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Abstract: In recent years, the energy consumption of vehicles has gained widespread attention due to
the increasing importance of energy and environmental issues. Coupled with the explosive demand
for vaccines that has spawned the massive deployment of refrigerated trucks, energy savings and
efficiency improvement are the goals pursued by pharmaceutical logistics companies while getting
the vaccine distribution task done. In order to evaluate the fuel consumption of refrigerated trucks
during vaccine distribution, in this paper, we construct a mathematical model for the vehicle routing
problem with time windows (VRPTW) for vaccine distribution with the aim of minimizing the total
cost, including fossil fuel cost and penalty cost. Due to the NP-hardness and nonlinearity of the model,
a genetic algorithm with a large neighborhood search operator (GA-LNS) and TSP-split encoding
method is customized to address the large-scale problem. Numerical experiments show that the
algorithm can obtain a near-optimal solution in an acceptable computational time. In addition, the
proposed algorithm is implemented to evaluate a case of vaccine distribution in Haidian, Beijing,
China. Insights on the effects of seasonal temperature, vehicle speed, driver working hours, and
refrigeration efficiency are also presented.

Keywords: vehicle routing problem; low-carbon-based transport operation system; genetic algorithm;
large neighborhood search

1. Introduction

As a prevention method, vaccination is one of the most effective ways to prevent the
spread of an epidemic [1]. These vaccines are temperature sensitive due to the core of
the vaccine is its antigenic part (microorganism, or its toxin or enzyme). Considering the
health and life safety of the person receiving the vaccination, the vaccine needs to be stored,
transported, and distributed in a specific temperature range (the prescribed temperature is
2 to 8 ◦C for most vaccines in China). Compared to ordinary distribution operations, vaccine
distribution consumes more fuel to maintain the temperature conditions. On the one hand,
these extra fuel consumptions will generate more exhaust emissions, further increasing the
environmental burden. On the other hand, in addition to fierce competition, rising fuel costs
and labor costs further reduce the profit margins of pharmaceutical logistics companies.
To improve the efficiency of distribution operations and reduce fuel consumption to make
vaccine distribution profitable and environmental, pharmaceutical logistics companies plan
the distribution routes of refrigerated trucks in detail. How to complete vaccine distribution
with minimal fuel consumption while meeting customer requirements has become an
important issue for pharmaceutical logistics companies. For pharmaceutical logistics
companies, the composition of the fuel consumption of distribution tasks is complex.
In general, the fuel consumption will include refrigeration fuel consumption generated
from different operational steps and transportation fuel consumption generated from the
shipping process. Compared to ordinary trucks, refrigerated trucks delivering vaccines
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need to always keep the temperature inside the compartment at the specified temperature
range to ensure that the vaccine does not fail due to the high temperature wherever it is
located. That is, additional fuel is consumed to meet the temperature requirements while
in transit, waiting, and pre-cooling before dispatch. This forces decision-makers to consider
the associated fuel costs when developing routing plans. In this paper, we assume that all
power, including mechanical and electrical energy, to refrigerated trucks comes from the
truck engine consuming conventional fossil fuel. The purpose of our research is to generate
low-carbon, environment-friendly, and economical distribution routes under the conditions
of the existing conventional fleet configuration.

As mentioned previously, vaccines are fragile and unique cargo. We investigate the
vaccine distribution process, and the key steps are shown in Figure 1. Figure 1 shows
a refrigerated truck departing from a distribution center (DC), serving a customer, and
leaving. Stage 0 represents the pre-cooling procedure. Pre-cooling operations are widely
used in the cold chain transport industry and are aimed at lowering the temperature inside
the car before loading the cargo. According to the cooling performance of the vehicle,
the company’s standard operating procedure (SOP) stipulates that the pre-cooling time in
summer should not be less than 75 min. Note that the numerical value of 75 min applies
only to the vehicles investigated in this paper. Stage 1 is loading. Workers load the vaccine
into the compartment at this stage. Stage 2 (Stage 5) denotes shipping. Stage 3 indicates a
waiting process. Because each vaccination site has a time window, drivers need to wait if
they arrive early. Time windows are very common in the pharmaceutical industry. This is
because customers often accept shipments from more than one supplier, and it is difficult
for customers to receive service from multiple vehicles at the same time. Therefore, it is
necessary to schedule a fixed time window for each supplier. Stage 4 represents the serving
(unloading) procedure. In addition, Stage 5 is consistent with Stage 2.
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In this paper, we take into account fuel consumption for the model of VRPTW for
vaccine distribution. We attempt to plan vaccine distribution routes that consume less fuel
from a fleet management perspective. The fuel consumption is generated by cooling the
compartment and driving the vehicle and is eventually converted into fuel costs (refriger-
ation cost and transportation cost). However, complex and unmeasured external factors
make the associated fuel consumption difficult to measure. For example, different seasons
will result in different fuel consumption. Driver driving habits [2], road conditions [3], and
traffic environment will also affect fuel consumption. Therefore, this paper does not use a
certain measurement method or monitoring method to finely monitor fuel consumption but
uses a series of methods to approximate the fuel consumption. This approach can simplify
the objective function of the VRP model without deviating from our intention, making the
model easier to be solved. Studies related to fuel consumption measurement systems are
reviewed in Section 2. We estimate the fuel consumption of the vehicle per kilometer and
consider the pre-cooling provisions in the work specification to evaluate the pre-cooling
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cost of the vehicle; the other refrigeration costs are calculated based on historical on-board
temperature control data and the performance parameters of the refrigeration system.

In addition to fuel consumption, we consider the potential penalty costs in conjunction
with the actual business requirements. In reality, drivers often work long hours during the
delivery process, increasing the probability of accidents due to drowsy driving. According
to a survey by the AAA Foundation for Traffic Safety, one in six fatal crashes and one in
eight crashes resulting in hospitalization involve fatigued drivers [4]. Data from European
Commission’s Directorate-General for Mobility and Transport shows that for truck drivers,
the risk of accidents rises steeply after nine to ten hours of continuous driving. Moreover,
when a driver drives for more than four consecutive hours, his driving performance is
significantly affected [5]. The loss in case of an accident would be very significant for
high-value goods such as vaccines. Another reason that makes us consider penalty costs
is balancing the workload of each driver. A single-purpose reduction in fuel costs that
increases a driver’s workload or creates an imbalance in the driver’s workload is irrational
and detrimental to the company’s growth. Note that our penalty costs are made up of just
two factors: the damage caused by a potential accident and the driver’s overtime costs.
The penalty cost does not include the driver’s penalty ticket because it is the result of an
avoidable human error.

The fuel cost, together with the potential penalty cost, constitutes the total cost,
i.e., the objective function of the optimization problem. There is an implicit and soft
limit on the working time of each driver. In previous studies, the distance constraint
vehicle routing problem (DCVRP) has often been considered. We do not accept distance
limits because the driver’s waiting process due to early arrival and the serving time is also
part of the working time. However, during waiting and serving customers, the vehicle is
not moving. Therefore, it is more accurate to use the working time limit. All the above
real-world data comes from a pharmaceutical logistics company with which we form a
partnership. The case study part of this paper also comes from a delivery mission of this
company in Haidian District, Beijing.

Since VRPTW is an NP-hard problem, the exact method can only be solved in an
acceptable computational time for small to medium-scale problems. Therefore, many
heuristic and meta-heuristic methods have been proposed to solve real-world size issues.
Our model is an extension of VRPTW and is NP-hard also. The higher complexity of the
problem and nonlinear objective function leads to the exact methods insufficient to solve
large-scale problems in a short time. Therefore, we developed the GA-LNS method to solve
the problem. Also, we perform numerical experiments with realistic data in Beijing to
investigate the quality of the route, the composition of the costs, and the effect of different
parameters on the results.

