
of mass principle; it varied from one to another form; observes from the hydrological
cycle. Major components of water balance model in semi-arid regions were rainfall, actual
evapotranspiration (AE), runoff, infiltration, SW etc. applied in the model development
as spatially and temporal according to their dynamic hydrological behavior in the catch-
ments [6–9]. From the WBCs, accessibility of a component was carried as unknown, and
known component gives the results for the unknown component at certain time interval.
As per temporal basis, water balance model can be classified as daily, monthly, seasonal
and annually. The monthly and annual scale models are more suitable for water resources
development and management. Graf and Jawgiel, [10] developed water balance model to
simulate components likely evapotranspiration (ET), runoff and infiltration and resulted
outcomes used in the integrated urban planning. Ali Amin et al. [11] applied water bal-
ance model for the catchment wide effective water resources management. Li et al. [12]
simulated water yield by incorporating future Land Use and Land Cover (LULC) change
scenarios and to estimated water yield coefficient for every LULC class. Kundu et al. [9]
developed water balance model to quantify the impact of individual as well as the in-
tegrated climate and LULC changes. Garg et al. [13] evaluated the long term impact of
LULC change over the WBCs. Xu and Singh, [14] had reviewed that monthly water balance
model and they suggested that monthly scale model were most suitable to solve it through
catchment scale of the spatial scheme. The commercial distributed water balance models
include VIC-2L [15]; Wapaba model [16]; AWBM [17]; SWAT [18–20]; MIKE-SHE coupled
MIKE-11 [21] etc. Many previous studies reported that, most of the distributed water bal-
ance models were data intensive and requires high resolution field data [22,23]. There was
considerable level of uncertainty associated with model structure, boundary conditions,
input parameters due to heterogeneity and data resolution. Currently, high resolution
hydro meteorological data were not available in most of the developing countries like India,
Indonesia, Africa, etc. Further, most of the existing commercial water balance models are
very complex, extremely costly and require higher computational efforts. Accordingly,
majority of existing water balance studies carried over developing countries are lumped
or GIS based overlay analysis [20]. A few studies in physically distributed, water balance
models were carried out with the less water balance component’s likely rainfall and ET be-
cause of limited hydrological and meteorological data [21]. Presently, free and open source
remote sensing technology is emerging as a promising solution for earth and atmospheric
observations due to its high spatiotemporal resolutions. This remote sensing data could be
the input for developing hydrological models. Hence, open source water balance models
interfaced with GIS were essential in developing countries especially in limited hydro
meteorological data scenario. One such a model available for water resources professional
was Soil and Water Assessment Tool (SWAT). SWAT is one of the widely applied open
source semi distributed hydrological model because it gives the different results from the
different platform of hydrology applications such as water balance modeling, rainfall runoff
modeling, reservoir modeling, sediment yield, nutrient cycle for agricultural, etc. It can
specify the model to have a lumped response at the Hydrological Response Unit (HRU)
level while also being able to estimate the spatial variability at the sub catchment level.
Hence no initial and boundary conditions were required for model simulation. Keep in
mind that an HRU is a basic spatial unit with distinct soil, LULC, and slope conditions.
After abstraction, each HRU’s runoff is sent to a stream before ending up at the catchment
outflow. The present study aims to developing a general water balance model to simulate
the WBCs at the catchment and sub catchment level especially under limited data. Keeping
the above in view, the objectives of the present research study are envisaged as follows:
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1. Developing semi distributed monthly water balance model over a catchment in south
India in SWAT. Model provides the spatial and temporal distribution of WBCs viz.
AE, surface runoff, lateral flow, SW and percolation over a catchment.

2. To evaluate the applicability and suitability, the developed model was calibrated and
validated over using measured gauge discharge. Additionally, the model performance
was verified with gridded global AE.

3. The calibrated model is used for spatiotemporal mapping of WBCs over the sub
catchments by forcing the prevailing LULC and meteorological conditions.

To demonstrate the model application a case study was taken over Chittar catchment
a tributary of Thamirabarani river basin, Tamilnadu, south India. This catchment has about
75% vegetation cover (agricultural and forest land). The semi-arid conditions over the
south India include scanty rainfall, high temperature and high evaporation throughout
the year. Lack of major water storage infrastructure and institutional support, monsoon
rainfall is the only available source of water, especially in the catchment. Kumar et al. [12],
Nithya et al. [12] and Pandi et al. [12] delineated groundwater potential zones using remote
sensing and GIS based overlay analysis over the Chittar catchment. Further, over the
Chittar catchment no distributed/semi distributed hydrological model studies reported in
the peer reviewed journal. Hence, modelling the WBCs at catchment is vital for to address
the issues associated with food security, disaster risk reduction, resilient livelihoods, water
resource planning and managing, land use change analysis, urban planning, climate change,
groundwater harvesting, runoff harvesting site etc.

