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Abstract: While the efficiency of incorporating phenology features into vegetation type classification,
in general, and coastal wetland vegetation classification, in particular, has been verified, it is difficult to
acquire high-spatial-resolution (HSR) images taken at appropriate times for vegetation identification
using phenology features because of the coastal climate and the HSR satellite imaging cycle. To
strengthen phenology feature differences, in this study, we constructed vegetation phenology metrics
according to vegetation NDVI time series curves fitted by samples collected from the Linhong Estuary
Wetland and Liezi Estuary Wetland based on Gao Fen (GF) series satellite images taken between
2018 and 2022. Next, we calculated the phenology metrics using GF series satellite imagery taken
over the most recent complete phenology cycle: 21 October 2020, 9 January 2021, 19 February 2021,
and 8 May 2021. Five vegetation type classifications in the Linhong Estuary Wetland were carried
out using single images of 21 October 2020 and 8 May 2021, along with their combination and the
further addition of phenology metrics. From our comparison and analysis, the following findings
emerged: Combining the images taken in 21 October 2020 and 8 May 2021 provided better vegetation
classification accuracy than any single image, and the overall accuracy was, respectively, increased
from 47% and 48% to 67%, while the corresponding kappa was increased from 33% and 34% to
58%; however, adding phenology metrics further improved the accuracy by decreasing the effect of
some confusion among different vegetation types, and the overall accuracy and kappa were further
improved to 75% and 69%, respectively. Though some problems remain to be further dealt with, this
exploration offers helpful insights into coastal wetland vegetation classification using phenology
based on HSR imagery.

Keywords: GF series satellites; phenology metrics; coastal wetland; vegetation classification; Linhong
estuary wetland

1. Introduction

Vegetation phenology involves the timing of seasonal developmental stages in plant
life cycles, including bud burst, canopy growth, flowering, and senescence [1,2]. Phenology
events are very useful for vegetation type classification, especially for coastal wetland
vegetation, because phenology features are very efficient for dealing with similar spectral
characteristics of the vegetation types [3]. To describe vegetation phenology events, high-
resolution temporal images are necessary. Therefore, satellite images exhibit advantages
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for this task, because of their characteristics of high temporal resolution, fine accessibility,
and multi-spectral bands.

Coarse-spatial-resolution images (≥30 m)—for example, the Moderate-Resolution
Imaging Spectroradiometer (MODIS) [4] or the Advanced Very High-Resolution Radiome-
ter (AVHRR) [5]—have contributed to obtaining image vegetation index (VI) time series
and constructing a phenology fitting curve through various fitting functions [6]. However,
by these coarse-spatial-resolution images, phenology parameters generally tend to describe
the aggregate temporal behavior of multiple plant species at a large scale, and individual
plants cannot be classified except in the case of a homogeneous landscape pattern [7–11].
Moderate-spatial-resolution remote sensing imagery (≤30 m), such as that provided by
Landsat or Sentinel-2 satellites, allows a phenology time series to be derived at the land-
scape scale [8,12,13]. In addition, the scope of phenology explored can be extended into
areas of mixed vegetation and forest stands [14].

However, the temporal resolution of these images is much lower than that found
in MODIS or AVHRR data and offers challenges to extracting phenology metrics due to
the influence of clouds and shadows. Several approaches have been developed to deal
with this challenge when retrieving phenology parameters, including (1) combining multi-
sensor or multiple-year images and (2) pixel-based compositing [8,15–20]. This image
processing increases the temporal resolution of cloud-free image data that can be used
for phenology description. Next, phenology features are retrieved and employed to carry
out vegetation type classification, primarily using one of the following two approaches:
spectral-temporal metrics (STM) and temporal time series [21–24]. The STM method entails
computing statistics related to the characteristics revealed in the cloud-free observations,
including the mean, minimum, maximum, standard deviation, and range for classification
performance. In contrast, the time series technique involves calculating phenology metrics,
such as start of growing season, peak of growing season, and end of growing season, to use
as classification features [3].

The efficiency of these approaches has been verified for coastal wetland vegetation
classification when using time series images from Landsat, Sentinel, or other similar
satellite platforms to map Spartina alterniflora Loisel (S. alterniflora) [19,25] or to classify
coastal wetland plant species [26]. Nevertheless, due to limitations imposed by a low revisit
cycle and high costs, the studies about phenology metrics based on HSR images are still
limited [27–30]. Phenology application studies for HSR images for vegetation classification
have focused on the combinations of images taken in different seasons, according to the
knowledge of evergreen and deciduous plants [31–36].