The paper is organized as follows: Section 2 reviews the relative VRPTW research and
the solution methods. Section 3 constructs a mathematical model of the problem. Section 4
designs a GA-LNS method. In addition, Section 5 conducts experiments to show and
discuss the results. Finally, Section 6 concludes the paper.

2. Literature Review

As mentioned above, the VRP is a classical OR problem whose related research started
in the 1960s [6]. In addition, the VRPTW is an important branch of the VRP [7]. The
problem can also be formulated as a linear integer problem with many binary variables [8],
which costs exact algorithms a long time to find an optimal solution for a large-scale
problem. Thus, heuristics methods are popular in solving VRPTW. In recent years, with
the environmental degradation and the gradual increase in the cost of fossil fuels, more
and more studies have started to consider fuel consumption in the VRP. A review of the
literature on these topics is presented below.

As global environmental awareness has increased in recent years, energy conservation
has become an important method for the logistics industry to reduce transportation costs and
carbon emissions. Researchers have categorized this issue of environmental considerations
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in VRPs as Green VRP (GVRP). Ghorbani et al. investigate the issue of environmentally
friendly VRP [9]. Asghari and Al-e-hashem provide an overview of the recent progress in
the research of GVRP [10]. In the study of VRP, in which vehicles are driven by conventional
fossil fuels, fuel consumption is a very important factor [11]. Bektaş et al. consider more
factors for the objective function of VRP [12], including routes, greenhouse gas emissions,
energy consumption, etc. In GVRP, energy consumption is usually assumed as a function of
travel distance or travel time [13]. However, the reality is complex, and factors such as vehicle
speed [14], road conditions [3,15,16], and driving habits [2] affect the fuel consumption of the
vehicle. Xiao et al. developed a pollution routing model considering driving speeds, travel
times, arrival/departure/waiting times, and vehicle loads [17].

This paper investigates the energy consumption of conventional fuel-powered trucks,
and we also pay attention to the studies of the energy consumption of electric vehicles.
Li et al. study the VRP problem for electric vehicles based on battery swapping [18].
Seyfi et al. consider different driving modes in route planning for hybrid electric vehicles
with electric engines and internal combustion engines [19]. Noting that our problem is
related to refrigerated trucks, there are studies on a VRP of the refrigerated truck as follows.
Ceschia et al. extend the VRP for refrigerated trucks by considering the effect of the time
factor on the objective function in the model [20]. Chen et al. explore the VRP for fresh food
with an objective function that considers fixed cost, fuel cost, and penalty cost [21]. They
develop a TS algorithm to solve the problem at a real-world scale. Meneghetti and Ceschia
construct a mathematical model for cold chain distribution [22]. Their study considers the
temperature variation and the gas tightness of the compartment. Habibur Rahman et al.
build a model for fuel consumption in the cold chain with the goal of reducing carbon
emissions [23]. Zhang et al. explore fuel consumption and carbon emissions in VRP,
assuming that fuel consumption is related to the loading of the vehicle on the route [24].
They customize a tabu search algorithm to solve this problem. Li et al. minimize the total
cost (including refrigerating cost, fixed cost, and transportation cost) of cold-chain drug
distribution in a certain region, establish a DCVRP optimization model, and develop a tabu
search algorithm to solve the model [25].

In addition, issues concerning fuel consumption have received much attention. Zhou et al.
reviewed related fuel consumption models [26]. Peng and Ma establish a new model to
evaluate the fuel consumption on the highway [27]. Another part of the research focuses on
the prediction of oil consumption using new techniques, such as artificial neural networks
(ANN) [28], backpropagation (BP) neural networks [29], and the support vector machine
(SVM) [30]. Anyway, the use of Onboard Diagnoses (OBD) as a monitoring tool is one of
the important methods for studying fuel consumption [30,31]. The fuel consumption of
the vehicle is also related to the type of vehicle. Yu et al. investigate the fuel consumption
of heavy-duty commercial vehicles [32]. In comparison, Zheng et al. studied the fuel
consumption of light-duty passenger vehicles [33].

VRPTW is one of the best-known and most attractive variants of classical VRP research.
Every year hundreds of works of scientific literature on VRP variants or branches are pub-
lished, which is mostly related to solution algorithms [34,35]. Zhang et al. investigate
and review the VRPs and the solving methods [36]. Currently, the mainstream methods
for solving VRPTW problems are mainly classified into exact and heuristic methods. Ma-
chine learning is also considered a promising research topic for solving VRP problems [37].
Baldacci et al. provide a review of exact algorithms for solving VRPTW [38]. Gendreau
and Tarantilis [39] and Awd and Elshaer [34] review and summarize metaheuristic al-
gorithms for solving VRPTW. The main well-performing metaheuristic algorithms for
solving VRPTW include GA [40,41], LNS [42], simulated annealing (SA) [43], memetic
algorithm (MA) [44], tabu search (TS) [45], ant colony optimization (ACO) [46], particle
swarm optimization (PSO) [47], etc.

In our literature review, there are few VRP models for fuel consumption based on the
vaccine distribution process. In Section 3, a VRPTW model for vaccine distribution was
constructed to evaluate fuel consumption during vaccine distribution.
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3. Mathematical Model

In this section, we will construct a nonlinear integer programming model for VRPTW.
Before constructing the model, we define some notations based on graph theory. Note
that the base VRPTW model is given by Cordeau et al. [48], and we expand on it. The
model of VRPTW for vaccine distribution is on a complete graph G = (V, A), where
V = {0, 1, . . . , n, n + 1} is the vertex set and A = {(i, j)|i ∈ V, j ∈ V} is the arc set. Node
index 0 and n + 1 denote the departure point and return point of the DC separately.
Subset N = {1, . . . , n} ⊆ V represents the customer set. A time window [ei, li] is associated
with a vertex i ∈ V, where ei is the lower bound of the time that allowed to serve i
(i.e., the earliest time) while li is the upper bound (i.e., the latest time). Meanwhile, a
demand di and a service time si are associated with the vertex i ∈ V. Each arc (i, j) ∈ A has

a corresponding and a travel time tij =
Dij
v , where Dij is the distance between node i and

node j and v is the average speed. The truck set is denoted by K, where a homogeneous
truck k ∈ K has the maximum capacity C. In order to facilitate modeling, all trucks must
depart from DC (index 0) and return DC (index n + 1). To indicate the order of visiting
customers, ∆+(i) = N\{i, n + 1}, ∀i ∈ V denote the vertexes can be visited before i, while
∆−(i) = N\{i, 0}, ∀i ∈ V denote the vertexes can be visited after i.

In addition, the time window of the DC means that the working hours of the DC,
which is denoted by [e0, l0] = [en+1, ln+1] = [E, L], where E and L are the lower and upper
bound of the time in this problem, respectively. Particularly, the travel time between the
departure point and return point without visiting any other customer is 0 (i.e., t0,n+1 = 0),
and the demands of the DC equal 0 (i.e., d0 = dn+1 = 0). Binary decision variables xijk,
equal 1 if truck k ∈ K visit vertex j ∈ V from vertex i ∈ V, and 0 otherwise. In addition,
continuous variables wik denote the arrival time of the truck k ∈ K to i ∈ V. For the
convenience of the reader, all notations and interpretations are in Table 1.