2. Materials and Methods

In SWAT, a catchment is divided into multiple sub catchments, which are then further
subdivided into HRU that consist of unique combination land use management, slope, and
soil characteristics [24]. In this study SWAT model was used to simulate the WBCs such as
rainfall, AE, overland flow, lateral flow, return flow, infiltration and SW for the catchment.
Input parameters were used in the model development; they were topography, LULC, soil,
slope and meteorological variables. The flow chart of methodology is shown in Figure 1. In
this study, Chittar catchment was divided in to 11 sub catchments with A.P Puram gauging
station as outlet and five WBCs are predicted over every sub catchment.

In SWAT several algorithms that are available to simulate each WBCs [25]. The
selection of the appropriate algorithm depends on purpose of study, data availability,
expected accuracy, and spatiotemporal distribution of the model domain. Rainfall usually
is taken from the meteorological observatory. In this study potential evapotranspiration
estimated using Penman and Monteith method [26], surface runoff using Modified Soil
Conservation Service Curve Number method (SCS-CN) [27], lateral flow using kinematic
storage model [28] and percolation using storage routing model [29]. The AE is arrived
from potential evapotranspiration by multiplying by a reduction factor which is function of
leaf area index, soil depth and available SW [30]. Finally, SW was estimated by mass balance
principle and showed as gain and loss parameter of the model [31]. The SW was the amount
of water that lies in the soil after interacts with various WBCs. Accordingly, SW simulated in
SWAT by using water balance equation as given in Figure 1. The spatiotemporal distribution
of SW is important for application related to irrigation, crop yield, crop selection, climate
change, land and water resources management and development. The readily available soil
moisture content was arrived as difference of field capacity and welting point of respective
top soil layer [32]. The output of the model provides the spatiotemporal WBCs distribution
over the Chittar catchment. The surface runoff and lateral flow were routed from all HRU
to sub catchment and subsequently to catchment outlet through channel network using
variable storage routing method [29]. The field measured discharge at outlet was used to
calibrate and validate the model. Further strengthening the model performance, simulated
sub catchment level AE was also compared with the third party regional AE dataset.
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During the model development influences of few small check dams and tanks over the
catchment were not included in the model development. The model was calibrated with
gauge discharge at the outlet of the basin and there is possibility of overfitting. Hence it is
necessary to calibrating with multiple WBCs to avoid overfitting [33]. The model simulate
temporal trend of five WBCs over 11 sub catchments for past twenty year period. The
five WBCs temporal trend were compared visually. This twenty year simulation period is
not sufficient to include extreme hydrological events. Hence forecasting of spatiotemporal
distribution of WBCs by forcing hydrological and meteorological scenario is an important
for planners, policy makers and researchers to make quantitative decisions.

2.1. Study Area

The Chittar river is located in Tamilnadu, south India. It is one of the major tributaries
of Thamirabarani river basin. The location map of Chittar catchment is show in Figure 2. Its
area spans the latitude of 8◦45′ N to 9◦15′ N and longitudes of 77◦10′ E to 77◦50′ E covers
the area of about 1300 sq km. The length of the main river travels about the 82 kms reaches
into the Thamirabarani river. The delineated boundaries of the 11 sub catchments are also
shown in Figure 2. It lies in a hot and dry climate zone with temperature varying from
28 ◦C to 42 ◦C—April, May and early June. North east monsoon of Chittar catchment starts



Sustainability 2023, 15, 1438 5 of 20

from the October to December receives a 50% of annual rainfall, South west monsoon starts
from June to August receives a 30% of rainfall. Total annual rainfall of this catchment is
about 880 mm.

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 20 
 

with gauge discharge at the outlet of the basin and there is possibility of overfitting. Hence 
it is necessary to calibrating with multiple WBCs to avoid overfitting [33]. The model sim-
ulate temporal trend of five WBCs over 11 sub catchments for past twenty year period. 
The five WBCs temporal trend were compared visually. This twenty year simulation pe-
riod is not sufficient to include extreme hydrological events. Hence forecasting of spatio-
temporal distribution of WBCs by forcing hydrological and meteorological scenario is an 
important for planners, policy makers and researchers to make quantitative decisions. 

2.1. Study Area 
The Chittar river is located in Tamilnadu, south India. It is one of the major tributaries 

of Thamirabarani river basin. The location map of Chittar catchment is show in Figure 2. 
Its area spans the latitude of 8°45′ N to 9°15′ N and longitudes of 77°10′ E to 77°50′ E covers 
the area of about 1300 sq km. The length of the main river travels about the 82 kms reaches 
into the Thamirabarani river. The delineated boundaries of the 11 sub catchments are also 
shown in Figure 2. It lies in a hot and dry climate zone with temperature varying from 28 
°C to 42 °C—April, May and early June. North east monsoon of Chittar catchment starts 
from the October to December receives a 50% of annual rainfall, South west monsoon 
starts from June to August receives a 30% of rainfall. Total annual rainfall of this catch-
ment is about 880 mm. 

 
Figure 2. Location map of Chittar catchment. 