Now, for Lianyungang estuarine wetlands, vegetation type classification using the
HSR remote sensing technique has become essential for coastal wetland protection [37],
because this area plays an important role for birds inhabiting [38,39], while its vegetation
pattern is heterogeneous and fragmented due to invasive vegetation and human activ-
ity [40,41]. The advent of Chinese GaoFen (GF) Series Satellites that provide three kinds
of HSR images (GF-1, GF-2, and GF-6) has increased the accessibility of HSR images, pro-
viding a greater opportunity to explore the time series of different variations in vegetation
phenology [42–44]. With these images, although we cannot precisely acquire key phenology
times by images’ time series, it is practical to calculate phenology metrics using optimized
time windows decided by vegetation phenology phases for vegetation classification im-
provement. Aimed at this objective, this study was carried out as follows: (1) to decide
the optimized windows using GF images’ NDVI time series curves fitted by vegetation
samples collected from both Linhong Estuary Wetland and Liezi estuary wetland within
four years; (2) to construct phenology metrics according to the optimized windows and
vegetation phenology events; (3) to perform vegetation type classification using a random
forest (RF) method based on object-oriented technology, as well as to verify the efficiency
of phenology metrics for improving the accuracy of vegetation classification. Constructed
phenology metrics improve estuarine wetland vegetation type classification and provide
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an efficient method for fully utilizing GF images for estuarine wetland ecological system
protection and monitoring.

2. Materials and Methods
2.1. Study Area

Two coastal wetlands in Lianyungang, Jiangsu province, China, were selected as the
study area, including the Linhong Estuary Wetland and Liezi Estuary Wetland. The Lin-
hong Estuary Wetland (119◦11′37”–119◦16′33” E, 34◦45′37”–34◦49′15” N) is located in the
northern part of the Lianyungang coastal zone, while the Liezi Estuary Wetland (119◦35′24”–
119◦44′54” E, 34◦28′37”–34◦33′15” N) is located in the southern part of Lianyungang. The
distance between these two areas is about 49 km, and their coverage is about 102 km2

and 64 km2, respectively (Figure 1). Of the two areas, the Linhong Estuary Wetland was
the main study site in which most of the samples used in the time series construction
were surveyed and vegetation type classification was carried out. In contrast, for the Liezi
Estuary Wetland, only four scene images from a recent four-year period (2018–2021) were
acquired and used to provide samples for time series construction. All data used in this
study are shown in Table 1.
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Figure 1. The location of study sites on the coast of Lianyungang, Jiangsu Province, in northeast China.

The Lianyungang coastal zone, which is characterized by flat topography with a warm,
temperate, humid monsoon climate, is the key stopover and wintering site for shorebirds
on the East Asian-Australasian Flyway [38,45,46]. The study area features three main
vegetation species, including Spartina alterniflora Loisel (S. alterniflora), Phragmites australias
(Cav.) Trin. ex Steud. (P. australis), and Suaeda salsa (Linn.) Pall. (S. salsa) [25,26,47,48]. In
particular, S. alterniflora is an invasive vegetation species that is mainly located along two
sides of the estuary subject to cyclical tidal flooding. In contrast, P. australis and S. salsa are
dominant native vegetation species. Of the two, P. australis has a strong root system and
has spread out to dominate large areas along two sides of the Linhong Estuary wetland,
while S. salsa is a type of native pioneer plant that can grow in dry, high-salt conditions.
S. salsa is vulnerable to invasion by S. alterniflora on wet land and P. australis on dry land,
making its dispersion fragmented and changeable. In addition to these three species, other
vegetation types are Road green space (R. green space) and M. weeds. R. green space is
constructed according to human design and often comprises evergreen and deciduous
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vegetation. Mixed weeds (M. weeds) is usually found on temporarily vacant land formed
by infill-up engineering and is often mixed with P. australis or S. salsa.

Table 1. The data used in this study and their parameters.