As mentioned earlier, the objective function of the VRPTW for vaccine distribution is
to minimize the total cost, including fuel cost and penalty cost. Fuel costs can be further
subdivided. The costs incurred by using fuel to drive a vehicle are defined as transportation
costs, and the costs incurred by using fuel to reduce the temperature of the compartment
are defined as refrigeration costs. In order to calculate the transportation cost and the
refrigeration cost, we evaluate the fuel consumption by referring to the thermodynamic
theory and historical data. The consumption is then multiplied by the cost per unit of fuel
and the carbon tax. The objective function is derived and formulated as follows:

We consider transportation costs as a linear function of distance. There are several
reasons for this consideration: First, we can estimate the transportation cost per kilometer
by projecting the fuel consumed per kilometer of truck travel based on drivers’ empirical
data. Second, for small trucks in urban distribution, the fuel consumption is not very much
related to the loading capacity, i.e., empty and full loads do not have a particularly large
impact on the fuel consumption per kilometer. Next, in practice, people often use fuel
consumption per kilometer to measure the fuel consumption level of trucks. Finally, most
VRP models idealize transportation costs as a linear function of distance, and we adopt this
assumption. Defining the fuel consumption per kilometer consumed by the truck driving
as µ, the transportation cost as Ct, the price per unit of fuel as α. The expression for the
transportation cost Ct is shown in Equation (1).

Ct = αµ ∑
k∈K

∑
(i,j)∈A

Dijxijk (1)
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Table 1. Notation list.

Parameter Description

VRPTW Parameter
G General graph
V Set of vertexes
A Set of arcs
N Set of customers
K Set of Trucks
ei Earliest time for node i
li Latest time for node i
E Earliest time for DC
L Latest time for DC
si Service time for node i
di Demands for node i
v Average speed
tij Travel time for arc (i, j)
Dij Distance for arc (i, j)
C Capacity for truck

∆+(i) Vertexes can be visited before i
∆−(i) Vertexes can be visited after i

Case Parameter
Ct Transportation cost
Cr1 Pre-cooling cost
Cr2 Waiting and transportation refrigeration cost
Cr3 Service refrigeration cost
Cp Penalty cost

Ctotal Total cost
µ Fuel consumption per kilometer consumed by the truck
α Price per unit of fuel
P Rated power input of the refrigeration system
Q Calorific value per unit of fuel
η Efficiency of converting fuel energy into heat energy

Tcool Duration of pre-cooling process
Tlim Standard working hour

κ Ratio of the cooling time to the waiting and traveling time
π Penalty cost per hour

Decision Variable
xijk xijk = 1 denotes truck k visit j after i, and xijk = 0 otherwise.
wik Arrival time of truck k ∈ K to i ∈ V

The refrigeration costs comprise pre-cooling costs, waiting and transportation refrig-
eration costs, and service refrigeration costs. Before the refrigerated truck is loaded, the
temperature inside the compartment needs to be lowered to the specified temperature for
further operation. Currently, the refrigeration system runs at maximum power to make
the temperature inside the compartment drop rapidly. The truck’s refrigeration system is
powered by the truck’s engine, which converts internal energy into mechanical energy by
burning fuel and then drives the generator to work. The efficiency of converting fuel energy
in the engine into heat energy in the refrigeration system is η. If the temperature inside the
car meets the requirements, the pre-cooling process is finished. According to the SOP, the
duration of pre-cooling is clearly defined, although it varies with the season. Define the
duration of the pre-cooling process is Tcool , rated power input of the refrigeration system
is P, and the calorific value per unit of fuel is Q. The pre-cooling cost of the truck Cr1 is
calculated in Equation (2).

Cr1 =
αPTcool

Qη ∑
k∈K

∑
j∈N

x0jk (2)

Waiting and transportation refrigeration costs are due to poor truck containment and
insulation, which in turn generates cooling air loss. In order to prevent the temperature
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inside the car from rising, the truck needs to maintain the temperature while waiting and
traveling. In practice, truck temperatures are often human-controlled, and it is very difficult
to accurately measure the refrigeration costs of transport and waiting due to the complexity
of the situation. However, we can estimate from the temperature control data and historical
data of the truck. The temperature change of the inside compartment shows a certain
regular trend. The starting temperature of the truck is maintained between the upper
and lower temperature bounds. Then, in order to save energy, the driver will turn off the
refrigeration system causing the truck temperature to rise. When the temperature inside
the truck approaches the upper temperature bound, the refrigeration system is turned on
again. When the temperature drops to the lower temperature bound, the system is turned
off again. Thus, the temperature curve of the truck shows an up-and-down trend (jagged).
Define κ as the ratio of the cooling time to the waiting and traveling time. Note that the
denominator of this ratio is not the total operating hours. This is because the cooling
operation in loading and unloading is different from the cooling operation in traveling or
waiting. This will be described later. Equation (3) calculates the waiting and transportation
refrigeration cost Cr2.

Cr2 =
αPκ

Qη

∑
k∈K

∑
(i,j)∈A

tijxijk + ∑
j∈V

max

{
∑
k∈K

∑
i∈V

xijk
(
ej − wik − si − tij

)
, 0

} (3)

Service refrigeration costs represent the cost of the truck to compensate for the increase
in compartment temperature caused by opening the compartment door while serving the
customer. Each customer has cold storage to store vaccines. In order to ensure that the
vaccines are in a constant temperature environment throughout, the compartment is docked
with the customer’s storage door and has an airtight device to minimize cold air leakage.
Usually, when serving a customer, the compartment’s refrigeration system is in operation
to prevent the temperature from exceeding the upper limit. Since the compartment is
connected to the depot, the excess cold air that the refrigeration system creates will flow
into the storage and will not cause the interior temperature of the compartment to become
too low. Therefore, the service refrigeration cost Cr3 is shown in Equation (4).

Cr3 =
αP
Qη ∑

i∈V
si (4)

Penalty costs are incurred when drivers work more than the maximum working hours.
Considering the high value of the goods delivered, the pharmaceutical logistics company
does not want a driver to work too many hours, which can lead to fatigue and threaten the
safety of the vaccines. In addition, a penalty cost is set in order to equalize the working
hours of each driver in the optimization process. This cost can be considered as an overtime
payment for drivers or as a loss due to potential accident risk. The penalty cost per hour over
the standard working hour limit Tlim is π. The penalty cost Cp is calculated in Equation (5).

Cp = π ∑
k∈K

max
{

wn+1,k − w0k − Tlim, 0
}

(5)

In summary, the total cost of VRPTW for vaccine distribution C is calculated
in Equation (6).

Ctotal = Ct + Cr1 + Cr2 + Cr3 + Cp (6)

With objective function, the model of VRPTW for vaccine distribution can be formu-
lated as follows:

minCtotal (7)

∑
k∈K

∑
j∈∆+(i)

xijk = 1, ∀i ∈ N (8)
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∑
j∈∆+(0)

x0jk = 1, ∀k ∈ K (9)

∑
i∈∆−(n+1)

xi,n+1,k = 1, ∀k ∈ K (10)

∑
i∈∆−(j)

xijk = ∑
i∈∆+(j)

xjik, ∀k ∈ K, j ∈ N (11)

xijk

(
wik + si + tij − wjk

)
≤ 0, ∀k ∈ K, (i, j) ∈ A (12)

ei ∑
j∈∆+(i)

xijk ≤ wik ≤ li ∑
j∈∆+(i)

xijk, ∀k ∈ K, i ∈ N (13)

E ≤ wik ≤ L, ∀k ∈ K, i ∈ {0, n + 1} (14)

∑
i∈N

di ∑
i∈∆+(j)

xijk ≤ C, ∀k ∈ K (15)

Dij = vtij, ∀(i, j) ∈ A (16)

xijk ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K (17)

wik > 0, ∀i ∈ V, k ∈ K (18)

The objective function (7) is to minimize the total cost. Constraints (8) stipulate that
each customer can only be served by one truck. Constraints (9) and (10) require all trucks to
depart from and return to DC. Constraints (11) characterize the inflow and outflow of nodes
are equal. Constraints (12)–(14) ensure that time requirements are met. Constraints (15) is
the capacity limitation. Constraints (16) are the relationship between shipping time and
distance. Constraints (17) and (18) are the decision variables.