2.2. Hydrological Response Unit 
The HRU delineated for the combination of ten year interval LULC (i.e., 2001 and 

2011), and time invariant soil and slope data in SWAT. These data were reclassified and 
overlay to construct the HRU geodatabase. HRU threshold definition was control the us-
age of combination data for this model development. The impact of HRU threshold on 
model performance was not yet systematically reported. Few researchers attempted with 
0% or very low thresholds to preserve each unique landscape feature in the model devel-
opment. However, most of the researchers agreed that 5% to 20% threshold was reasona-
bly good [34]. In this study 5% threshold for soil and 10% threshold for LULC and slope 
were assigned. 

Figure 2. Location map of Chittar catchment.

2.2. Hydrological Response Unit

The HRU delineated for the combination of ten year interval LULC (i.e., 2001 and
2011), and time invariant soil and slope data in SWAT. These data were reclassified and
overlay to construct the HRU geodatabase. HRU threshold definition was control the
usage of combination data for this model development. The impact of HRU threshold
on model performance was not yet systematically reported. Few researchers attempted
with 0% or very low thresholds to preserve each unique landscape feature in the model
development. However, most of the researchers agreed that 5% to 20% threshold was
reasonably good [34]. In this study 5% threshold for soil and 10% threshold for LULC and
slope were assigned.

2.3. Topography

The 30 m spatial resolution Aster-GDEM was used as topography map in this study.
The Aster-GDEM was jointly developed and released by NASA of the United States and
METI of Japan during 2011 [9]. The catchment boundary delineated in GIS platform by
implement the deterministic-8 algorithm [35,36] over Aster GDEM. The outlets are further
delineating into 11 sub catchments for the Chittar river basin (Figure 2). Aster-GDEM was
also used to prepare the slope map over Chittar catchment as shown in Figure 3. The slope
is quantifying the potential energy of the catchment by introducing the third dimension
(i.e elevation) concept and so affecting the WBCs. The Integrated Mission for Sustainable
Development (IMSD) classification was applied the five class of slope separated as show
in Figure 3 [37]. The area cover with the very steep located at the upper most region
(i.e., over Courtallam hills) of the catchment (Figure 3). Less than 3% of slope is largely
contributed i.e flat plain that forms by erosion from the weathered particles. Because, land
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mass from the upper position of the western ghats drags into flat plain that causes the
pediment formation.
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2.4. Land Use and Land Cover

The LULC map delineated from Landsat imagery (URL: glovis.usgs.gov). Landsat
is a multi-spectral image with 30 m of spatial resolution jointly released by NASA and
USGS. The Visible and Near-Infrared (VNIR) region consists of blue (0.45–0.52 µm), green
(0.52–0.60 µm) and red (0.63–0.69 µm) were captured using hyperspectral satellite sensors.
Using the VNIR region of landsat imagery, LULC features were digitized in the GIS
environment by mean of physical-interpretation [38]. The LULC was divided as per the
Level 1 of NRSC Land Use and Land Cover Monitoring Division (2011–2012) guideline.
NRSC LULC classification was proposing the residential land, agricultural land, forest,
water bodies and waste land as first level of classification [26]. The areal change of LULC
can be described in this catchment for the year 2001 and 2011. The processed LULC maps
of Chittar catchment along with area in sq km and percentage contribution of each class
were shown in Figure 4. LULC is part of the HRU which induces the finding the certain
WBCs methods such as manning roughness coefficient and SCS-CN. By these parameters it
evolves the WBCs such as runoff and infiltration. LULC also evolves the WBCs such as
interception, depression storage and AE.

Mostly agricultural and forest land were jointly covered about 75% area in the catch-
ment. Residential land (2%), water bodies (4%) and waste land (20%) contributed as shown
in Figure 4. About 10 sq km of water bodies, 7 sq km of agricultural land, 2 sq km each
waste land and forest land decreased during 2001 to 2011. Residential land was gained
about 22 sq km during the same period. The mutual change of about 5–8% in agriculture
and waste land was also observed. The agricultural to wasteland mutual conversion were
mainly driven by the uneven distribution of monsoon rainfall. The conversion of waste to
agricultural and residential land was more dominant for an increase in farming activities
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and urbanization driven by the population growth. The change in agricultural area poses a
potential threat to sustainable development over catchment. The decrease in agriculture
area reduces food production and rural employability. However increase in agricultural
area brings addition stress to water and land resources. From the Figure 4, an area of
residential land and water body gave the opposite in the area consumption. From 2001 to
2010, about 2 sq km of the forest is lost; thus, it leads to more runoff and soil erosion in
the area. In the Chittar catchment, 20% of water bodies are decreased between the periods
of 2001 to 2011. This change brings additional stress to ground water over the catchment.
LULC has not shown much change for past years due to lack of smart cities development
over it.
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2.5. Soil Data