Date and Sensor Study Area Senor Spectral Type Spectral Range (µm)

GF-1 1 October 2018 Linhong Estuary

GF-1

Pan image
(spatial resolution 2 m) 0.45–0.90 (Pan)GF-1 22 November 2018 Linhong Estuary

GF-1 7 May 2019 Linhong Estuary
Multispectral image

(Spatial resolution 8 m)

0.45–0.52 (Blue)
GF-1 20 October 2019 Linhong Estuary 0.52–0.59 (Green)
GF-1 30 August 2019 Liezi estuary 0.63–0.69 (Red)

GF-2 7 September 2019 Liezi estuary 0.77–0.89 (NIR)
GF-1 28 November 2019 Linhong Estuary

GF-2

Pan image
(spatial resolution 0.8 m) 0.45–0.90 (Pan)GF-2 1 June 2020 Linhong Estuary

GF-2 21 October 2020 Linhong Estuary
Multispectral image

(Spatial resolution 3.2 m)

0.45–0.52 (Blue)
GF-1 24 August 2020 Liezi estuary 0.52–0.59 (Green)

GF-6 8 May 2021 Linhong Estuary 0.63–0.69 (Red)
GF-6 13 November 2021 Linhong Estuary 0.77–0.89 (NIR)

GF-1 17 April 2021 Liezi estuary Pan image
(spatial resolution 2 m) 0.45–0.90 (Pan)GF-1 20 September 2020 Linhong Estuary

GF-6 9 January 2021 Linhong Estuary
GF-1 21 February 2021 Linhong Estuary

GF-6
Multispectral image

(Spatial resolution 8 m)

0.45–0.52 (Blue)
GF-1 24 June 2022 Linhong Estuary 0.52–0.59 (Green)

GF-6 19 February 2021 Linhong Estuary
0.63–0.69 (Red)GF-1 24 June 2021 Linhong Estuary

GF-6 23 February 2022 Linhong Estuary 0.77–0.89 (NIR)

2.2. Data and Pre-Processing

All data were acquired from the following website by Lianyungang Natural Resources
and Planning Bureau: http://www.sasclouds.com/chinese/normal/ (accessed on 26 April
2022). Three kinds of GF series satellite images (GF-1, GF-2, and GF-6) were selected to
construct the full phenology cycle time series for each vegetation type. The selected images,
taken during a four-year period (2018–2021), were carefully verified to ensure that all
images were cloud-free and no tidal fluctuation had affected the vegetation within the
study area. Table 1 displays detailed information about the four multi-spectral bands and
one panchromatic band contained in each image. However, the data used for vegetation
classification were imaged between 2020 and 2021 to reduce the influence of land-use
changes on the classification results. All images used in this study can be seen in Table 1.

The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model
was employed to perform atmospheric correction for all multi-spectral data. In addition, a
3D polynomial model was applied to conduct geometric correction for both panchromatic
and multi-spectral data. The control points used for geometric correction were selected on
a 0.3 m aerial ortho-rectification image. All the above procedures were carried out using
ENVI 5.6 processing image software.

Based on the processing described above, multi-spectral and pan images were fused via
the Gram–Schmidt algorithm, which uses multi-spectral images to simulate panchromatic
images that can effectively retain image spectral information and high-fidelity characteris-
tics [49]. In this study, the normalized difference vegetation index (NDVI) calculated by the
fused images using ENVI 5.6 software was employed to construct the phenology time series
and perform image classification. To verify the consistency of NDVI values calculated by
the fused image and multi-spectral image, we compared the vegetation sample mean and
deviation by random selection on four scene images; the results illustrated that the values
of the NDVI data calculated by fused and multi-spectral were very consistent and were
closely related.

http://www.sasclouds.com/chinese/normal/


Sustainability 2023, 15, 1373 5 of 19

2.3. Method
2.3.1. Vegetation Types and Sampling

The field surveying for samples used in this study were mainly carried out during
the period of 2018 to 2021, with the help of Lianyungang City Forestry Technology Guid-
ance Station. As the government department management, they have definite practical
requirements for coastal wetland vegetation classification when using the remote sensing
technique. For a long time, they have continued to carry out field surveying and are familiar
with vegetation composition and spatial distribution in the study area.

During the process of investigating, the position location of vegetation samples was
finished by the GNSS system. However, limited by the accessibility of coastal wetland,
some of the field investigating work could only be carried out along the roadside. In this
case, samples can be plotted by visual interpretation depending on the spatial structure
and spectral information of various objects that have been already fully expressed on HSR
images, such as the road intersection, turning point of water, and corner of buildings. To
enable each sample region to correspond to the marked type, the delineation was carried
out within larger vegetation patches.