4. GA-LNS Method

This section describes the GA-LNS algorithm for addressing VRPTW for vaccine dis-
tribution, where LNS is embedded as an operator in the framework of GA to improve the
quality of the solution. GA is a population-based evolutionary algorithm that draws on the
ideas of natural selection and genetic recombination. As in nature, in a standard GA, the basic
unit of evolution is the population containing a set of individuals. Each individual in the
population represents a particular solution to the problem to be solved, i.e., the population
is a set of solutions. The process of converting a particular solution to the problem into
some representation of an individual by means of certain rules is called encoding. In turn,
the process of converting an individual into a solution to the problem is called decoding.
Since the quality of the solution represented by each individual in the population differs, to
represent this difference, fitness value is used to measure the viability of an individual and
the quality of the corresponding solution. The higher the fitness of an individual, the better
the quality of the solution it represents, and the more likely it is to pass on its properties to
the next generation during the evolutionary process. An evolutionary cycle of a population
is called a generation and contains selection, crossover, and mutation operations. These
operations are computed on the population, mimicking the natural reproduction process,
where two individuals are selected according to fitness crossover and produce new individu-
als. In addition, similar to nature, individuals also mutate with a certain probability. These
mutations may result in individuals with higher fitness or may enrich the diversity of the
population. In fact, GA is also a stochastic optimization algorithm, and the above-mentioned
crossover and mutation operations are essentially discovering possible better solutions in the
solution space. However, the ability of GA’s search is limited. In order to enhance the search
capability and improve the solution quality, the LNS operator is embedded in the GA to form
a GA-LNS to further discover possible better solutions. In addition, for the VRPTW problem,
we introduce the TSP-split encoding approach is introduced into GA-LNS. Prins et al. review
the studies related to this encoding approach [49].
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The principle of GA was proposed by Holland [50]. With continuous improvements in
recent decades, GA has achieved rich results in solving the VRPTW and is the most popular
evolutionary algorithm for solving VRPTW [34]. For more details on GA and advanced
GA, see Whitley [51]. The pseudo-code of our GA-LNS algorithm is shown in Figure 2.
Details of each operator are presented in subsequent subsections.
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4.1. Encoding Method: TSP-Split

The TSP-split encoding method is an Order-first split-second method. The core princi-
ple of this encoding method was proposed by Beasley [52]. First, similar to solving the TSP
problem, the coding process relaxes the vehicle capacity constraint and the customer time
window constraint to construct all customers into one giant tour, which is composed of all
customer numbers without any route separators. In general, it is usually impossible to use
only one truck to serve all customers on tour. Therefore, it is necessary to cut the giant tour
into several segments, each served by a truck. Second, the cutting problem is equated to
the shortest path problem by making an auxiliary diagram, and the split algorithm cuts
the tour into the vehicle route with the minimum total cost in polynomial time. With a
sufficient number of vehicles, the method always keeps the coding length constant and
guarantees that all the paths obtained by the split algorithm are feasible. We encode all the
vaccination sites into a giant tour without separators and then use a splitting algorithm to
split this large loop into vehicle routes. The TSP-split method is described as follows.

Given a giant tour S consisting of a node-set V. The giant tour S can be optimally split
into S(m) sections (where integer m ≥ 1), and each segment can be converted into a vehicle
route by adding DC before and after the segment. Define the fixed cost of the vehicle as
F = αPTcool

Qη [the fixed cost is the pre-cooling cost, i.e., the coefficient in Equation (2)] and the

generalized transportation cost Cg
t (i, i + 1, . . . , j) as equal to the cost associated with the

transportation process (generalized transportation cost is the sum of transportation cost,
waiting and transportation refrigeration cost, service refrigeration cost, and penalty cost)
for the route 〈0, i, i + 1, . . . , j, n + 1〉.

Define the auxiliary graph GH = (V′, Y, W), where V′ = V\{n + 1} is the set of
points in GH , Y is the set of arcs containing arcs (i, j), ∀ i ∈ V, ∀ j ∈ V, i < j, and
W =

{
wij
∣∣(i, j) ∈ Y

}
is the set of weights of arcs. The weight of the arc (i, j) ∈ Y, wij is

calculated by the following Equation (19):

wi,j = F + Cg
t (i + 1, . . . , j) (19)
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Under the time window and capacity constraints, the weight for an arc between
node i and node j in GH equals to the total cost calculated in Equation (19) for the route
〈0, i + 1, . . . , j, n + 1〉. If route 〈0, i + 1, . . . , j, n + 1〉 does not satisfy the constraints, then
delete the corresponding arc or let the equal weight infinity. Then, use the shortest path
algorithm (Dijkstra’s algorithm or Bellman-Ford algorithm) to find the shortest path from
node 0 to point n in the graph GH . The distance for the shortest path problem for node 0
and node n in GH is the objective function value under this big tour. In addition, the arcs
included in the shortest path can be resolved backward into vehicle routes.

To represent the above encoding method in a concrete way, we introduce the big tour
in the upper part of Figure 3. Similar examples can be found in [49,53]. In this example,
to simplify the illustration, let Cg

t (i, i + 1, . . . , j) equals to the total distance for the route
〈0, i, i + 1, . . . , j, n + 1〉. In addition, set si = 0, ∀i ∈ V, F = 1000, and relax the capacity
constraints. In the upper part of Figure 3, the giant tour consisting of DC indexed by 0 or 6
and all customers indexed by 1 to 5 is indicated by the bolded line. The number next to the
arc is the distance between the two nodes. In addition, the number in square brackets is the
time window corresponding to the customer.
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Figure 3. An example of the TSP-split encoding method.

Auxiliary graph GH is in the middle part of Figure 3. The numbers next to the arcs
indicate the weights. According to Equation (18), the weight of arc (1, 2), w12 equals the
total cost of the route 〈0, 2, 6〉, and w24 equals the total cost of the route 〈0, 3, 4, 6〉, similarly.
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However, there is no arc (0, 3) in GH , since the time to reach customer 3 after customers 1
and 2 in the giant tour exceeds the latest time for customer 3.

The shortest path from node 0 to node 5 in GH (the bolded arcs in the middle part
of Figure 3) can be obtained using the shortest path algorithm, i.e., the minimum cost under
this giant tour is 3165, meaning that the giant tour can be split into three routes with a
minimum distance of 3165. All arcs in the shortest paths can be resolved backward into
vehicle routes, i.e., three vehicles are used, the first vehicle serves customer 1 and 2, the
second serves 3 and 4, and the third serves customer 5. The vehicle routes are shown in the
lower part of Figure 3.