Soil is mainly contributed for their HRU delineation which is able to derive the
hydrological soil groups based on soil properties. Infiltration, percolation, runoff and
lateral flow has simulated from these soil properties. SWAT has several in build databases
for soils, crops, fertilizers, slope and pesticides. In this study, the soil data was created by
mapping block wise of soil data developed by Tamilnadu Agricultural University (TNAU),
Coimbatore, Tamilnadu, India with SWAT in build soil database. The map was available in
1: 50,000 scale and having 75 classes over the Chittar catchment as shown in Figure 5. The
soil classes cover more than 50 sq km over the catchment were Monson (95 sq km), Scriba
(75 sq km), Houghtonville (75 sq km), Sunny (73 sq km), Raynham (66 sq km), Mundal
(60 sq km), Bomoseen (58 sq km), Stissing (55 sq km), Fredon (51 sq km) and Monarda
(50 sq km). The soil further regrouped in to four hydrological soil group based on soil
texture, depth, sand, silt and clay content. In this Chittar catchment, almost 90% of soil
cover was the part of the hydrological soil group C and D. First soil layer depth was about



Sustainability 2023, 15, 1438 8 of 20

300 mm and second layer was about 1000 mm. The soil was not varied with their time
period and retains constant forever.
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2.6. Meteorological Parameters

The meteorological station located over Cheranmadevi in the catchment data was
used in this study. It is operated and maintain by the Government of Taminadu state on the
state ground and surface water resources data centre, Chennai. Cheranmadevi observatory
data contains the daily meteorology parameters like rainfall, relative humidity, wind speed,
temperature etc. Meteorology parameters were used for estimating the energy distribution
that affect the WBCs. The twenty-year (i.e., 2001–2020) daily meteorological data was
used in this study. Over this twenty year period rainfall varied from 0 to 60 mm/day,
temperature ranged from 16 to 43 ◦C, sunshine varied from 0 to 10.6 hrs, wind speed at
2 m height ranged from 0 to 11.6 kms/hr and finally relative humidity ranged from 22.5 to
93%. The solar radiation range cover in this catchment was about 3–12 kWh/m2/day. The
north east monsoon contributed maximum rainfall over the Chittar catchment.

2.7. Model Calibration and Validation

In SWAT predefined program known as Calibration and Uncertainty Procedures
(SWAT-CUP) is available freely for model calibration and validation. Many algorithms
available in SWAT-CUP which includes SUFI-2 (Sequential Uncertainty FItting), PSO
(Particle Swarm Optimization), MCMC (Markov Chain Monte Carlo), GLUE (General-
ized Likelihood Uncertainty Estimation), and Parasol (Parameter Solution). In this study,
SUFI-2 that enhanced the uncertainty analysis by their driving parameters of surface runoff
component, so it was forced to calibrate the suitable parameters that processed in model
calibration [39,40]. SUFI-2 fitted the model parameter values by performing sensitivity
analysis. It identified sensitive of model parameters by knowing the significance level



Sustainability 2023, 15, 1438 9 of 20

getting through objective function from the t-test. Thus, statistical output includes coeffi-
cient of determination (R2), Nash-Sutcliffe (NS), R-factor, P-factor, Percent BIAS (PBIAS),
Root Mean Square Error (RMSE), Kling–Gupta efficiency etc. [31]. The P-factor and R-
factor are measure the goodness of fit and uncertainty during calibration and validation.
P-factor is the measure of percentage of observation within the given uncertainty bound.
R-factor is providing average thickness for the given uncertainty band divided by the
standard deviation of the measured data. Then, SWAT output variables were directly feed
into the SWAT-CUP, performing the calibration, validation, uncertainty and sensitivity
analysis [24]. The A.P Puram gauge discharge data for the period 2001–2015 was used for
model calibration and validation. The monthly gauge discharge varied from 0 to 117 cumecs
with standard deviation of 19 cumecs. The monthly average discharge is 10 cumecs. The
model calibration was carried out in two phases such as pre-calibration (warm up) and
post-calibration at monthly scale [25]. The pre-calibration period was from 2001 to 2003
(1–36 months); post-calibration is from 2004 to 2010 (37–120 months) and finally, validation
is from 2011 to 2015 (121–180 months). The pre-calibration helped to identify the major sen-
sitivity parameters and then further tuned in the post-calibration. Now days the GIS based
time series of regional AE data is used in data scarce scenarios to calibrate and validate the
hydrological model [33,41,42]. In this study, the performance of models was evaluated with
an open source GIS based global AE model. Practitioners and researchers widely employ
GLEAM (Global Land Evaporation Amsterdam Model) for arriving different components
of evaporation [41]. As it is physical based global evaporation product which derived
from multi-satellite observation and uses satellite based soil moisture as a constraint for
computing potential evaporation [43]. It applies Priestley and Taylor equation to compute
potential evaporation using remote sensing data. Computed potential evaporation from
bare soil and canopy were converted in to AE using a multiplicative evaporative stress
factor based on root-zone soil moisture and vegetation optical depth [41]. The dataset
provides monthly and daily scale AE over 0.25◦ grid resolution (i.e., 27 km by 27 km grid)
from 1980 to 2021. Khan et al. [44] reported that GLEAM provides relatively minimum error
and uncertainties over global evaporation product such as Global Land Data Assimilation
System (GLDAS) and MOD16. The selection of this data was based on its satisfactory
performance in the previous studies [41,43–45]. The monthly gridded AE data over few
sub catchments were downloaded for this purpose.