The selected samples for time series construction should be identified one by one on
each image to ensure that it did not change from 2018 to 2021, especially for R. green space
and M. weeds, which maintains the status of changing induced by human disturbance.
There are 1300 samples in Linhong Estuary: 296 of S. alterniflora, 478 of P. australis, 162 of
S. salsa, 193 of R. green space, and 171 of M. weeds; 200 samples in Liezi Estuary, 65 of
S. alterniflora, 89 of P. australis, 5 of S. salsa, 31 of R. green space, and 10 of M. weeds. All the
samples that did not change in the two areas were used to construct the vegetation time
series, while for the image classification, 1300 samples in Linhong Estuary were divided into
two parts, one part for training and another for validation. To manifest the classification
result, the samples for training and validation in Linhong Estuary are shown in Figure 2.
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2.3.2. Vegetation Types and the Image Characteristics

After image feature analysis and field surveying, the vegetation types were classified
into five, including Spartina alterniflora (S. alterniflora), Phragmites australis (P. australis),
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Suaeda salsa (S. salsa), Road green space (R. green space), and Mixed weeds (M. weeds), as
shown in Table 2.

Table 2. Characteristics of each vegetation type on image of 24 June 2022 by 432 bands combination
and their photos.

Vegetation Type Image Characteristics of Image and
Spatial Location Photo Taken on-Site

S. alterniflora

 

8 
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2.3.3. Vegetation Phenology Metric Construction

(1) Phenology time series construction.
NDVI was chosen to construct phenology metrics and then used as coastal wetland

vegetation type classification features, because, among many image spectral characteristics,
NDVI was the most widely adopted to draw phenology time series curves [12,30,50]. The
NDVI values of all the samples collected at both Linhong Estuary and Liezi Estuary were
calculated based on data in Table 1 and used for samples-based time series construction.

For five vegetation types, although there are differences in some of the phenology
characteristics, for example, green-up ratio during spring season, NDVI maximum value
during summer season, and senescence ratio during autumn season, the phenology cycles
are identical and uniform with the four seasons. Therefore, we selected a two-term function
to fit time series curves of the five vegetation types, and the formula is shown in Table 3.

Table 3. The fitting curves of five vegetation types.

Vegetation Type The Formula of Fitting Curves R2 RMSE

S. alterniflora
y = 0.3599− 0.01× cos(0.017x)−
0.1937× sin(0.017x)− 0.0081×
cos(0.034x)− 1.4799

(
e−4)× sin(0.034x)

0.9098 0.0716

P. australis
y = 0.3544− 0.1928× cos(0.017x)−
0.0404× sin(0.017x) + 0.0154×
cos(0.034x) + 0.0015× sin(0.034x)

0.827 0.0818

S. salsa
y = 0.1297− 0.0652× cos(0.017x)−
0.0194× sin(0.017x) + 0.0161×
cos(0.034x)− 0.0122× sin(0.034x)

0.9523 0.0186

R. green space
y = 0.3311− 0.0969× cos(0.017x)−
0.059× sin(0.017x) + 0.0144×
cos(0.034x) + 0.0067× sin(0.034x)

0.934 0.0287

M. weeds
y = 0.2623− 0.1101× cos(0.017x)−
0.0482× sin(0.017x) + 0.0152×
cos(0.034x)− 0.005× sin(0.034x)

0.8609 0.0967

In the formula, the x-coordinate indicates day of year (DOY) and the y-coordinate indicates the value of NDVI. w
is the coefficient indicating the vegetation phenology cycle and is uniformly set to 0.017 (2π/365). The result is
shown in Figure 3, and formulas of five vegetation fitting curves are shown in Table 3.

(2) Optimum windows for phenology metrics construction.
The fitting curves suggested that there are some keys of phenology timing at which

different vegetation type NDVI values show a distinguished difference. However, it is
difficult to acquire image data that was taken at the appropriate timing and to provide
the largest separability for vegetation classification, as with the study of Sun [30] and
Zhang [23] who used critical phenology timing images to discriminate plant species salt
marshes. To adapt to the accessibility of HSR images, we constructed phenology metrics
by images taken during optimum windows corresponding to different phenology phases
instead of key timing points. According to the time series fitting curves, the optimum
window was obtained as:

(1) Base value time window (Base value W)—the minimum NDVI value region of the
fitting curves, which corresponds to winter season (late November to early April).

(2) Green-up time window (Green-up W)—the green-up period when P. australis starts
to grow rapidly, while S. alterniflora is the stage of the base value or just starts to green up,
corresponding to spring season (early April to late June).