4.2. Initial Solution

In order to generate an initial solution for this problem, we adopted the Solomon
Insertion I1 heuristic, the principle of which was proposed by Solomon [54]. The insertion
heuristic I1 generates feasible vehicle routes by inserting customers one by one in the
initial route under the time window and capacity constraints. We use the Solomon Inser-
tion I1 heuristic to generate the initial solution, focusing on its feasibility. Define a route
r = 〈0, v1, . . . , vm, n + 1〉, containing m (0 ≤ m ≤ |N|) customers. The pseudocode of
insertion I1 heuristic is as shown in Figure 4.

1 
 

 
  Figure 4. Pseudocode of Solomon insertion I1 heuristic.

Let the solution to the problem consist of the set of routes of the vehicle as
R = {rk|k ∈ K}, which contains k vehicle routes, each of which is rk. Solomon Inser-
tion I1 heuristic opens a new and empty route rk = 〈0, n + 1〉 and inserts the unrouted
customers into a feasible position in the route according to two criteria. The first criteria
c1 determines the best insert position for each customer, and the second criterion c2 deter-
mines which customer will be inserted. After inserting unrouted customer v in the route
rk =

〈
0, v1, . . . , vp−1, vp, . . . , vm, n + 1

〉
at p, update rk =

〈
0, v1, . . . , vp−1, v, vp, . . . , vm, n + 1

〉
.

The best inserting position p∗ for customer v is evaluated as follows:

p∗ = arg min
p=1,...,m

c1
(
vp, v, vp+1

)
(20)

c1(i, v, j) = ϕc11(i, v, j) + φc12(i, v, j) (21)

c11(i, v, j) = Div + Dvj − ρDij (22)



Sustainability 2023, 15, 1252 12 of 24

c12(i, v, j) = wnew
jk − wold

jk (23)

ϕ + φ = 1, ϕ ≥ 0, φ ≥ 0, ρ ≥ 0 (24)

Equation (20) is the optimal insertion position of unrouted customer v in the route
and the criterion c1 of Equation (21) denotes the weighted sum of the increased distance
(Equation (22)) and the increased time (Equation (23)). Parameter wnew

jk is the new ar-

rival time for truck k visiting j after the insertion, while the wold
jk is old before insertion.

Notations ϕ, φ, and ρ are the parameters for calculating the increment after insertion.
Then, according to the c2 criterion in Equation (26), the most suitable unrouted cus-

tomer v∗ [Equation (25)] maximize c2 criterion will be inserted in the feasible position of the
route. The formula of the c2 criterion is as follows, in which θ is the parameter weighting
the distance between DC and customer v.

v∗ = arg max
v∈Unrouted∧Feasible insert

c2

(
vp∗(v), v, vp∗(v)+1

)
(25)

c2(i, v, j) = θD0v − c1(i, v, j) (26)

θ ≥ 0 (27)

Repeat the above steps to keep inserting unrouted customers into the route. When no
feasible insertion position exists for the route, close the route and add it to R. If there are
still unrouted customers, open a new route and repeat the insertion process until there are
no unrouted customers.

Obviously, with the default values of the parameters ϕ, φ, ρ, and θ, only one initial
solution can be generated by this method. To enhance the diversity of the population,
we fix the parameters ρ and θ, and the parameters ϕ and φ vary with the order of the
current individual in the population. Define the constant population size as Z and the
index of the current individual in the population as z. Then, the value of ϕ for individual
z is equal to z/Z, and the value of φ is equal to 1− z/Z. Note that the Solomon insertion I1
heuristic only generates feasible solutions to this model without considering the quality or
the objective value. The process of finding better solutions will be conducted by the GA
operators shown below.

4.3. GA Operators
4.3.1. Evaluation of Fitness

For the individuals in the population, after decoding, they can be converted into the
values of the decision variables in the model, which in turn gives the objective function
values in Equation (7). Since the problem to be solved is a minimization problem, the
smaller the value of the objective function, the higher the fitness of the corresponding
individual in the population. We used the relative fitness approach, which is related only to
the objective function value of the individuals in the current generation. The fitness value
of each individual in the population is equal to the minimum objective function value in
the whole population divided by the objective function value of each individual, i.e., the
relative fitness is between 0 and 1.

4.3.2. Selection Operator

Roulette wheel selection is one of the most used selection methods in which the
probability of an individual being selected is proportional to the fitness value of the
individual. In general wheel roulette selection, there is only one pointer, which may lead to
multiple selections of the same individual with higher fitness, making the population less
diverse. To solve such a problem, we use a stochastic universal sampling (SUS) method [55].
This method improves the roulette wheel selection by adding equally spaced pointers. The
number of pointers is determined by a parameter Ps called generation gap between 0 and 1,
i.e., the number of selected individuals that have the opportunity to pass their attributes to
their offspring is equal to [ZPs], where [·] is a rounding operator.



Sustainability 2023, 15, 1252 13 of 24

4.3.3. Crossover and Mutation

The GA operator includes crossover and mutation, where chromosomes are crossed
over and mutated with probabilities of PC and PM, respectively. There are many crossover
operation methods in GA, and Order Crossover (OX) is often applied to VRPTWs because
the OX operation can maintain the continuity of gene fragments even when chromosomes
are crossed. The process of OX operation is as follows:

Step 1. Two individuals are randomly selected as parents from the selected population.
They intercept a segment of genes at the same position, as shown in the yellow
parts of Parent 1 and Parent 2 in the upper of Figure 5.

Step 2. The proto-offspring1 inherits the yellow gene from Parent 1, and the rest of the
genes (the white) are provided by Parent 2. We identify the position of the yellow
gene in Parent 2, fill the rest of the genes in order in the proto-offspring 1, and avoid
the formation of the above position in Offspring 1.

Step 3. By the same principle in STEP 2, Offspring 2 is formed.

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 27 
 

Step 1. Two individuals are randomly selected as parents from the selected population. 

They intercept a segment of genes at the same position, as shown in the yellow 

parts of Parent 1 and Parent 2 in the upper of Figure 5. 

Step 2. The proto-offspring1 inherits the yellow gene from Parent 1, and the rest of the 

genes (the white) are provided by Parent 2. We identify the position of the yellow 

gene in Parent 2, fill the rest of the genes in order in the proto-offspring 1, and 

avoid the formation of the above position in Offspring 1. 

Step 3. By the same principle in STEP 2, Offspring 2 is formed. 

 

Figure 5. OX and mutation operators. The yellow genes are selected for OX, and the orange and 

green genes are selected for mutation. 

The mutation operator in the GA for the VRPTW is conventional, requiring only a 

random swap of the positions of two genes on the same chromosome (the lower part of 

Figure 5 for the orange and green genes). 

4.3.4. Blend Parents and Offspring 

After the selection, crossover, and mutation operator calculations, we obtain the child 

population and the parent population, which will have a total size greater than 𝑍. In order 

to keep the population size constant, the blend operation merges the two populations and 

then removes duplicate individuals. If the size of the population after de-duplication is 

larger than 𝑍 then the first 𝑍 individuals in descending order of fitness are taken. Oth-

erwise, the insertion heuristic is used for supplementation. 

4.3.5. Termination Criteria 

The termination criterion of GA is related to the maximum generation 𝑀𝑖𝑡𝑒𝑟. If this 

parameter is too large, it causes the algorithm to take too long to compute. If this param-

eter is too small, it leads to poor solution quality. The GA terminates when it satisfies the 

following two criteria: 

1. The ratio of the number of iterations in which the objective function is not improved 

to the maximum number of generations 𝑀𝑖𝑡𝑒𝑟 exceeds the parameter 𝛽. 

Figure 5. OX and mutation operators. The yellow genes are selected for OX, and the orange and
green genes are selected for mutation.