3. Results and Discussions

The slope, soil, ten year interval LULC (i.e., 2001 and 2011), daily meteorological
parameters during 2001–2020 and gauge discharge data were used for model develop-
ment. The Chittar catchment delineated from the Thamirabarani basin for the river gauge
discharge point (outlet) which is located at A.P Puram (Figure 2). Chittar catchment sub-
divides into the 11 sub catchments as shown in Figure 6. The assigned Sub Catchment
(SC) number along with its area in sq km and perimeter in km were also provided in the
Figure 6. The sub catchments were varied in their size and shape because it delineates from
the undulating topography i.e DEM. Middle part of catchments has smaller sub catchments;
because main branch of Chittar river that flowing in the landscape without connection of
tributary. Rests of larger sub catchments were major tributaries sub catchments.

3.1. Calibration and Validation

The SWAT-CUP implemented SUFI-2 adoptable for model calibration and validation
using the gauge discharges [25]. The global and local sensitivity analyses were the widely
applied techniques. The global sensitivity analysis attempts to access simultaneously
changes in two or more parameters using multiple regression analysis. Local sensitivity
analysis attempts to measures effect of parameter one by one through linear regression
analysis. The two approaches having their own advantages and challenges [20,22]. In
this study Global sensitivity analysis was performed to identify the relative sensitivity of
model parameter at catchment scale [46]. The relative sensitivity of model parameter was
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catchment specify. It also depends on model structure, state variables and spatiotemporal
resolution of input parameter. The sensitivity analysis results were used in parameter
optimization during calibration process by forcing local conditions. This will reduce
prediction uncertainty and computational effort. Further it assists in analyzing interaction
among parameters and its range and spatial variability which in turn influence the model
performance. Among the 43 model parameters incorporated in the model development,
over Chittar catchment 18 were most sensitive to five WBCs. The value of 18 calibrated
model parameters were shown in Table 1. The major contribution of each model parameters
on the hydrological process was also provided in Table 1 for better understanding. Table 1
show the relative rank order of model parameters which was assigned based on student
t distribution and p-value [31]. The model parameter with largest student t distribution
(i.e., most sensitive) along with lowest p value (i.e., most significant) was assigned with
rank 1 as shown in Table 1. The model parameters CN2, GW_DELAY, ALPHA_BNK and
SOL_AWC were relatively more significant model parameters (p value < 0.01) at catchment
scale. The model parameter t stat were varied from −5.96 to 5.33. Outcome of study
identified that CN2 as most sensitive among the 18 model parameters. The CN2 values
varied −0.2 (high infiltration) to +0.2 (high runoff). About 90% catchment area was covered
soil with low to medium infiltration (i.e., hydrological soil group C and D). Accordingly
CN2 calibrated value was closer 0. The next sensitive parameters were Groundwater
delay time (GW_DELAY) and Base flow alpha factor for bank storage (ALPHA_BNK).
The GW_DELAY controls the lag time in water leaving from soil layer to shallow aquifer.
A larger GW_DELAY will enable more abstractions from the unsaturated zone and vice
versa. The ALPHA_BNK characterizes the bank storage recession to main channel. It varies
1 denoting flat recessions to near zero for steep recessions.
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The model validation was carried out using unseen gauge discharge data. The 95 per-
cent prediction uncertainty (95PPU) was helpful to predict from the model performance.
The SWAT simulated monthly discharge were plotted in the Figure 7 shows a reason-
ably fit with observed discharge. The simulated discharge was not perfectly matching
with observed discharge during pre-calibration period and reasonably fitting well during
post-calibration and validation periods. The model not was able to predict accurately
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few observed peaks during calibration and validation periods. This may be due to the
presence of few small dry tanks over the Chittar catchment; which was not included in the
model development.

Table 1. Sensitivity results for the SWAT model parameters for river flow.

Parameters Description Process Fitted Value p-Value t-Stat Rank

CN2 Initial SCS-CN moisture condition II Runoff −0.095 0.00 4.19 1

GW_DELAY Groundwater delay time (days) Groundwater 0.115 0.00 −5.96 2

ALPHA_BNK Baseflow alpha factor for bank
storage (1/days) Groundwater 223.600 0.00 −4.70 3

SOL_AWC Available water capacity of the first
soil layer (mm H2O soil) SW 2.625 0.00 5.33 4

OV_N Manning’s n value for overland flow Runoff 0.302 0.02 −2.36 5

SOL_K Saturated hydraulic
conductivity (mm/h) SW 2.555 0.12 −1.59 6

ALPHA_BF Baseflow alpha factor (1/days) Groundwater 3.240 0.17 −1.38 7

CH_K2 Effective hydraulic conductivity in
main channel alluvium (mm/h) River Channel −0.345 0.20 1.31 8

EPCO Plant uptake compensation factor AE −9.720 0.21 1.26 9

ESCO Soil evaporation compensation factor AE 0.498 0.22 1.25 10

GW_REVAP Groundwater revap coefficient Groundwater 42.525 0.32 −1.00 11

SLSUBBSN Average slope length (m) Topography −3.765 0.34 −0.96 12

GWQMN
Threshold depth of water in the

shallow aquifer required for return
flow to occur (mm H2O)