(3) Maximum value time window (Maximum value W)—the maximum value of the
fitting curve, which often occurs between late summer and early autumn (late June to
early September).

(4) Senescence time window (Senescence W)—the senescence period when S. alterni-
flora is vigorous, while other vegetation types, especially P. australis, are in the process
of or are into full senescence, corresponding to the autumn season (early September to
late November).
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(3) The construction of phenology metrics.
(1) Difference of NDVI (DON):

DON = NDVIsenescenc − NDVIgreenup (1)

This metric is first constructed to enhance S. alterniflora and P. australis spectral dif-
ferences. Of the metric variables, NDVIsenescence is calculated by images acquired during
Senescence W and NDVIgreenup is calculated by images acquired during Green-up W.

(2) Ratio of green-up NDVI (ROGN):

ROGN =
NDVIgreenup

NDVIbasevalue
(2)

This metric is primarily constructed to enhance P. australis spectral information using the
green-up time window. Of the metric variables, NDVIgreenup is calculated by images acquired
at Green-up W; NDVIbasevalue is calculated by images acquired at later Base value W.

(3) Ratio of senescence NDVI (ROSN):

ROSN =
NDVIsenescence

NDVIbasevalue
(3)

This metric is constructed to further enhance S. alterniflora spectral information. Of
the metric variables, NDVIsenescence is calculated by images acquired at Senescence W, and
NDVIbasevalue is calculated by images acquired at early Base value W.

(4) Maximum of NDVI (MON)
This metric is calculated by images acquired in Maximum value W and it presents the

maximum NDVI value of one kind of vegetation in four seasons.
(5) Sum of green-up and senescence NDVI (SON)

SON = NDVIgreenup + NDVIsenescence (4)
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This metric is constructed to surrogate MON to further enhance S. alterniflora and
P. australis spectral information, because it is difficult to take images at Maximum value W
for cloudy weather. NDVIgreenup and NDVIsenescence are calculated by images acquired with
the above-described methods.

2.3.4. Image Segment for Classification

According to the characteristic of HSR images, in this study, all the classifications
were carried out based on object-oriented techniques [51]. Objects were obtained using
multiple-scale segmentation by which continuous pixels grow up from bottom pixels to
objects whose size and shape are determined by three parameters, including scale, shape,
and compactness [52]. All the processes, including segmentation and classification, were
performed by software Ecognition9.2.

2.3.5. Classification Algorithm

Two steps were employed to perform vegetation type classification: (1) At first, the
threshold value method (Vegetation = NDVI ≥ 0.10) was carried out to discriminate
vegetation with no vegetation based on object segmentation of 8 May 2022 using a scale of
100. (2) Then, vegetation areas were further classified by the Random Forest (RF) algorithm
at the smaller segmentation scale of 60. The RF algorithm is an ensemble learning technique
by which a classifier consisting of a collection of tree-structured classifiers and each tree
casts a unit vote for the most popular class [53]. The RF algorithm is based upon the basic
premise that a set of classifiers do perform better classifications than an individual classifier
does. A tree of a RF grows from different training data subsets created through bagging or
bootstrap aggregating [54].

2.3.6. Images Used for Phenology Metrics Calculation and Vegetation Type Classification

With the vegetation area segmentation result by the scale of 60, the RF algorithm
was carried out to perform all classifying processes for its ensemble learning ability. Four
images, corresponding to different optimized windows of one year, were used to construct
phenology metrics to improve classification accuracy. The images, image features, and
phenology metrics used for vegetation types classification are shown in Table 4. Compared
with the single image of Green-up W or Senescence W, their combination can provide
more features corresponding to certain vegetation types brought by different phenology
phases. For the addition of four phenology metrics, DON was used to enlarge the difference
between S. alterniflora or P. australis with other vegetation types. ROGN and ROSN were
calculated to indicate the ratio of green-up in spring and the ratio of senescence in autumn.
These metrics should be especially efficient for R. green space, which has a higher NDVI
value than other vegetation types in winter. SON was used to identify the phenology
characteristics of S. salsa for its lower NDVI value than any other vegetation types in the
vigorous phase.

Table 4. The images and their features used in vegetation type classification.