The mutation operator in the GA for the VRPTW is conventional, requiring only a
random swap of the positions of two genes on the same chromosome (the lower part of
Figure 5 for the orange and green genes).

4.3.4. Blend Parents and Offspring

After the selection, crossover, and mutation operator calculations, we obtain the child
population and the parent population, which will have a total size greater than Z. In order
to keep the population size constant, the blend operation merges the two populations and
then removes duplicate individuals. If the size of the population after de-duplication is
larger than Z then the first Z individuals in descending order of fitness are taken. Otherwise,
the insertion heuristic is used for supplementation.
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4.3.5. Termination Criteria

The termination criterion of GA is related to the maximum generation Miter. If this
parameter is too large, it causes the algorithm to take too long to compute. If this parameter
is too small, it leads to poor solution quality. The GA terminates when it satisfies the
following two criteria:

1. The ratio of the number of iterations in which the objective function is not improved
to the maximum number of generations Miter exceeds the parameter β .

2. The iteration reaches Miter.

4.4. LNS Operator

In fact, the classical GA described above can already obtain an optimized feasible
solution. In order to obtain an improved solution, the LNS operator is introduced. The
LNS method was proposed by [56], which acts on a solution and thus can be embedded
in a GA to improve the quality of the solution. We adopt elitism, i.e., we target only the
elite chromosomes in the population for the LNS operation. LNS belongs to a type of
neighborhood search heuristic, which generates neighborhoods by a destroy method and
a repair method. The destroy method removes customers from the solution according
to certain rules and randomness. The repair method reinserts the unrouted customers
into the routes by greedy strategies and randomness to possibly produce a better solution.
If the newly generated solution is better than the original solution, the original solution
is replaced and searched again. The pseudo-code of the neighborhood search operator
algorithm is shown in Figure 6. 

2 

 
Figure 6. Pseudocode for LNS operator.
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Shaw designed relatedness-based destroy rules for the LNS algorithm of VRPTW
Shaw [56]. Two customers are more related if they are close to each other on the graph or
if two customers are served by the same vehicle. The customers moved out by this rule
will be in a certain area. The repair operation then reinserts the customers in this area to
produce a better solution. Let σ denote the set of unrouted customers, and P denote the
maximum number of unrouted customers. The operation to remove customers from the
current path R of a vehicle is as follows:

Step 1. Set σ = ∅ and R′ = R.
Step 2. A customer is randomly moved as a seed in R′, and that customer is added to σ.
Step 3. Randomly select a customer i in σ and calculate the relatednessR(i, j) between all

customers j ∈ R′ and i.
Step 4. The customer j∗ with the highest relatedness with i is removed from R′ and added to

σ.
Step 5. Stop if |σ| = P and return to Step 2 if |σ| < P .

Equation (28) defines the relatedness of two customers, and the calculation of related-
ness R(i, j) requires two parameters: The normalized distance is calculated as shown in
Equation (29). In addition, the vehicle binary judgment parameter is shown in Equation (30).
When customers i and j are served by the same vehicle, the judgment parameter fij = 0,
otherwise it is equal to 1.

R(i, j) =
1

d′ij + fij
, ∀i ∈ σ, ∀j ∈ R′ (28)

d
′
ij =

dij

max
j′∈R

dij′
, ∀i ∈ σ, ∀j ∈ R′ (29)

fij =

{
0, if i and j are served by the same vehicle
1, otherwise

(30)

The repair method uses a greedy strategy to insert P customers of σ into the routes
one by one. During each insertion, the current objective function value increases with
the insertion of clients. Define P(i, R′) to be the set of feasible insertion positions of client
i ∈ σ in the routing plan R′. Let ∆Ctotal(i, p) denote the increment of the objective function
after inserting customer i into the feasible position p ∈ P(i, R′). The steps of the insertion
operation are detailed as follows.

Step 1. Calculate the increment of all objective functions ∆Ctotal(i, p), i ∈ σ, p ∈ P(i, R′).
Step 2. Select the customer i∗ and the corresponding feasible position p∗ that minimizes

the increment of the objective function, i.e., (i∗, p∗) = arg min
i∈σ,p∈P(i,R′)

∆Ctotal(i, p).

Step 3. Insert i∗ at p∗, update R′ and remove i∗ from σ.
Step 4. Stop if σ = ∅, otherwise, skip to Step 2.

Shaw introduced a limited discrepancy search method to improve the quality of
the repair method [56]. However, this method is very computationally resource inten-
sive. We borrowed the idea of its discrepancy factor to improve Step 2 of the repair
operation. Sort all the objective function increments in ascending order. Let the positive
integer D be the discrepancy parameter, and parameter rand be a random number between
0 and 1. The customer-position pair (i∗, p∗) is the drandD ×∑i∈σ |P(i, R)|eth of the sorted
customer-position pairs, where ∑i∈σ|P(i, R′)| is the number of all customer-position pairs,
function d·e denotes rounding upwards. When D is large enough, greediness dominates in
selecting customer-position pairs, and when D is small enough, randomness dominates in
selecting customer-position pairs.
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5. Computational Result

In this section, we first conduct numerical experiments and employ the Solomon
dataset to test the performance of our GA-LNS algorithm. We adopted a distribution mis-
sion in Haidian District, Beijing, China, as the data for a case study to optimize the vehicle
route for that day. All parameters were obtained from our partner, and the road information
was provided by Baidu Map API. The distribution mission included 40 vaccination sites in
Haidian District and a distribution center located at the Haidian District Center for Disease
Control (See Appendix A for the dataset). The GA is coded with MATLAB 2022a and runs
on a 3.0 Ghz CPU, 8 Gb RAM, and Windows 10 OS computer.

All the values of parameters in the model and the algorithm are shown in Table 2.
The refrigerated truck investigated in this paper is 4.2 m long, with a volume of 14.9 cubic
meters, and two refrigeration units with a total power of 10.7 kilowatts. This type of truck
is commonly used for distribution in China. We have collected the mechanical performance
parameters of the vehicle.

Table 2. Parameter settings.

Parameter Value Remark

Case Study
µ 0.1 Liter
α 8.5 RMB
P 10.7 kW
Q 33580 Joule/Liter

Tcool 1.25 hour
Tlim 5 hour
π 10 RMB
κ 0.4
η 0.35
C 200 SKU
v 60 km/h
K {1, 2, . . . ,10}

GA-LNS
ρ 1.0
θ 1.0
Z 100
Ps 0.9
Pc 0.9
Pm 0.1

Miter 2000
β 0.25
D 3

5.1. Numerical Experiment

To evaluate the performance of our GA-LNS algorithm, we applied the Solomon
benchmark as the base data to test our algorithm as well as to analyze the results of
the model. The well-known benchmark, provided by Solomon [54], was classified into
cluster (C), random (R), and combining both (RC) according to the distribution of each
point in space. We assume that in all instances, the unit of distance between two points is
kilometers and the unit of time is minutes.

GA-LNS was run ten times on each of the instances of group C1, R1, and RC1. The
best results for each example are reported in Table 3. Note that the first objective of the
original Solomon benchmark is to minimize the number of vehicles used, and the second
objective is to minimize the distance traveled. Our model has only one objective function
and cannot be compared to the results already reported.