Groundwater 0.310 0.34 −0.97 13

SURLAG Surface runoff lag co efficient Runoff 0.248 0.43 −0.79 14

REVAPMN Threshold depth of water in the
shallow aquifer for revap to occur Groundwater 0.046 0.57 −0.57 15

CH_N2 Manning’s n value for the
main channel River Channel 0.081 0.61 0.52 16

SOL_BD Moist bulk density (Mg/m3) SW 0.161 0.85 0.19 17

HRU_SLP Average slope steepness (m) Topography 24.880 0.88 −0.15 18
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The pre-calibration outputs gave the result of R2 and NS both equal to 0.75. Again,
calibration outputs gave the result as R2 was 0.94 and NS was 0.89. The validation period
gave the R2 was 0.81 and NS was 0.76. The PBIAS was ranged between the −1.7 to 2.7 and
the baseline has not deviated more the ±3. Similarly, RMSE was half stabilized at 0.5 mm.
The detail statistical performance indexes were given in the Table 2. As well as R-factor was
reduced in to small values at calibration and validation period but P-factor is raised in the
calibration and again reduced in validation. The small values in R-factor and large values
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in P-factor was acceptable at 95 PPU [23]. Thus, PBIAS lies within 3%, R2 and NS lies above
0.7 were supports the reasonable fit of model simulation with observed discharge [46].

Table 2. Statistical performance.

Performance Indexes Pre-Calibration Post-Calibration Validation

P-factor 0.90 0.98 0.60
R-factor 2.29 1.14 0.77

Coefficient of determination (R2) 0.75 0.94 0.81
Nash-Sutcliffe (NS) 0.75 0.89 0.76

Percent bias (PBIAS)% −1.70 2.70 1.60
Kling –Gupta efficiency 0.84 0.82 0.66

Root Mean Square Error (RMSE) mm 0.50 0.33 0.49
Modified Nash-Sutcliffe 0.47 0.78 0.71

The GLEAM provides 0.25◦ grid resolution monthly and daily AE data in mm from
1980 to 2021 at global scale. The coarse spatial resolution of the data hinders its application
to catchment scale studies. However, many researchers were incorporated GLEAM data to
calibrate and validate the catchment scale hydrological models [33,41–43]. In this study
GLEAM v3.6a monthly AE data from 2001 to 2020 (i.e., 240 months) were used to validate
sub catchment scale SWAT simulated AE. For this time series of monthly gridded AE data
over the sub catchments SC6, SC10 and SC11 were extracted from the global GLEAM
data. The geo coordinate of the grid cell data used in this study were (77.375◦ E: 8.875◦ N),
(77.375◦ E: 9.125◦ N) and (77.625◦ E: 8.875◦ N) for the sub catchments SC6, SC10 and SC11
respectively. The linear correlation plot of SWAT and GLEAM modeled monthly AE at over
the sub catchments SC6, S10 and S11 were shown in Figure 8. The estimated R2 during
this comparison were 0.83, 0.76 and 0.84 respectively for sub catchments SC6, S10 and
SC11. The RMSE for the sub catchments SC6, S10 and SC11 were 10 mm, 9 mm and 15 mm
respectively. The correlation plot average gradient was about 0.9 over three sub catchments
by forcing intercept to zero. This supports that SWAT and GLEAM modeled monthly AE
were reasonably matching well over the three sub catchments. The AE were generally well
distributed around the straight line and shows a strong positive correlation. The consistency
of model performance over sub catchments confirmed the reliability and versatility of the
model over the Chittar catchment. The high RMSE reveals that a significant difference
exists at individual values. This mismatch at individual values was very common while
regional model compared over local studies.
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Figure 8. Comparison of monthly AE from SWAT with GLEAM v3.6 data at sub catchment level
from 2001 to 20203.