Date and Sensor Classification Features Classification Method

GF-6 8 May 2021 Spectral mean; shape index

Combination of threshold
value method and
Random Forest based on
object-oriented

GF-2 21 October 2020 Spectral mean; shape index
GF-6 8 May 2021 GF-2
21 October 2020 Spectral mean; shape index of GF-6

GF-6 8 May 2021 GF-2
21 October 2020
GF-6 19 February 2021
GF-6 9 January 2021

Spectral mean and shape index of GF-6
8 May 2021 and GF-2
21 October 2020 images;
phenology metrics: DON, ROGN,
ROSN, SON
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3. Results
3.1. Phenology Characteristics of Different Vegetation Types

As shown in Figure 3, the fitting curves of the NDVI time series reveal the tendency of
changes in phenology for each vegetation type. The predominant characteristics include:
(1) In Green-up W, P. australis starts to green-up rapidly and its NDVI value is higher
than those of any other vegetation types. (2) In Senescence W, S. alterniflora is in the
vigorous phenology phase and displays the highest NDVI value among all vegetation
types. (3) M. weeds demonstrates a similar phenological cycle but lower NDVI value to that
of P. australis. (4) In each phenological phase, S. salsa returns a lower NDVI value than the
other vegetation types. (5) In winter, R. green space shows a higher NDVI value than other
vegetation types.

Phenology metrics are constructed to identify the above characteristics. Illustrated as
Figure 4, these metrics values of five vegetation types fluctuate in a certain range when the
images used to calculate metrics are located in different positions of the optimized window.
However, some common traits in favor of improving the classification result are obvious,
including: (1) The DON value of S. alterniflora is higher than those of other vegetation types.
(2) Both ROGN and ROSN values of R. green space tend to be lower than those of other
vegetation types. (3) For five vegetation types, the values of MON and SON have similar
comparison characteristics, which means SON can be used to surrogate MON, and the
S. salsa value of both MON and SON is lowest among the five vegetation types.
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In this study, phenology metrics were calculated by four images, as shown as Table 4,
and the phenology metrics mean value of samples is shown in Figure 4. Obviously, for
these phenology metrics in this study, apart from the above common useful traits, some
other helpful features could be obtained for improving the classification result, including
the DON and ROGN value of P. australis, ROSN value of S. alterniflora, and SON value of
P. australis and S. alterniflora.

3.2. Vegetation Type Classification and Accuracy Evaluation

If only by a single image, the confusion phenomena of the classification result are
relatively serious. For example, in region (A) in Figure 5 of the classification result by
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the image taken in Green-up W, lots of pixels of S. alterniflora were classified as S. salsa,
while in Figure 6 of the classification result by the image taken in Senescence W, they were
classified as P. australis; for region (B), both in Figures 5 and 6, many pixels of the S. salsa
were classified as R. green space mistakenly. Among all vegetation types, R. green space
was most frequently classified mistakenly; for example, in regions (C), (D), and (E), all
pixels classified as R. green space were not identified correctly.
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Figure 5. Vegetation classification result by single image of 21 October 2020: (A) S. alterniflora
classified as S. salsa mistakenly; (B) S. salsa classified as R. green space mistakenly; (C) P. australis
classified as R. green space mistakenly; (D) S. alterniflora classified as R. green space mistakenly;
(E) P. australis classified as R. green space mistakenly.

The fitting curves of the NDVI time series revealed the tendency of changes in phenol-
ogy for each vegetation type. From the curves’ changing tendency, the differing phenology
characteristics of five vegetation types made it possible to extract the phenology metrics
that were used to improve the vegetation type classification.

From Table 5, it can be shown that, if only by single image, because of the confusion
phenomena, the classification accuracy was not high and the overall accuracy was 48% and
47%, respectively, and kappa was 34% and 33%, respectively. Among 5 vegetation types,
S. alterniflora and P. australis were classified by higher accuracy than other vegetation types.
By images of Green-up W, the classification accuracy of P. australis was highest, while by
images of Senescence W, S. alterniflora acquired the highest classification accuracy. S. salsa
and M. weeds were frequently confused with any other vegetation type, while every other
vegetation was often classified as R. green space mistakenly.

When classification was carried out based on the combination of images taken in
Green-up W and Senescence W, the classification accuracy was improved obviously, and
the overall accuracy and kappa were improved to 67% and 58%, respectively (Table 5).