Results show that the GA-LNS method can obtain a near-optimal solution in an ac-
ceptable time and that the traveled distances in some results are very close to the minimum
distance of the Solomon data. However, due to the nature of the programming language



Sustainability 2023, 15, 1252 17 of 24

and the nonlinearity of the model, the algorithm takes longer to compute on the Solomon
test data than some of the top metaheuristics compiled in C++ (see [45] for a comparison of
the results on the classic Solomon data). From the cost composition perspective, the service
refrigeration cost Cr3 and penalty cost Cp account for a significant share in group C1, while
the R1 and RC1 have a lower share or even 0. This is because, in the C1 instances, the
service time per customer will be 1.5 h, as we assumed for the data, resulting in a huge
service refrigeration cost. The penalty cost is also high due to the long working time of
each route in C1. In the other series of instances, a penalty cost of zero indicates that all
drivers operate for less than the specified hours. In summary, numerical experiments show
that our algorithm can solve the problem for 100 nodes. For the results of the real cases, see
the following subsections.

Table 3. Results for Solomon C1, R1, and RC1 (unit: RMB).

Data Ctotal Ct Cr1 Cr2 Cr3 Cp Distance (km) Time (s)

C101 6523.70 704.60 348.23 153.95 4178.76 1138.16 828.94 89.10
C102 6526.74 704.60 348.23 155.51 4178.80 1139.60 828.94 190.60
C103 6651.44 782.91 348.23 180.00 4178.80 1161.50 921.07 285.80
C104 6535.39 706.01 348.23 159.35 4178.80 1143.00 830.60 277.94
C105 6523.78 704.60 348.23 153.95 4178.80 1138.20 828.94 80.08
C106 6523.78 704.60 348.23 153.95 4178.80 1138.20 828.94 87.46
C107 6523.78 704.60 348.23 153.95 4178.80 1138.20 828.94 90.14
C108 6523.78 704.60 348.23 153.95 4178.80 1138.20 828.94 111.13
C109 6523.78 704.60 348.23 153.95 4178.80 1138.20 828.94 95.47
R101 2954.71 1406.90 696.46 387.05 464.31 0.00 1655.21 502.26
R102 2695.30 1289.90 591.99 349.10 464.31 0.00 1517.55 582.03
R103 2286.37 1056.28 487.52 278.26 464.31 0.00 1242.68 547.41
R104 1940.47 876.98 383.05 216.13 464.31 0.00 1031.74 579.40
R105 2444.07 1181.00 522.35 276.42 464.31 0.00 1389.38 588.27
R106 2259.52 1089.80 452.70 252.71 464.31 0.00 1282.10 543.94
R107 1971.08 917.15 383.05 206.57 464.31 0.00 1079.00 586.27
R108 1839.55 835.72 348.23 191.30 464.31 0.00 983.19 582.68
R109 2140.04 1025.77 417.88 232.09 464.31 0.00 1206.79 566.25
R110 2058.77 963.58 417.88 213.00 464.31 0.00 1133.63 569.06
R111 2067.78 967.16 417.88 218.44 464.31 0.00 1137.83 588.56
R112 1856.29 856.31 348.23 187.44 464.31 0.00 1007.42 555.10

RC101 2807.44 1435.92 557.17 350.04 464.31 0.00 1689.32 508.56
RC102 2535.31 1273.78 487.52 309.70 464.31 0.00 1498.56 527.39
RC103 2285.80 1138.14 417.88 265.48 464.31 0.00 1338.98 582.73
RC104 2018.24 977.88 348.23 227.82 464.31 0.00 1150.45 560.60
RC105 2676.65 1364.79 522.35 325.21 464.31 0.00 1605.63 537.67
RC106 2404.10 1216.16 452.70 270.94 464.31 0.00 1430.77 516.11
RC107 2257.16 1123.29 417.88 251.69 464.31 0.00 1321.52 542.07
RC108 2119.52 1039.56 383.05 232.60 464.31 0.00 1223.01 612.68

5.2. Case Study

The case study is based on 40 vaccination sites and one DC in Haidian District,
Beijing, with latitude and longitude coordinates provided by Baidu Maps. Time windows
are converted to minutes for the time of day, and other data, such as service hours and
demands, are shown in Appendix A. The distance between the two points is obtained by
calling the function of driving distance measurement in Baidu Maps API in kilometers and
keeping two valid digits. Similarly, we run the GA-LNS algorithm 10 times and take the
best results. Table 4 reports the best plan, and Figure 7 shows the routes on the map.

The results show that four trucks were employed to complete the day’s task. First, in
terms of numerical analysis, the total cost for each truck did not exceed 200 RMB, with Ct
and Cr3 accounting for a larger share. All trucks traveled a total of 307.69 km and consumed
72.5 L of fuel, incurring transportation costs of 225.38 RMB and waiting and transportation
refrigeration costs of 51.89 RMB. In our model, the service refrigeration cost varies with
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the inputs to the model. In this case, this cost accounts for a total of 32.40%, implying that
logistics companies should improve service efficiency and shorten service time to save costs.
We find that the penalty cost is 0, indicating that the working hours of the drivers of each
route do not exceed the specified limit. Second, in terms of the quality of the routes, the
vehicles depart from the distribution center and return to the distribution center after serving
the customers. The number of customers served by each vehicle is close, and the number of
kilometers traveled is close, i.e., the driver’s workload is roughly equal. The majority of the
trucks (2, 3, and 4) on each route did not fold back while meeting the time window (route 1
produced some degree of folding back to meet the time window for certain customers). The
next subsections analyze the impact of each parameter of the model on the decision.

Table 4. Best route with minimum total cost (unit: RMB).

Truck Route Ct Cr1 Cr2 Cr3 Cp Total

1 0-27-8-14-13-9-12-10-25-35-0 62.15 34.82 13.58 44.57 0.00 155.13
2 0-29-30-22-37-32-20-18-1-2-7-40-0 45.53 34.82 12.60 54.32 0.00 147.27
3 0-28-15-5-36-38-34-16-11-17-6-0 55.87 34.82 12.21 44.57 0.00 147.47
4 0-21-4-19-39-24-3-33-31-26-23-0 61.84 34.82 13.51 56.18 0.00 166.35

Sum 225.38 139.29 51.89 199.65 0.00 616.22
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5.2.1. Impact of Seasonal Temperature

The seasonal temperature will significantly affect the refrigeration system usage fre-
quency of the trucks, which is obviously higher in summer and lower in winter. The
difference in ambient temperature will lead to a change in the parameters Tcool and κ. The
values of Tcool for spring or autumn, summer and winter are 1, 1.25, and 0.75 h, respectively,
and the values of κ are 0.3, 0.4, and 0.2.

Table 5 shows the effect of temperature on various costs in different seasons. With the
change of seasons, the highest cost of distribution was observed in summer and the lowest
in winter. Two of the costs, Cr1 and Cr2, are most affected by temperature. Compared
to the total cost in winter, the cost in spring and summer increased by 7.6% and 15.3%,
respectively. In addition, the fuel consumption in spring or autumn, summer, and winter
is 67.65, 72.50, and 62.89 L, respectively. This implies that improving the airtightness of
vehicles and reducing the value of κ in summer or avoiding exposure to the sunlight when
parking may be ways to reduce pre-cooling costs and fuel consumption.

Table 5. Cost variation with the season (unit: RMB).