3.2. Water Balance Components

In the tropical climate in south India, it behaves the seasonal variation in the tempera-
ture as well as rainfall that reflected in the WBCs anomaly. Catchment spans the latitude
of 8◦45′ N to 9◦15′N lies in tropical zone, so it is semi-arid climate that have hot summers
and warm to cool winters. In the Chittar catchment, hot weather (maximum temperature)
happened for about seven months in an annum. So, it causes the more ET in the agricultural
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and forest land (i.e., 75% area); also converts the surface water bodies to dry land. The
SWAT model delineated the HRU as per the given soil, slope, ten year interval LULC and
simulated WBCs by forcing the daily meteorological variables for the period 2001–2020.
The output shows monthly WBCs such as AE, surface runoff, lateral flow, percolation, and
SW at catchment and sub catchment level in mm. The SWAT is a lumped model at HRU
and at the same time shows the spatial variability at sub-catchment level. Accordingly
Figures 9–13 provided here to show the spatial variability of five WBCs at 11 sub-catchments.
The monthly scale of WBCs at every sub catchment in mm from January 2001 to December
2020 was shown in Figures 9–13. Many previous studies reporting that complexity in catch-
ment scale WBCs that mask impact of LULC, meteorological, and hydrological processes
associated with local conditions [6]. The prediction of sub-catchment or further small scale
variability of WBCs is important for easy and accurate decision making. The assigned SC
number was shown in Figure 6. During 2016–2018 all five WBCs were relatively very low
throughout the catchment. This may be due to severe drought over south India because
of failure of northeast monsoon. The Figure 9 shows that monthly AE values of 11 sub
catchment. The reported sub catchment level monthly maximum WBCs were 526 mm of
rainfall, 324 mm of surface runoff, 123 mm of AE, 159 mm of percolation, 64 mm of lateral
flow and 193 mm of SW. It was observed maximum rainfall that received during September
to December due to onset of northeast monsoon. Out the considered 20 years period the
minimum rainfall was reported in year 2008 over the catchment. The monsoon rainfall is
the major source for SW in the catchment. The SW shows the trend with respect to gain and
loss components in the catchment. Moreover, surface runoff, lateral flow and percolation
are the components cause the losses and also making the similar effect of oscillations with
respect to rainfall. The AE was reversed trend with other WBCs; it appears to be maximum
from January to August. So, it seems to be loss of water in the catchment over the period,
which happened due to evaporation from SW, and other components likely lateral flow and
percolation put into the subsurface by the gravity action. The sub catchment of monthly
mean AE varies from 25 mm to 43 mm with standard deviation varies 20 mm to 38 mm. All
the 11 sub catchments AE reached simultaneously maximum during April/May at every
year. The monthly AE was not showing much variation during 2005 to 2011. This may due
to unusual warming reported over south India due to enhanced convection in southern
Indian Ocean and forced anticyclonic activities over the Bay of Bengal [47]. The AE peaks
were generally high during 2016–2018 at all sub catchment. These AE peaks occurs due to
failure of north east monsoon over the south India during 2016–2018 [48]. The SC8 reported
minimum AE value throughout the simulation period. This may be due to combined effect
high slope along with low permeable soil layer that will decrease the SW and subsequently
reduces the AE over the SC8.

The surface runoff shows similar trend at all sub catchments (Figure 10). South
India was hit by 150 years severe drought during 2016–2018 due to failure of northeast
monsoon [48]. This brings down the surface runoff at all sub catchments after 2013.
The monthly sub catchment level surface runoff varied from 0 to 360 mm with standard
deviation varies 32 mm to 67 mm. The minimum and maximum annual average surface
runoffs were 150 mm at SC3 and 387 mm at SC8. The steep slope and largest forest cover
over the SC3 increase lateral flow that brings down the surface runoff. The increased
anthropogenic activities and high drainage density over SC8 increase the surface runoff
(Figure 4). The increased surface runoff brings soil erosion and flooding over catchment.
Generally, lateral flow was not showing much variation over Chittar catchment as shown in
Figure 11. The surface runoff and lateral flow are sharing the rain water on the land surface
after meeting other abstraction. As the increases lateral flow considerable decreases in the
surface runoff. However, both have strong positive correlated with rainfall. The standard
deviation of monthly lateral flow varies from 0 to 63 mm. The sub catchment lateral flow
and surface runoff reached peaks simultaneously during monsoon period. The monthly
average lateral flow of three sub catchments (viz. SC3, SC9 and SC11) were more than
10 mm. The maximum monthly lateral flow was reported in SC3 during November 2006
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with value equal to 333 mm. The lateral flow increases the SW only for a short period and
further contributing in to runoff component [49]. The mountainous forested environment
in SC3 increases the lateral flow that subsequently reduces surface runoff, AE and SW.
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The surface runoff shows similar trend at all sub catchments (Figure 10). South
India was hit by 150 years severe drought during 2016–2018 due to failure of northeast
monsoon [48]. This brings down the surface runoff at all sub catchments after 2013.
The monthly sub catchment level surface runoff varied from 0 to 360 mm with standard
deviation varies 32 mm to 67 mm. The minimum and maximum annual average surface
runoffs were 150 mm at SC3 and 387 mm at SC8. The steep slope and largest forest cover
over the SC3 increase lateral flow that brings down the surface runoff. The increased
anthropogenic activities and high drainage density over SC8 increase the surface runoff
(Figure 4). The increased surface runoff brings soil erosion and flooding over catchment.
Generally, lateral flow was not showing much variation over Chittar catchment as shown in
Figure 11. The surface runoff and lateral flow are sharing the rain water on the land surface
after meeting other abstraction. As the increases lateral flow considerable decreases in the
surface runoff. However, both have strong positive correlated with rainfall. The standard
deviation of monthly lateral flow varies from 0 to 63 mm. The sub catchment lateral flow
and surface runoff reached peaks simultaneously during monsoon period. The monthly
average lateral flow of three sub catchments (viz. SC3, SC9 and SC11) were more than
10 mm. The maximum monthly lateral flow was reported in SC3 during November 2006
with value equal to 333 mm. The lateral flow increases the SW only for a short period and
further contributing in to runoff component [49]. The mountainous forested environment
in SC3 increases the lateral flow that subsequently reduces surface runoff, AE and SW.