As shown in Figure 7, when combining two images, the improvement was mainly
produced on regions where the vegetation presented an obvious domain pattern. For
example, regions of (A), (C), and (F) belonged to the domain pattern of S. alterniflora,
P. australis, and S. salsa, respectively; the omission error was decreased; then, their produce
accuracy improved to 66%, 71%, and 61%. However, in some areas with complex vegetation
growth conditions or structures, the confusion was also evident. For example, in region of
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(D), lots of pixels of P. australis were classified as M. weeds mistakenly, while in the entire
study area, many pixels of various other vegetation types were mistakenly classified as R.
green space.
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Figure 6. Vegetation classification result by single image of 8 May 2021: (A) S. alterniflora classified as
P. australis mistakenly; (B) S. salsa classified as R. green space mistakenly; (C) P. australis classified as
R. green space mistakenly; (D) S. alterniflora classified as R. green space mistakenly; (E) P. australis
classified as R. green space mistakenly.

Table 5. Classification accuracy by single image.

Images and Features
Single Image Combination of

Two Images
Combination of Two Images

+ Phenology Metrics8 May 2021 21 October 2020

PA UA PA UA PA UA PA UA

Vegetation
type

S. alterniflora 0.34 0.73 0.51 0.82 0.66 0.89 0.78 0.87
P. australis 0.66 0.72 0.56 0.61 0.73 0.90 0.73 0.94

S. salsa 0.26 0.30 0.24 0.40 0.61 0.63 0.84 0.81
R. green space 0.52 0.21 0.64 0.28 0.71 0.31 0.67 0.52

M. weeds 0.44 0.56 0.33 0.39 0.63 0.63 0.75 0.76

Overall accuracy 0.48 0.47 0.67 0.75
Kappa 0.34 0.33 0.58 0.69

When phenology metrics were added to the classification process, the most distin-
guished changes of the classification result was the improvement of R. green space’s
discrimination, as its commission error was obviously decreased in the entire study area
(Figure 8). Another evident improvement is shown as region (G), when only by the combi-
nation of two images taken on 8 May 2021 and 21 October 2020, the areas of P. australis and
S. salsa were mistakenly classified as M. weeds as they were in the original development
phase and presented low vegetation cover. When phenology metrics were combined with
spectral information, M. weeds was efficiently discriminated from P. australis and S. salsa.
In addition, in other areas, the classification result was also improved; for example, in
region (F) on Figure 8, the confusion of S. salsa with M. weeds was decreased. However, in
some areas, for example, region (H), the confusion between P. australis and R. green space
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was increased where P. australis grew around puddles and presented lower NDVI data
with characteristics similar to R. green space’s. Finally, by evaluation, the overall accuracy
and kappa were improved to 75% and 69%, respectively.
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Figure 8. Vegetation classification result by further addition of phenology metrics: (F) S. salsa
classified correctly; (G) P. australis and S. salsa classified correctly; (H) P. australis classified as R. green
space mistakenly.
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4. Discussion
4.1. The Reasons Leading to Classification Error among Vegetation Types

Among the five vegetation types of interest in the study area, S. alterniflora, P. australis,
and S. salsa were the three dominant species. The appearance of these species differed
in various characteristics; therefore, combining their differing characteristics with their
phenology differences in Green-up W or Senescence W might suggest that these species
would be highly separable and should be discriminated clearly. However, as shown by the
above classification results, if only by using a single image of Green-up W or Senescence
W, the overall accuracy was 48% and 47%, respectively. The overall classification accuracy
was obviously improved to 67% by combining images of the two optimization windows
for areas, where vegetation was flourishing and displayed an obvious dominance pattern.
In other areas, the confusion phenomena of the classification result were also obvious, for
example, the user accuracy of R. green space was only 31%.

From our analysis of the classification error in combining the land-use characteristics
in the study area, we arrived at two explanations for the observed decrease in classifica-
tion accuracy.

(1) Strong and continuing disturbance of human activities. Such disturbances caused
complex vegetation composition, such as the fragmented patches composed of P. australis
with S. salsa and M. weeds (Figure 9a), the expansion of different M. weeds (Figure 9b), or
the emergence of different vegetation succession phases (Figure 9c). It is worth mentioning
among all the causes of disturbance is the emergence of R. green space (Figure 9e,f),
featuring a complex composition and displaying similar spectral characteristics to those of
S. alterniflora in senescence W, yet resembling P. australis in Green-up W.

(2) Vegetation spectral instability induced by different microclimate conditions. For
example, S. salsa, during the growth process, changed in stem color and form according to
the environment (such as unused salt ponds, the sloping sides of ditches, or along the road
near fishponds), producing differences even in the same phenology timing (Figure 9g,h).