Season Ct Cr1 Cr2 Cr3 Cp Total

Spring/Autumn 224.53 111.43 39.40 199.65 0.00 575.02
Summer 225.38 139.29 51.89 199.65 0.00 616.22
Winter 225.38 83.58 25.95 199.65 0.00 534.56

5.2.2. Impact of Vehicle Speed

In our model, we omit the effect of varied speeds on fuel consumption. However,
the vehicle speed is an important influence in route planning, as it determines whether
a vehicle can serve a given customer at a given time, affects the magnitude of Cr2, and
influences the tradeoff between the costs. Figure 8 shows the tradeoff curves for the costs
incurred for average speeds v of 30.0, 37.5, 45.0, 52.5, and 60.0 km/h, respectively.
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Overall, the total cost of the system decreases as the average speed v increases. How-
ever, Ct increases and then decreases as the parameter v increases. The reason for this
phenomenon is the change in the number of trucks employed. When v is less than or equal
to 45 km/h, five trucks are used to increase the pre-cooling cost while decreasing the Cr2.
When the vehicle speed increases to 52.5 km/h, the decrease in the number of vehicles used
leads to a decrease in the pre-cooling cost but increases the Cr2. We are surprised to find
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that when v = 60 km/h, the number of vehicles decreases to the minimum (derived from
the ratio of total demand to total capacity) while Ct and Cr2 decrease, and the Cp is zero.

In reality, the speed of the vehicle depends on external factors such as the road
conditions of the day, whether it is a working day or not. These external factors will affect
the outcome of the decision. Predicting vehicle speed helps decision-makers to specify more
reasonable planning. Especially when the average speed variation of vehicles decreases, it
not only incurs penalty costs but also increases the number of hired drivers. Although our
model does not consider the cost of drivers, adding more vehicles may lead to additional
overhead and reduce the load rates of the vehicles.

5.2.3. Impact of Driver Working Hours

In this subsection, we analyze the impact of parameter Tlim on total costs. We want
to know the impact of shorter working hours on fuel consumption. As mentioned earlier,
the penalty cost is reflected in the cost of potential accidents and the additional wages
incurred for working more than the Tlim. Figure 9 reports the trend and trade-off curves for
the change in costs as Tlim varies. We find that as Tlim increases, the total cost gradually
decreases by 13.24%. When Tlim equals 3, the penalty cost incurred is equal to 3.26 RMB,
and when Tlim is greater than 3, the system does not incur a penalty cost, indicating that
the work can be completed in close to 3 h per vehicle, satisfying the road safety law that
drivers should not drive for more than four consecutive hours.
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We also find that the system incurs penalty costs when Tlim is equal to 1 or 2. In order
to reduce the penalty cost, the transportation cost increases accordingly. This indicates that
the quality of the route may deteriorate further to complete the task as soon as possible.

In this case study, the transport volume was not very large, and all vehicles completed
their tasks in close to three hours. The above analysis shows that the parameter Tlim will
significantly affect the cost and the quality of the route. In real life, it is difficult to describe
the penalty cost mathematically. In most cases, the driver delivers the vaccine safely to
the customer at the specified time, incurring almost no penalty cost. However, the small
probability of an accident generating damage would be difficult to bear. The more realistic
implication of analyzing the impact of Tlim is to equalize the workload of individual drivers.

5.2.4. Impact of Energy Conversion Efficiency

The parameter η indicates the conversion efficiency of the two energies, and the value
is closely related to the parameters of the vehicle engine and the refrigeration system. The
value of η can be increased by replacing it with more advanced refrigeration equipment.
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Assuming that η can vary between 0.2 and 0.4, the impact of this parameter on the cost is
analyzed in Figure 10.

Provided that other parameters remain unchanged in Section 5.2, we find that the
values of transportation cost and penalty cost are constant, indicating that a variation of
this parameter does not affect route planning but significantly affects fuel consumption.
Since the refrigeration cost is negatively proportional to this parameter, when η is small, a
small increase in variation of η will reduce fuel consumption significantly. When η is equal
to 0.2, 0.3, and 0.4, the fuel consumption is 107.0, 80.2, and 66.7 L, respectively. Assuming
that the current equipment is updated, and the parameter η of the new equipment is equal
to 0.4, then this distribution mission will save 6.2 L of fuel, which is 8.56% less than the
fuel consumption with the old. Therefore, the logistics enterprise should weigh the cost
of investing in new equipment and environmental protection and make a choice about
updating advanced refrigeration equipment with full consideration of long-term economic
benefits and the enterprise’s environmental responsibility.
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6. Conclusions

This paper investigates a vehicle routing problem for vaccine distribution considering
fuel consumption. The fuel consumption in each operation step is converted into the
fuel cost. We propose a GA-LNS with the TSP-split metaheuristic method. Solutions to
Solomon R1, C1, and RC1 benchmark show that the algorithm can solve a realistic scale
problem. The result of a case study suggests that 60% of the fuel consumption in vaccine
distribution comes from the refrigeration system. Moreover, fuel consumption is 15.3%
higher in summer than that in winter, and reducing working hours does not have a large
impact on fuel consumption.

Our findings also raise new questions for future research. First, in the present model,
an idealized assumption is made about the relationship between fuel consumption and
transport distance. As we mentioned, complex road conditions, driving habits, etc., can
affect fuel consumption. By analogy, we can refine the fuel consumption more in each step
of vaccine distribution, including factors such as the sealing of the carriage can be taken
into account. Secondly, the content of our study is the traditional vehicle. The emergence
of refrigerated electric trucks will generate more considerations in the model, including the
rational allocation of power to the compartment cooling and driving the vehicle. This will
be an interesting topic.
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Appendix A

Table A1. Nodes information for all vaccination sites in Haidian, Beijing.

Nodes Longitude Latitude Demands ei li si

0 116.269992 40.055724 0 0 1440 0
1 116.350240 39.986300 15 435 480 12
2 116.346127 40.004083 6 360 480 7
3 116.350446 39.965543 18 735 780 13
4 116.350429 40.049870 8 675 780 8
5 116.323339 39.927778 9 315 420 9
6 116.275456 40.028304 12 390 510 10
7 116.335540 40.050999 21 435 480 15
8 116.298227 40.032222 14 675 750 11
9 116.277139 39.961836 9 690 750 9

10 116.221934 39.980733 14 675 780 11
11 116.260460 39.962114 18 375 450 13
12 116.244870 39.960935 6 630 750 7
13 116.216316 40.038379 12 690 750 10
14 116.207848 40.045919 10 690 750 9
15 116.327217 39.985777 21 345 390 15
16 116.314589 39.919511 14 405 570 11
17 116.285448 39.962706 9 465 510 9
18 116.363714 39.965692 14 360 450 11
19 116.349383 39.999541 21 630 720 15
20 116.352928 39.962944 10 375 420 9
21 116.350705 40.063672 21 660 780 15
22 116.301766 39.997448 6 330 420 7
23 116.258678 39.922918 15 720 840 12
24 116.380720 39.979451 14 660 750 11
25 116.270230 40.030693 18 735 810 13
26 116.270068 39.917421 14 795 840 11
27 116.281638 40.027472 18 660 720 13
28 116.269064 40.012419 6 345 390 7
29 116.302777 40.047925 21 330 390 15
30 116.308994 40.049000 14 360 420 11
31 116.310443 39.937113 18 735 810 13
32 116.331132 39.975714 12 375 420 10
33 116.278632 39.939237 18 660 780 13
34 116.303583 39.921549 8 345 420 8
35 116.261637 40.089826 18 765 840 13
36 116.310738 39.898861 6 375 450 7
37 116.330420 39.986513 18 345 420 13
38 116.283506 39.911144 6 300 420 7
39 116.369908 40.003590 12 645 720 10
40 116.272844 40.085885 6 465 510 7

https://api.map.baidu.com/routematrix/v2/driving?
https://api.map.baidu.com/routematrix/v2/driving?
https://lbsyun.baidu.com/index.php?title=webapi/route-matrix-api-v2
https://lbsyun.baidu.com/index.php?title=webapi/route-matrix-api-v2
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