The monthly trend of sub catchment scale percolation was shown in Figure 12. The
spatiotemporal distributions of percolation are influencing the ground water recharge,
leaching and SW availability. The percolation mainly depends on the soil characteristics,
LULC and slope. The average sub catchment percolation was varying from 1 mm to 18 mm
with standard deviation ranging from 4 to 44 mm. The maximum percolation was observed
during October/November every year due to onset of north east monsoon. Over all the
maximum percolation reported at November 2006 for all sub catchment. This may be
due to continuous heavy rainfall occurs over south Tamilnadu [50] during November,
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2006. This heavy rainfall induces huge flood and large number landslides over south
western ghats mountain [50]. The percolation in SC3 was observed to be low throughout
the simulation period (Figure 12). The most part of the SC3 lies over the western ghats
mountain region. Accordingly, the low permeable hard rock formation over the SC3
limits the percolation. The percolation at all sub catchments was low during 2016–2018
due to failure of northeast monsoon [20]. Figure 13 shows the variations of monthly sub
catchment level in SW during 2001–2020. The SW is an important parameter that controlling
exchange of heat energy and water between land and atmosphere. As a result, SW play
a key role in crop water requirement, crop selection, crop yield, soil erosion, leaching,
slope stability, flood and drought management, weather patterns etc. The monthly sub
catchment level SW varied from 0 to 426 mm with standard deviation 20 to 120 mm. The
monthly average SW of SC1, SC2, SC3 and SC8 were below 50 mm; it may consider as
drought prone area within this catchment. The constructions of rain water harvesting and
artificial ground water recharge infrastructure over these sub catchments were important
for sustainable agricultural activity. The overall low and high SW was observed in SC8 and
SC4 respectively throughout the simulation period. The high percolation in SC8 remove
most of the water from root zone consequently reduces the SW. Similarly, low percolation
in SC4 allows more SW in root zone. It was observed that SW suddenly increases at all sub
catchments on set of north east monsoon (September/October). After the monsoon period,
decline trend were observed due to removal of SW by ET and percolation. The SW was
also affected by the soil characteristics, LULC and slope of the area. Generally, observed
that at all sub catchments of SW were more than 50 mm from September to March.

4. Conclusions

This study demonstrates that, SWAT is used as a tool to delineate the spatiotemporal
distribution of WBCs over a catchment under limited data scenario. The model can
predict WBCs such as, AE, surface runoff, lateral flow, percolation and SW by forcing
the meteorological, LULC, topography and soil data. The model invokes time invariant
soil and topography data along with ten year interval LULC and daily meteorological
data. The model was calibrated with measured gauge discharge using SUFI-2 algorithm
available in SWAT-CUP. During validation the R2 and NS were 0.81 and 0.76 respectively.
Further the monthly AE from 2001–2020 was reasonably matching with GIS based GLEAM
evaporation extracted at sub catchments. Statistical indexes support the perfection of model
development and it is most efficient and more significance for the water balance modeling
over the Chittar catchment. The recent LULC of 2001 and 2011 were prepared and analyzed
the LULC changes. The daily meteorological variables of Cheranmadevi station for period
2001 to 2020 were used for the model development. The outcome of the study provides
monthly WBCs trends such as AE, surface runoff, lateral flow, percolation, and SW at 11 sub
catchments. Major conclusions drawn from the study were as follow:

1. The residential land area doubled between 2001 and 2011, indicating frenzied con-
struction activity over the catchment. The annual average reduction of water bodies
over the catchment is about 1 sq. km/year. The increase in residential land and
mutual changes among the other classes leads to an increase in surface runoff and
reduction in lateral flow and percolation.

2. Out of the four simulated WBCs, surface runoff and AE show maximum variations
at monthly scale at all sub catchment. The lateral flow and percolation shown least
variation. Developing appropriate rain water harvesting and artificial groundwater
recharge infrastructures helps to reduce flood, soil erosion and drought
over catchment.

3. Relative sensitivity analysis depicted that CN2 gives highly sensitive parameter
followed by GW_DELAY and ALPHA_BNK over the catchment.

4. Generally, SW was more than 50 mm (i.e., above 12% SW) from October to March at
all sub catchment. Hence the famers over the Chittar catchment may prefer to raise
single crop.
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5. The SW in the upstream sub catchments SC2, SC3 and SC8 were low throughout the
simulation period. This may contribute to increase the frequency and intensity of
agricultural drought over the sub catchment.

6. The average monthly percolation of SC1, SC2, SC5 and SC8 were more than 10 mm.
The higher percolation increases natural groundwater recharge and leaching in soil.

7. The mountains forested environment in SC3 increases the lateral flow that subse-
quently reduces surface runoff, ET and SW. The high lateral flow enhance transport
soil and its nutrient in to water bodies.

The mapping WBCs is helped to avoid the scarcity of water resources and retain the
sustainability at catchment scale. It is one of the critical inputs for practitioner, policy
maker’s researchers and NGO to develop and install more efficient integrated water re-
sources management and command area development programs. Further, it is useful for
selecting and design the water harvesting technique such as canal irrigation, check dams,
dam and reservoir operation, percolation tanks and pits etc.
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