4.2. Efficiency of Phenology Metrics for above Disadvantages for Vegetation Type Classification

Adding four phenology metrics to the classification process directly improved the
vegetation classification results in comparison to the classification results acquired by the
direct combination of images of 8 May 2021 and 21 October 2020.

The most significant improvement acquired was to discriminate R. green space. From
Figure 8, the phenomenon of its misclassification in a large area shown in Figure 7 decreased;
as shown in Table 5, the user accuracy improved from 31% to 52%. The second prominent
improvement was about the M. weeds misclassification with P. australis or S. salsa, as
shown in Figure 8. In addition, there were also some improvements for other situation, for
example, between the S. alterniflora and M. weeds. With these improvements, most of the
produce and user accuracy were increased at different levels, and the overall accuracy and
kappa reached to 75% and 69% from 67% and 58%, when phenology metrics were added
to the combination of images of Green-up W and Senescence W. These improvements
displayed the efficiency of phenology metrics for dealing with the above disadvantages for
vegetation classification.

However, in some areas, such as region (H), the confusion between P. australis and
R. green space was increased, where P. australis grew around puddles and yielded lower
NDVI data values that showed characteristics similar to R. green space.

4.3. Significance of This Study for Estuarine Wetlands Vegetation Type Classification

Although HSR satellite images are advanced data for estuarine wetlands vegetation
type classification, because of its multi-spectral information and fine spatial detail, their
temporal resolution is not high enough to satisfy the need of phenology time series fitting
when used for vegetation type classification. This study was constructed to deal with
this conflict, with the advent of China GF series satellites. With these high spatial images,
although we cannot acquire high-temporal-resolution satellite images, it is practical to
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obtain a certain number of images taken in spring, autumn, and winter within one year,
and these times are located in three optimized windows that could be used to calculate
phenology metrics constructed in this study.
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In this study, we acquired four scene images taken in Base value W, Green-up W, and
Senescence W, respectively, to calculate phenology metrics to improve the vegetation type
classification result. The study results demonstrate that these metrics could obviously in-
crease the estuarine wetland vegetation type classification accuracy; therefore, this research
provides efficient approaches for combing spectral information with phenology features
to obtain satisfying estuarine vegetation type classification results for ecological system
management and protection.

Though the advantages of combining phenology metrics with spectral features is
evident, some limitations were also obvious. In the future, with the progress of remote
sensing technology, the accessibility of high-spatial-resolution images would be increased,
and these questions will be further studied by exploring the selection of images taken in
more appropriate times, determining more precisely optimized windows, and developing
more reasonable phenology metrics.

5. Conclusions

In this study, four phenology metrics were constructed according to phenology time
series fitting curves using samples selected from two areas, the Linhong Estuary Wetland
and Liezi Estuary Wetland, based on images taken during a five-year period (2018–2022).
After evaluating and analyzing the classification results, we drew the following conclusions:

(1) Differences in vegetation phenology characteristics provided a feasible approach for
phenology metrics construction. In this study, five vegetation types had obvious phenology
timing that produced four optimized windows, as follows: Base value W, Maximum value
W, Green-up W, and Senescence W. During each optimized window, the characteristics of
the five vegetation types corresponded to different phenology features, which allowed the
construction of various phenology metrics for discriminating between vegetation types,
including Difference of NDVI (DON), Ratio of green-up NDVI (ROGN), Ratio of senescence
NDVI (ROSN), and Sum of green-up and senescence NDVI (SON).

(2) The phenology metrics had an evident positive effect on the vegetation type classi-
fication results. Compared to classification using only a single image taken in Green-up W
or Senescence W, adding the metrics to the classification procedure obviously improved
the accuracy of the classification of the vegetation types. Combining the images provided
better vegetation classification accuracy than any single image. This improvement mainly
occurred in regions where each vegetation type was obviously dominant and in a flourish
growth state. Adding phenology metrics to the classification process could overcome some
confusing phenomena caused by changing growth conditions to some extent, especially in
the case of R. green space, and further improved the classification accuracy.

(3) This study’s results offer some benefits for the classification of coastal wetland
vegetation using GF series satellite imagery. However, limitations are also evident, and
many problems require further study. Recommended studies include the accumulation of
additional images and samples that precisely describe the vegetation phenology timing, as
well as images taken at more appropriate times to carry out classification tasks. Additional
investigation is also needed to develop more reasonable phenology metrics and more
advanced classification methods to achieve higher classification accuracy.
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